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Abstract

Parallel data is difficult to obtain for low-
resource languages in machine translation
tasks, making it crucial to leverage mono-
lingual linguistic features as auxiliary in-
formation. This article introduces a novel
integration of hypernym features into the
model by combining learnable hypernym
embeddings with word embeddings, pro-
viding semantic information. Experimen-
tal results based on bilingual and multi-
lingual models showed that: (1) incor-
porating hypernyms improves translation
quality in low-resource settings, yielding
+1.7 BLEU scores for bilingual models,
(2) the hypernym feature demonstrates ef-
ficacy both in isolation and in conjunction
with syntactic features, and (3) the perfor-
mance is influenced by the choice of fea-
ture combination operators and hypernym-
path hyperparameters.

1 Introduction

Low-resource neural machine translation (NMT)
is an open challenge to NLP researchers because
of a number of bottlenecks, such as a lack of
parallel data and efficient linguistic tools, out-of-
domain data, and morphological complexity of
the languages. The majority of the research in
this field either exploits monolingual and mul-
tilingual data in different ways (including back-
translation (Edunov et al., 2018), transfer learn-
ing (Nguyen and Chiang, 2017; Song et al., 2020),
and multilingual training (Dabre et al., 2020)) or
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come up with model-centric techniques for better
modeling, training and inference (Haddow et al.,
2022). Other than these two approaches, the use
of linguistic knowledge is an effective strategy to
improve translation quality under resource-scarce
situations, however, relatively under-explored.

Linguistic analysis can be utilized for NMT
both implicitly and explicitly. Implicit integration
refers to methods that, instead of directly apply-
ing morphology into the model, use it as a part
of pre-processing (subword segmentation of words
based on legitimate units (Sdnchez-Cartagena et
al., 2020) or make a better contextual representa-
tion of the source sentence with the help of its syn-
tactic/dependency structure (Eriguchi et al., 2016;
Li et al., 2018; Bugliarello and Okazaki, 2020).
In case of explicit use, either morphological in-
formation is included in the data to provide richer
information about the source and the target lan-
guages (Sennrich and Haddow, 2016) or the model
is trained with a multi-task objective to predict
words along with their linguistic properties as sec-
ondary output (Luong et al., 2015) in order to ob-
tain better internal word-form representation.

While morphological attributes are directly used
in the source side as additional input features to
words, it is hard to decide which input feature(s)
are optimum to feed to the model for learning
source-to-target mapping. Since the features are
embedded in continuous space and can be com-
bined easily, existing studies (Sennrich and Had-
dow, 2016; Chakrabarty et al., 2020; Chakrabarty
et al., 2022) are found to use the following at-
tributes together as supplementary components of
a word - (1) part-of-speech (POS): tells syntac-
tic behavior of individual words, (2) lemma: de-
notes base form and help to disambiguate inflec-
tional variants, and (3) dependency parsing label:
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Figure 1: Incorporating hypernym features in the Encoder
through Self-Relevance operation.

provides the relationship with other words within
a sentence. Although these three attributes are em-
pirically established to help low-resource transla-
tion, however, they cannot impart distributional se-
mantics which is crucial when there is not a suffi-
cient amount of data available to learn linguistic
regularities.

In this work, we try to address the above issue
by incorporating hypernym information as a com-
ponent of source words to meet the lack of distribu-
tional semantics in low-resource scenarios. As pre-
sented in Figure 1, hypernym provides superclass
information, hence it can relate two distinct words
with semantic similarity to some extent (e.g., fa-
ble and chair in furniture sense) despite without
any syntactic relation between them. One can
argue that hypernym is an expensive knowledge
typically obtained from WordNet (Miller, 1995)
thus hardly available for low-resource languages.
Nevertheless, building a primitive WordNet with
hypernym relation is relatively easy and we aim
to explore the potency of superclass information
in NMT. In a nutshell, our contributions are as
follows: (1) We incorporate hypernyms as a se-
mantic component of word embeddings in low-
resource MT, (2) Experimental results show BLEU
score improvements from English to eight diverse
low-resource Asian languages for both bilingual
(+1.73 on avg.) and multilingual models (+0.24
on avg.), (3) We provide comparative analysis be-
tween syntactic vs. semantic feature combinations
and hypernym-path hyperparameters variants.

2 Methodology

At first we provide the basics of two important con-
cepts - how linguistic input features are used as
additional components of a word in NMT models,
and measuring the relevance of a feature embed-
ding. Next, we describe the procedure of data an-
notation with hypernym information.

