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Abstract
As large language models (LLMs) become in-
creasingly prevalent in critical applications, the
need for interpretable AI has grown. We in-
troduce TokenSHAP, a novel method for in-
terpreting LLMs by attributing importance to
individual tokens or substrings within input
prompts. This approach adapts Shapley val-
ues from cooperative game theory to natural
language processing, offering a rigorous frame-
work for understanding how different parts
of an input contribute to a model’s response.
TokenSHAP leverages Monte Carlo sampling
for computational efficiency, providing inter-
pretable, quantitative measures of token im-
portance. We demonstrate its efficacy across
diverse prompts and LLM architectures, show-
ing consistent improvements over existing base-
lines in alignment with human judgments, faith-
fulness to model behavior, and consistency.

Key contributions include:

• A theoretical framework extending Shap-
ley values to variable-length text LLM
inputs.

• An efficient Monte Carlo sampling ap-
proach tailored for language models.

• Comprehensive evaluation across various
prompts and model types.

• Capability to effortlessly visualize the in-
sights.

Our method’s ability to capture nuanced inter-
actions between tokens provides valuable in-
sights into LLM behavior, enhancing model
transparency, improving prompt engineering,
and aiding in the development of more reliable
AI systems. TokenSHAP represents a signifi-
cant step towards the necessary interpretability
for responsible AI deployment, contributing to
the broader goal of creating more transparent,
accountable, and trustworthy AI systems.

1 Introduction

Large language models (LLMs) have greatly ad-
vanced natural language processing, delivering near

or at human-level performance on many tasks.
However, their "black box" nature poses inter-
pretability challenges, crucial for applications in
fields like healthcare and legal analysis, where un-
derstanding AI decision-making is vital.

This paper introduces TokenSHAP, a method en-
hancing LLM interpretability by adapting Shapley
values from game theory. TokenSHAP treats in-
put tokens as players, assessing their contribution
to model outputs. This allows for a deeper under-
standing of how LLMs process information, crucial
for improving model transparency and reliability.

We propose a Monte Carlo sampling method for
practical Shapley value estimation, accommodat-
ing the variable lengths and contextual nature of
language inputs. Our evaluations across different
prompts and models confirm TokenSHAP’s versa-
tility and effectiveness in revealing LLM decision-
making processes. This breakthrough aids the de-
velopment of more accountable AI systems, en-
suring their responsible use as they become more
integrated into critical applications.

2 Related Work

2.1 Interpretability in Machine Learning

Interpretability in machine learning has gained sig-
nificant attention as models become increasingly
complex. Methods for explaining AI systems can
be broadly categorized into two approaches: black
box methods and white box methods (Guidotti
et al., 2018).

Black box methods, such as LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017), have
emerged as popular approaches for explaining pre-
dictions across various ML models without requir-
ing access to the model’s internal architecture or
parameters. LIME provides local approximations
of model behavior by perturbing input data, while
SHAP unifies several feature attribution methods
under the Shapley value framework. These meth-
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ods are particularly valuable when working with
proprietary or complex models where internal ac-
cess is limited or impractical (Molnar, 2020).

White box methods, on the other hand, require
knowledge of and access to the model’s internal
structure. These include techniques like gradient-
based saliency maps (?) and layer-wise relevance
propagation (LRP) (Bach et al., 2015). While these
methods can provide more detailed insights into the
model’s decision-making process, they are limited
to scenarios where the model architecture is fully
accessible and understood (Gilpin et al., 2018).

Recent advancements include counterfactual ex-
planations (Wachter et al., 2018), which explore
how altering inputs changes model predictions.
While these methods offer valuable insights for tab-
ular and image data, they face challenges when
applied to the sequential and contextual nature
of language, highlighting the need for specialized
NLP interpretability techniques (Danilevsky et al.,
2020).

