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Abstract
Growing amount and quality of AI-generated
texts makes detecting such content more diffi-
cult. In most real-world scenarios, the domain
(style and topic) of generated data and the gen-
erator model are not known in advance. In this
work, we focus on the robustness of classifier-
based detectors of AI-generated text, namely
their ability to transfer to unseen generators or
semantic domains. We investigate the geom-
etry of the embedding space of Transformer-
based text encoders and show that clearing out
harmful linear subspaces helps to train a ro-
bust classifier, ignoring domain-specific spuri-
ous features. We investigate several subspace
decomposition and feature selection strategies
and achieve significant improvements over state
of the art methods in cross-domain and cross-
generator transfer. Our best approaches for
head-wise and coordinate-based subspace re-
moval increase the mean out-of-distribution
(OOD) classification score by up to 9% and
14% in particular setups for RoBERTa and
BERT embeddings respectively. We release
our code and data1.

1 Introduction

The proliferation of generative AI leads to an ex-
plosion in AI-generated content. Large language
models (LLMs) can produce text that is very similar
to human-written. However, AI-generated text can
be used for malicious purposes, which leads to the
artificial text detection (ATD) problem: has a given
text or image been created by an AI model or a hu-
man? Existing approaches for artificial text detec-
tion can be divided into score-based and classifier-
based. The former aim to identify and measure
features that distinguish artificial text from real;
e.g., generated text may exhibit statistical artifacts
due to the specific generation process used by a
language model (Gehrmann et al., 2019), the differ-
ence may lie in perplexities measured by another

1https://github.com/SilverSolver/RobustATD

language model (Solaiman et al., 2019), curvature
of the probability function (Mitchell et al., 2023),
or intrinsic dimensionality of contextualized rep-
resentations (Tulchinskii et al., 2023). However,
score-based methods often rely on prior knowledge
about a specific generator and/or semantic domain,
and known traces may be easy to remove, e.g., by
paraphrasing the text (Krishna et al., 2023). One
notable exception is the intrinsic dimension feature
for text content, shown to be robust to domain trans-
fer and paraphrasing (Tulchinskii et al., 2023), but
its overall detection quality is relatively modest.

Supervised classification methods show almost
perfect in-domain detection quality, but fail to gen-
eralize to unseen text topics and writing styles
(Wang et al., 2024b; Tulchinskii et al., 2023). The
choice of training data, both artificial and gener-
ated, is crucial for successful out-of-distribution
(OOD) transfer. In general, while usually there ex-
ist features that can distinguish between natural and
artificial subsets of the training set, the classifier
may lock into dataset-specific spurious differences
and hence generalize poorly. It is hard to say in ad-
vance if a classifier trained on a given dataset will
generalize well to new unseen generators and data
sources. Previous approaches to OOD detection for
ATD include UID-based detectors (Venkatraman
et al., 2023) and domain adversarial training (Bhat-
tacharjee et al., 2024), but most of these methods
are very data-intensive (Wang et al., 2024a).

In this work, we aim to improve supervised clas-
sification by ignoring spurious features to enhance
cross-distribution robustness, training on small
number of domains or generator models. Namely,
we focus on methods of extracting residual sub-
spaces and deleting information from embeddings.

In many applications, retaining only important
dimensions of high-dimensional data while treating
projections onto less loaded subspaces as residual
noise can benefit downstream tasks. However, for
tasks such as OOD detection the principal compo-
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nents of a dataset may be the least useful. Kamoi
and Kobayashi (2020) found that nullifying the
first (least important) principal components in the
embedding space fine-tuned on in-distribution (ID)
data enhances OOD detection quality; this is known
as the partial Mahalanobis distance. Podolskiy et al.
(2021) conducted similar analysis for Transformer-
based text classifiers and found that ID data has
orthogonal classes and lies on a unit sphere in a low-
dimensional space. The main difference between
ID and OOD data lies in the residual subspace,
hence the partial Mahalanobis distance performs
well in OOD detection.

It is important to note that not all neural net-
works learn useful residual subspaces for a given
dataset; e.g., Podolskiy et al. (2021) and Ren et al.
(2021) find that on text, CNN classifiers learn rep-
resentations where components with low singular
values contain too much information about ID data,
making it difficult to distinguish OOD examples.

In this work, we apply similar techniques to arti-
ficial text detection (ATD). Distribution shift, with
variations in text styles, topics, and new genera-
tion models, is a major challenge for ATD. Super-
vised classifiers, even performing well on valida-
tion datasets, struggle in realistic settings, where
the domain and model of the AI-written text are
unknown. To address this, we first show that train-
ing a classifier on some residual subspace obtained
by coordinate removal or layer pruning may signif-
icantly enhance ATD robustness under domain and
model shift. Next, we show that controllable sub-
space removal can improve robustness, while also
providing us with interpretable information about
AI-written texts and domains. In particular, we use
recent advances in concept erasure (Belrose et al.,
2023), experimenting with erasing semantic and
syntactic concepts based on probing tasks by Con-
neau et al. (2018); we show that some concepts are
harmful for cross-domain and cross-model transfer.