Linguistic Input Features into NMT: Sennrich
and Haddow (2016) introduced a simple but ef-
fective way to incorporate linguistic input fea-
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Figure 2: Self-relevance of a feature embedding.

tures into a word by concatenating word embed-
ding and feature embeddings together. This ap-
proach supports an arbitrary number of features
and enables the translation model to directly in-
corporate linguistic knowledge. In subword-based
NMT, features corresponding to a word are repli-
cated across its subwords. Given a source sen-
tence s, if each of its token is represented with
K features, then the i*" token s; can be denoted
as s; = (si1,...,six). Here, s;1 is the word or
sub-word embedding, while s;9, . . ., $;Kx represent
various linguistic features. For any feature type
indexed by £ € {1,..., K}, let Vi, E}, and dj,
be the vocabulary, embedding matrix and dimen-
sion of the embedded vector, respectively, with
Ep € R&W>IVil The embedding of token s;, de-
noted by e;, can be computed as e;x; = Egsik,
where e;;, is the embedding of s;;. The final em-
bedding for s; is obtained as e; = Hszlez‘k’ where
|| signifies the concatenation operation.
Attenuating Feature Embeddings by Rele-
vance: The above method by Sennrich and Had-
dow (2016) combines word and feature embed-
dings blindly and lacks to evaluate the function-
ality of a feature in terms of translation goal.
Chakrabarty et al., (2020) claimed that providing
extra morphological information may lead to noise
when a word has only one sense. Hence, they
came up with two strategies to attenuate feature
embedding. The first one, named as self-relevance,
measures the importance of a feature embedding
w.r.t the embedding itself, and the second one,
named as word-based relevance, considers both
word and feature embeddings together to weight
the feature embedding. Out of these two rele-
vance mechanisms, Chakrabarty et al., (2020) em-
pirically found self-relevance to be better. Hence,
we use it throughout our experimentation and de-
tail it as follows.

Self-Relevance: For the k! feature component
Sik, 1ts embedded vector e;; is transformed by a
learnable weight matrix W, € R%*% followed
by a sigmoid activation. It generates a mask vec-
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Figure 3: Depth-wise sense similarity of the synsets fa-
ble.n.02, chair.n.01, and desk.n.01.

tor mask;; that contains the weight of e;; as
mask;, = sigmoid(Wye;x). Next, e;;, is element-
wise multiplied by mask;; to modulate the rele-
vance. The attenuated feature embedding is thus
e;k = mask;r © e;. Eventually all modified
embeddings e}, . . ., €} are concatenated to form
the source embedding €} =||X_ e/, for token s;.
The process is depicted in Figure 2.

2.1 Hypernym as Additional Feature

As mentioned earlier, although there have been
previous studies regarding the inclusion of sev-
eral morphological attributes (POS, lemma, depen-
dency labels, etc.) as the source word compo-
nent for improving translation quality, no signifi-
cant work has explored the potency of hypernym
information for this purpose. Our effort is inspired
by the recent work of (Bai et al., 2022) that builds
a class-based language model to address context
sparsity where words with common WordNet hy-
pernyms are mapped to the same class. Inspired
by this study, we hypothesize that hypernym as an
input feature can alleviate the lack of distributional
semantics in low-resource MT tasks.

We leverage WordNet (Miller, 1995) that de-
fines a synset by grouping all related words to-
gether that uniquely represent one meaningful con-
cept. It is a directed graph where nodes are synsets
and the edges denote the relationships. Hyper-
nymy conveys [is-a] relation between two synsets
from superclass to subclass such as furniture.n.0l
— table.n.02. For two words, if there is a com-
mon hypernym in their respective hypernym-paths
at a certain depth (from the root synset), it signifies
their similarity at that depth. Figure 3 shows an
example of three words ‘table’, ‘chair’, and ‘desk’
with their sense similarity at different depths ob-
tained from hypernym-path information.

To annotate a word with hypernym, we follow

the token-to-class mapping algorithm proposed by
Bai et al., (2022) which uses the following con-
straints - (1) the word should have a noun synset,
(2) the length of the hypernym-path should be
longer than a minimum depth d, and (3) frequency
of the word is less than a threshold frequency f.
Bai et al., (2022) restricted to nouns because these
are the most difficult class for language models
to learn and hence, we also keep this constraint
to annotate only those words that have at least
one noun synset. A higher depth signifies deeper
semantic matching and frequency filtering is ap-
plied to prevent function words. Words not sat-
isfying the above points are tagged with dummy
hypernym. Note that a word may present in mul-
tiple synsets corresponding to different senses and
thus, it is very difficult to find the most appropri-
ate hypernym-path for a given context. Therefore,
we follow the standard strategy to iterate over the
synsets in the order of sense frequency and choose
the most frequent one following the depth con-
straint. It is safe not to set a large value of d to
prevent a word annotated with inappropriate hy-
pernym w.r.t its context.