2.2 Interpretability in Natural Language
Processing

In the NLP domain, attention visualization tech-
niques (Vig, 2019) have gained popularity, of-
fering insights into which parts of the input a
model focuses on. However, these visualizations
often lack quantitative rigor. More sophisticated
methods like Integrated Gradients (Sundararajan
et al., 2017) and Layer-wise Relevance Propaga-
tion (LRP) (Bach et al., 2015) provide continuous
importance scores for input tokens but can struggle
with gradient saturation and non-linearity in deep
models.

Probing tasks (Tenney et al., 2019) have also
been employed to examine the representations
learned by language models, revealing the types of
linguistic information encoded at different layers.
However, these methods do not directly interpret
how inputs lead to specific outputs in inference
tasks.

2.3 Shapley Values in Machine Learning and
NLP

Shapley values, originating from cooperative game
theory, have emerged as a powerful tool for feature
importance estimation in machine learning. Lund-
berg and Lee’s SHAP method (Lundberg and Lee,
2017) unified several feature attribution techniques
under the Shapley value framework, ensuring con-
sistency and local accuracy. However, the computa-

tional intensity of exact Shapley value calculation
has led to approximations like KernelSHAP and
TreeSHAP, which are primarily designed for fixed-
length feature vectors.

Applying Shapley values to NLP tasks presents
unique challenges due to the combinatorial explo-
sion of possible token subsets in variable-length
text. Recent work by Sundararajan et al. (Sun-
dararajan et al., 2017) introduced TracIn to track
the influence of training data points on predictions,
but it doesn’t provide granular token-level insights
for individual predictions.

3 Methodology

3.1 TokenSHAP Overview

TokenSHAP attributes importance to individual to-
kens or substrings in an input prompt by estimating
their Shapley values. The Shapley value for a token
represents its average marginal contribution to the
model’s output across all possible combinations of
tokens. This approach provides a rigorous frame-
work for understanding how each part of the input
influences the final response of large language mod-
els (LLMs).

3.2 Tokenization and Sampling

Given an input prompt x = (x1, ..., xn), where
xi represents individual tokens or substrings, we
consider all possible subsets S ⊆ N , where N =
{1, ..., n}. The exponential number of subsets (2n)
makes exact computation impractical, so we em-
ploy Monte Carlo sampling to estimate Shapley
values efficiently. This sampling approach balances
the need for computational feasibility with the ac-
curacy of Shapley value estimations.

3.3 Monte Carlo Shapley Estimation

We adapt the Monte Carlo sampling approach to
the context of text inputs. For each token xi, we
estimate its Shapley value ϕi as follows:

1. Generate a set of combinations that includes:

(a) All combinations where xi is the only
token removed (essential combinations)

(b) A random sample of other combinations
based on a specified sampling ratio

2. For each combination:

(a) Generate the model’s response
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(b) Calculate the cosine similarity between
this response and the full prompt re-
sponse

3. Compute the average similarity for combina-
tions with and without xi

4. Calculate ϕi as the difference between these
averages

This Monte Carlo estimation approach ensures
a balance between computational efficiency and
estimation accuracy. The use of essential combina-
tions alongside random samples provides a robust
basis for estimating Shapley values, even with a
relatively small number of samples.

3.4 Value Function
We define the value function v(S) as the cosine sim-
ilarity between the TF-IDF vectors of the model’s
response to the subset S and the response to the
full prompt. Formally:

v(S) = cosine_similarity(TF-IDF(r(S)),TF-IDF(r(N)))
(1)

where r(S) is the model’s response to the subset
S, and r(N) is the response to the full prompt.
This formulation allows us to measure how closely
the response to a subset resembles the response to
the entire input, providing a quantitative basis for
attributing importance to individual tokens.

3.5 Model Interaction
For each sampled subset S, we query the LLM
to generate a response. The prompt for a subset
is constructed by concatenating the tokens or sub-
strings corresponding to the indices in S. This step
ensures that the model’s behavior is consistently
evaluated across varying subsets of the input.