3 Experimental Settings

Datasets: We chose Asian Language Treebank
(ALT) (Riza et al., 2016) for our MT experi-
ments, which is a multi-parallel MT dataset. The
data is initially in English and translated into 12
Asian languages. Following the experimental set-
tings of Chakrabarty et al., (2020), we fix English
(en) as the source and eight Asian languages -
Bengali (bg), Filipino (fi), Hindi (hi), Indonesian
(id), Khmer (khm), Malay (ms), Myanmar (my)
and Vietnamese (vi) as the targets. The size of
the train/dev/test split for each language pair is
18,088/1,000/1,018. In the bilingual setup, we
trained eight separate NMT models for each di-
rection, whereas in multilingual experiments, we
trained a one-to-many NMT model from English
to eight Asian languages. We use English as the
source due to the availability of hypernyms and
other morphological attributes.

Preprocessing: We apply Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) with 32k merge op-
erations for subword segmentation. Multilingual
setup identifies each target language by a special
token appended at the source side. For English
data, Stanford CoreNLP toolkit (Manning et al.,
2014) is used to get POS, lemma, and dependency



Results of Bilingual Models

ID  Features  d/f Combination ‘ en—bg en—fi en—hi en—id en—khm en—ms en—my en—vi ‘ Avg.
Iy - - - ‘ 7.50 2698 23.62 30.88 26.24 35.78 16.48 29.05 ‘ 24.57
2 H 6/6k  Self-Rel 7.51 26.63 24.09 31.23 26.54 35.49 16.91 29.76 | 24.77
3 H 6/50k  Self-Rel 7.45 26.85 2356 31.09 26.36 35.62 16.93 30.02 | 24.74
4 H 3/50k  Self-Rel 7.39 2726 2435 3152 26.63 36.34 17.70 29.38 | 25.07
5t  PLD - Self-Rel 8.40 2822  26.13 32,65 27.33 37.22 18.13 2991 | 26.00
6 H+PLD 6/6k  Self-Rel 8.37 28.08 2572 32,70 27.90 37.19 18.64 31.30 | 26.24
7 H+PLD 6/50k Self-Rel 8.44 28.64 26.24 32.68 27.83 36.80 18.46 31.29 | 26.30
8 H+PLD 3/50k Self-Rel 8.35 28.17 26.05 3244 28.17 36.71 18.52 31.63 | 26.25
9 H+PLD 6/50k Concat ‘ 8.22 2742 2488 3148 27.18 36.41 17.69 30.52 ‘ 25.48
Results of Multilingual Models

Features  d/f Combination ‘ en—bg en—fi en—hi en—id en—khm en—ms en—my en—vi ‘ Avg.
10t - - - ‘ 11.55 31.04 2729 3478 3027 39.37 20.93 34.58 ‘ 28.73
11 H 6/6k  Self-Rel 1144 3170 27.82 3512 3045 39.95 20.88 3434 | 28.96
12 H 6/50k  Self-Rel 11.56  31.63 2724 3518 3051 39.55 21.01 3448 | 28.90
13 H 3/50k  Self-Rel 11.67 31.77 2695 35.50 30.20 39.64 21.06 3450 | 28.91
141 PLD - Self-Rel 1140  31.14 2794 3442 30.09 39.84 20.99 3385 | 28.71
15 H+PLD 6/6k  Self-Rel 1136 31.08 2791 3476 30.78 38.79 21.10 34.13 | 28.74
16 H+PLD 6/50k Self-Rel 1152 3096 2852 3454 30.84 38.83 21.17 34.60 | 28.87
17  H+PLD 3/50k Self-Rel 11.50 3092 2815 3514 31.08 39.13 21.30 34.57 | 28.97
18 H+PLD 3/50k Concat ‘ 1122 30.60 2747 3450 30.68 38.86 21.13 34.62 ‘ 28.66

Table 1: BLEU scores of bilingual and multilingual models. ‘H’, ‘P’, ‘L”, ‘D’ refer to hypernym, POS, lemma, and dependency
tag, respectively. d and f refer to the minimum depth of hypernym-path and maximum word frequency, respectively. Line with

t stands for results reported in (Chakrabarty et al., 2022).

tags as lexical and syntactic features,. Addition-
ally, subword tag (Sennrich et al., 2016) is used as
a positional feature for each subword.

Hypernym Annotation: We use WordNet (Miller,
1995) to annotate the data with hypernyms. As
there is no straightforward way to find the opti-
mum values of a minimum depth of the hypernym-
path and threshold to maximum frequency of a
word, we start with the standard combination of
d/f = 6/6k used by Bai et al., (2022). Next,
we try with two other combinations: (1) 6/50k:
which does not restrict words based on frequency
but prioritizes content words, and (2) 3/50k: map-
ping distant words together, permitting shallower
semantic matching. By setting d = 6, we get
1, 502 distinct synsets in the annotated data.
Hyperparameters and Training Details: We use
Transformer-base model (Vaswani et al., 2017)
with the standard set of hyperparameters of 6 lay-
ers, 8 attention-heads, 2,048 as fully-connected-
feed-forward dimension, 8,000 warmup steps,
Adam optimizer (Kingma and Ba, 2015), 4,096
tokens as batch size. Dropout tuning is found to be
sensitive and hence, varied from 0.1-0.4. The final
token embedding dimension is set to 512 across all
models to make the parameters comparable. Infer-
ence is done using beam size 5. BLEU score (Pa-

pineni et al., 2002) is used for evaluation.