3.6 Shapley Value Computation
The estimated Shapley value for token xi is com-
puted as:

ϕi =(average similarity of combinations including xi)

− (average similarity of combinations excluding xi)
(2)

This difference in average similarities provides
a measure of the token’s importance to the model’s
output. The final Shapley values are normalized
to ensure comparability across different inputs and
models.

Algorithm 1 TokenSHAP
Require: Input prompt x, model name, sampling

ratio r, tokenizer/splitter
Ensure: Shapley values ϕi for each token xi

1: Tokenize or split x into n tokens (x1, . . . , xn)
2: Calculate baseline response b for full prompt x
3: Initialize essential combinations E ← {}
4: for i = 1 to n do
5: E ← E ∪ (x1, . . . , xi−1, xi+1, . . . , xn)
6: end for
7: N ← min(n, ⌊(2n − 1) · r⌋) ▷ Number of

sampled combinations
8: if N < n then
9: C ← E ▷ Use only first-order samples

10: else
11: S ← Random sample of N − n combina-

tions excluding E
12: C ← E ∪ S ▷ All combinations to process
13: end if
14: for each combination c in C do
15: Get model response Rc for c
16: Calculate cosine similarity sim(b, Rc)
17: end for
18: for i = 1 to n do
19: withi ← average similarity of combina-

tions including xi
20: withouti ← average similarity of combina-

tions excluding xi
21: ϕi ← withi − withouti
22: end for
23: Normalize ϕ1, . . . , ϕn

24: return ϕ1, . . . , ϕn
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3.7 Visualization
We present the results using a color-coded visual-
ization of the input text. The color intensity repre-
sents the magnitude of the Shapley value for each
token or substring, with a diverging color map (e.g.,
coolwarm) to distinguish positive and negative val-
ues. This visualization aids in intuitively under-
standing the model’s decision-making process by
highlighting the most influential parts of the input.

Figure 1: Flowchart of the TokenSHAP algorithm illus-
trating the process of Shapley value estimation for token
importance in large language models by accepting parts
of the text to the players and a cosine similarity measure
to the base prompt as a gain.

Figure 2: A graph that shows the visualization of the
prompt in blue-red colors.

By providing a clear and quantitative analysis
of token importance, TokenSHAP enhances the in-
terpretability of LLMs, offering insights that are
critical for improving model transparency, trustwor-
thiness, and overall performance.

4 Experiments

4.1 Injection of Random Words and Method
Comparison

This experiment evaluates the ability of differ-
ent interpretability methods to accurately assign
low importance to randomly injected words within
prompts. The goal is to test each method’s sensitiv-
ity and precision in identifying extraneous words
that should not significantly impact model deci-
sions.

4.1.1 Experimental Design

We selected random prompts from the Alpaca
dataset and injected each with random words at
random places. We examined the performance of
the following explainability methods in assigning
low importance to those random words:

1. Random: This method uses a random base-
line, assigning random importance to each
token.

2. Prompt Engineer: This method uses relevant
prompts to derive the tokens’ importance from
an LLM model. Llama3 was used with few-
shot in-context learning.

3. TokenSHAP: Utilizes Shapley values to quan-
tify the impact of each token within a prompt
on the model’s output, effectively identifying
tokens with low importance.

4.1.2 Results and Evaluation

This section details the performance of each inter-
pretability method when applied to both regular and
injected prompts. Effective methods are expected
to demonstrate the ability to discern between ’real’
and injected words by assigning significantly lower
importance to the latter.

Statistical Analysis The analysis focused on
comparing the average importance values and stan-
dard deviations for ’real’ words against those for in-
jected words. Effective discrimination by a method
would manifest as a substantial difference in these
metrics, with lower values for injected words indi-
cating better performance.

Results Summary Table 1 presents the differ-
ences in mean importance values and standard de-
viations between non-injected and injected words
for each evaluated method. Notably, a method per-
forming well should show a larger mean difference
and a controlled standard deviation.

Method ∆ Mean Importance ∆ Std Dev
Random 0.017 -0.017
Prompt Engineer 0.019 -0.001
TokenSHAP 0.033 0.011

Table 1: Differential importance values between non-
injected and injected words across methods
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4.1.3 Visual Analysis
Boxplots were generated to visually depict the dis-
tribution of importance values for each method,
contrasting injected versus non-injected words.
These plots underscore the quantitative findings
and highlight how each method manages the vari-
ance and central tendency of importance values
across conditions.

Figure 3: Box plot showing the distribution of impor-
tance values for the Random Baseline method.

Figure 4: Box plot showing the distribution of impor-
tance values for the Prompt Engineering method.

Figure 5: Box plot showing the distribution of impor-
tance values for TokenSHAP.

4.1.4 Discussion
As anticipated, the Random method performed
the poorest, showing minimal differentiation be-
tween real and injected words. Prompt Engineer-
ing demonstrated slight improvement but remained
limited in discriminative power. In contrast, To-
kenSHAP significantly excelled, effectively dis-

tinguishing between relevant and irrelevant tokens
with its realistic and lower SHAP values for in-
jected words, thus proving to be the most reli-
able method for ensuring model interpretability
and transparency.

4.2 Monte Carlo Shapley Value
Approximation

4.2.1 Experimental Setup
To assess the effectiveness of Monte Carlo sam-
pling in approximating Shapley values under di-
verse conditions, we designed an experiment com-
paring different sampling ratios, both with and
without the inclusion of first-order omission con-
ditions. The first-order omission condition entails
always including subgroups that omit exactly one
token, offering a consistent baseline for compari-
son. This condition was tested alongside scenarios
where it was entirely excluded, allowing us to ex-
plore the impact of this methodological choice on
the approximation accuracy.

4.2.2 Methodology
The experiment involved calculating the cosine
similarity between true Shapley values and those
approximated by the Monte Carlo method across
various sampling ratios. These ratios ranged from
1.0 (full sampling) down to 0.0. The true Shap-
ley values were computed comprehensively, and
then the similarity to these values was measured
by comparing the results from the Monte Carlo ap-
proximations to the original Shapley value vector
through cosine similarity. This metric provides a
clear measure of how closely the approximations
match the true values, highlighting the accuracy of
the sampling method.

4.2.3 Results and Analysis

Figure 6: Change in average similarity between true
Shapley values and their approximations under different
sampling ratios, with and without the condition of first-
order omission.
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Figure 6 presents the results, demonstrating sig-
nificant differences in approximation accuracy de-
pending on the presence of the first-order omission
condition. The sampling ratio plays a crucial role
in determining the number of combinations consid-
ered beyond the essential first-order samples.

4.2.4 Implications
These findings underscore the importance of includ-
ing first-order omissions in Monte Carlo sampling
to maintain robustness and reliability in Shapley
value approximations. This approach validates the
Monte Carlo sampler’s capability to accurately esti-
mate Shapley values, highlighting its utility in prac-
tical applications where computational efficiency
is critical.

5 Discussion

5.1 Interpretability Insights

TokenSHAP offers several advantages for interpret-
ing LLM outputs:

1. Quantitative Measure: It provides a rigor-
ous, quantitative assessment of token impor-
tance, utilizing the Shapley value framework
to quantify the contribution of each token to
the model’s output in a consistent and objec-
tive manner.

2. Context-awareness: The method captures
the interdependence between tokens, reflect-
ing how the model processes the entire input.
This contextual sensitivity is essential for ac-
curately interpreting the sophisticated dynam-
ics of LLMs.

3. Model-agnostic: TokenSHAP can be applied
to any LLM without requiring access to its
internal architecture, making it a versatile tool
for users working with proprietary or black-
box models. This positions TokenSHAP as a
powerful black box method in the landscape
of explainable AI, contrasting with white box
methods that require detailed knowledge of
model internals.

4. Granularity: The approach allows for analy-
sis at both token and substring levels, offering
significant flexibility and enabling detailed ex-
ploration of how linguistic constructs larger
than single tokens influence the model’s deci-
sions.