4 Results

Table 1 presents the bilingual and multilingual
translation results in the order of - (1) without
any feature, (2) with hypernym as semantic fea-
ture (H), (3) with POS, lemma, and dependency
tag (PLD) as lexical and syntactic features, and
(4) all features together (H+PLD), with different
hypernym-path hyperparameters and combination
approaches.

Bilingual Models: Compared with the baseline
model without using any feature, incorporating hy-
pernyms showed up to 0.50 avg. BLEU improve-
ment (ID 1 vs. ID 4). While using other linguis-
tic knowledge also proves to be effective (41.43
avg. BLEU comparing ID 1 with ID 5), combining
hypernym with PLD yielded the best avg. BLEU
score of 26.30 (ID 7). This proved that the hy-
pernym feature is complementary to syntactic fea-
tures in a bilingual setup. We performed statistical
significance tests on individual language pairs be-
tween IDs - (2,6), (3,7) and (4,8) and found re-
sults statistically significant with p < 0.05 for all
language pairs.

Multilingual Models: It is evident from Table 1



that multilingual training showed better translation
quality than bilingual training across all language
pairs because of knowledge sharing over eight lan-
guage pairs. Chakrabarty et al., (2022) found that
in a multilingual scenario, the inclusion of mor-
phological attributes cannot improve over the base
model (ID 14 vs. ID 10) as linguistic regularities
are learned from the data itself. However, we dis-
tinctly observed the importance of adding hyper-
nyms by comparing ID 10 vs. 11. A significant
performance gain is observed for en—fi, en—hi,
and en—ms directions with p < 0.05. Addition-
ally, we did not obtain remarkable improvement
when combining all features suggesting that in a
multilingual setup, proving hypernym feature is
the more helpful one.

Hypernym Hyperparameters: To determine the
optimal d/f combination, we analyze the results
where only hypernyms are used (IDs 2, 3,4 and
11,12, 13 for bilingual and multilingual setups, re-
spectively). For bilingual models, d/f = 3/50k
(ID 4) produced the best avg. BLEU as well the
best scores for en—fi, en—hi, en—id, en—khm,
en—my, and en—my translation directions. For
multilingual models, all three combinations (IDs
11,12, 13) performed equally well. Therefore, we
further analyze where all features are used (IDs
15,16, 17) and find that 3/50k is the optimal com-
bination for both settings, showing that shallow se-
mantic annotation is better.

Feature Combinations: As throughout our bilin-
gual and multilingual experiments from IDs 2 —
8,11 — 17, the self-relevance technique is selected
for embedding combination, we further investigate
the performance of simple concatenation of word
and feature embeddings (Sennrich et al., 2016) and
present the results in IDs 9 and 18, clearly showing
the superiority of self-relevance.

Training Curves: Figure 4 shows the initial train-
ing plots for bilingual (en—khm) and multilingual
models. Adding hypernyms slows training in ev-
ery configuration but using PLD features speeds up
the convergence. Validation perplexity becomes
stable after around 8k batches but we continue
training to note that longer training improves val-
idation BLEU scores significantly. In our experi-
ments, after 60k and 100k training steps for bilin-
gual and multilingual models respectively, we did
not observe further improvements in BLEU, prov-
ing that perplexity drop does not always correlate
with BLEU gain.

N ---- Base
HE ---= H (3/50k)
---- PLD
i == H(3/50k)+PLD
200 [ + Base
+ H(3/50k)
+ PLD
+  H(3/50K)+PLD

150

Validation Perplexity

20 40 60 80 100
Number of minibatches

Figure 4: Bilingual (- - -) and multilingual (+) plots.

5 Conclusion

This study investigates the role of hypernyms used
as a word embedding component to exploit distri-
butional semantics in low-resource settings. Ex-
periments over eight language pairs reveal its use-
fulness strongly in bilingual scenarios. We also
conducted one-to-many multilingual experiments
finding the superiority of semantic feature over
lexical and syntactic features. We analyze train-
ing plots to show that perplexity drop is not al-
ways a good measure to evaluate model training.
The future extension of this work will include -
(1) finding the most appropriate hypernym-path of
a contextual word, and (2) determining the opti-
mum combination of semantic and syntactic fea-
tures to leverage linguistic knowledge for low-
resource translation.
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