5.2 Limitations

1. Computational Cost: Despite the efficiency
gains from Monte Carlo sampling, Token-
SHAP remains more computationally inten-
sive than simpler interpretability methods, due
to the need for repeated model evaluations.

2. Sensitivity to Sampling: The stochastic na-
ture of Monte Carlo sampling introduces vari-
ability in the importance scores, which may
slightly vary between runs, affecting repro-
ducibility in sensitive applications.

3. Assumption of Additivity: The theoretical
foundation of Shapley values assumes that
contributions from individual tokens can be
additively combined, which may not always
be accurate in cases where complex interac-
tions and non-linear dynamics dominate.

5.3 Future Work

1. Exploring Alternative Value Functions: Fu-
ture research could include developing more
sophisticated value functions that better cap-
ture nuanced aspects of semantic similarity
and contextual alignment. Usage of LLM can
also be considered for this task.

2. Investigating Shapley Value Stability: Fur-
ther studies are needed to assess the stability
of Shapley values across different LLM archi-
tectures and input sizes, to understand their
robustness and generalizability.

3. Developing Interactive Tools: There is a sub-
stantial opportunity to create interactive, user-
friendly tools that allow practitioners to dy-
namically explore token importance, enhanc-
ing the accessibility and practical utility of
TokenSHAP.

4. Extending to Multi-turn Conversations:
Applying TokenSHAP to multi-turn conver-
sational contexts could provide insights into
how contextual understanding evolves in dia-
logue systems.

5. Bias Analysis: Utilizing TokenSHAP for sys-
tematic identification and analysis of potential
biases in LLM outputs could contribute to the
development of more ethical and fair AI sys-
tems.
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6 Conclusion

TokenSHAP offers a significant advancement in the
interpretability of large language models (LLMs)
by adapting Shapley values to natural language
processing and employing Monte Carlo estimation
for feasibility. This approach overcomes the chal-
lenges of variable input lengths and contextual de-
pendencies, offering a scalable solution for com-
plex language models.

Key achievements include:

• A novel framework that extends Shapley val-
ues to natural language, providing a rigorous,
theoretically grounded method for interpret-
ing token importance.

• An efficient Monte Carlo sampling method
that enhances the computational feasibility of
applying TokenSHAP to large-scale models.

• Superior performance over existing methods
in terms of alignment with human judgments,
model behavior faithfulness, and consistency.

• Detailed insights into LLM behavior, reveal-
ing how models process and prioritize input
components.

Our method’s capacity to capture detailed to-
ken interactions enhances model transparency and
aids in debugging, bias mitigation, and regulatory
compliance, which is essential as LLMs are increas-
ingly deployed in critical domains.

Future research will explore sophisticated value
functions, the stability of Shapley values across
models, and the extension of TokenSHAP to con-
versational AI. Developing interactive tools based
on TokenSHAP could also enhance its accessibility
and practical utility for practitioners.

TokenSHAP represents a vital step towards mak-
ing AI systems not only powerful but also trans-
parent and accountable, ensuring their responsible
development and deployment in transformative ap-
plications.

Limitations

While TokenSHAP provides a valuable framework
for interpreting large language models, it is not
without limitations. The computational cost asso-
ciated with Monte Carlo sampling can be signifi-
cant, especially for very large models or long input
texts. Additionally, the method assumes additivity

in token contributions, which may not fully capture
complex non-linear interactions in some models.
The stochastic nature of the sampling process may
also introduce variability in the results, affecting
reproducibility in certain applications.

Ethics Statement

The development of TokenSHAP is motivated by
the need for transparency and accountability in AI
systems, particularly large language models that
are increasingly used in sensitive domains. By
providing interpretable insights into model behav-
ior, TokenSHAP aims to mitigate risks associated
with black-box models, such as unintended biases
or unfairness. We acknowledge that interpretabil-
ity methods can also be misused, for example, to
manipulate model outputs or infer proprietary in-
formation. Therefore, we advocate for responsible
use of TokenSHAP, aligned with ethical guidelines
and regulatory standards in AI.
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