Our primary contributions are: (i) a first appli-
cation of the residual subspace approach for ro-
bust ATD; we show that restricting the detector
to a residual subspace increases cross-topic and
cross-model robustness with especially significant
improvements on the most difficult samples; (ii)
analysis of different residual decomposition tech-
niques, such as nullifying head-wise subspaces in
intermediate data representations and concept era-
sure; (iii) analysis of applicability of our methods
with different encoder- or decoder-based backbone
models. Besides, we create and release an exten-

sion for one of the datasets with recent generating
model GPT-4-o on three domains. Below, Section 2
surveys related work, Section 3 describes the pro-
posed methods, Section 4 introduces the datasets,
Section 5 presents a comprehensive experimental
evaluation, and Section 6 concludes the paper.

2 Related Work

Linear subspaces in Transformer-based models
are known to represent concepts. Hernandez and
Andreas (2021) studied low-dimensional subspaces
that encode linguistic features in BERT; linear
structure is known for such concepts as truthfulness
(Marks and Tegmark, 2023) and sentiment (Tigges
et al., 2023). This direction has been extended
to the linear representation hypothesis that posits
that language models operate with one-dimensional
representations of concepts in the activation space
(Bricken et al., 2023; Park et al., 2023). However,
Engels et al. (2024) showed that some concepts are
multi-dimensional.

Components of Transformer-based embed-
dings can provide useful features via the geometry
of their inner representations or parameter spaces.
For instance, outlier dimensions in the embedding
spaces of models such as BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019), characterized
by unusually high variance and/or mean values,
have been studied in detail, including their emer-
gence during training and effects of disabling them
post-training (Kovaleva et al., 2021), their relation-
ship with positional embeddings and impact on
word-in-context tasks (Luo et al., 2021), influence
on the quality of representations (Timkey and van
Schijndel, 2021), and relations to the shapes of at-
tention maps and token frequencies (Puccetti et al.,
2022). Activations of Transformer-based LMs have
been investigated for language structure informa-
tion (Jawahar et al., 2019), semantic and syntactic
features (Conneau et al., 2018); the latter work also
introduces a comprehensive selection of probing
tasks. However, only outlier dimensions have been
studied in full detail; we aim to address this gap by
studying how removing specific dimensions from
RoBERTa embeddings can improve detection of
artificially generated text.

Semantics of attention heads in Transformers
have been studied for a long time: Kovaleva et al.
(2019) provided empirical research on BERT atten-
tion heads, demonstrating overparameterization by
pruning some of them, Michel et al. (2019) showed
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that most heads can be removed at test time without
significant performance loss. Clark et al. (2019)
studied the specialization of attention heads; Pande
et al. (2021), their functional roles. In BERT-like
models, important information is distributed across
layers; e.g., Jawahar et al. (2019) showed that lower
layers capture phrase-level information, which is
partly lost in the upper layers; the model captures a
hierarchy of linguistic information, with deeper lay-
ers required to capture long-distance dependencies.
Bian et al. (2021) showed that attention maps are
correlated across layers and organized into clusters.
Therefore, here we focus on groups of attention
heads within a layer rather than individual heads.

Artificial text detection (ATD) is a new field
of study (up until recently, artificial content was
mostly easy to distinguish), but there already exist
many promising approaches. Score-based methods
include DetectGPT, which measures the curvature
of the probability function (Mitchell et al., 2023),
and GPTZero (Tian and Cui, 2023), which checks
the perplexity and burstiness of a text; these meth-
ods, however, are limited to a single domain or gen-
erator. Throughout recent work, it remains a rea-
sonable baseline for general and cross-distribution
ATD to take embeddings from BERT-like mod-
els as a feature space and train logistic regression
(LR) over them. Following Tulchinskii et al. (2023)
and Jawahar et al. (2020), we take the RoBERTa
model (Liu et al., 2019) to extract text embeddings,
use mean-pooling over embeddings, and train LR
models for ATD. The recent SemEval-2024 compe-
tition (Wang et al., 2024a) proposed challenge in a
multi-generator, multi-domain, and multi-language
setting based on the new ATD dataset that was in-
troduced in Wang et al. (2024b). Task 8 included
problems such as binary classification, source iden-
tification, and fake/real text boundary detection. So-
lutions used approaches such as LLM fine-tuning
(RoBERTa, XLM-R), contrastive learning, and en-
semble methods. However, while all these ap-
proaches are data-intensive, absolute classification
quality is still poor. In this work, we use classifiers
that perform well on in-domain data and aim to
improve their performance on unseen domains.

3 Methods

Removing unnecessary features is often an effec-
tive method to improve the robustness of a ma-
chine learning model. The embedding space has
linear substructures responsible for linguistic fea-

tures such as token frequencies, word-in-context
information etc. (Luo et al., 2021; Puccetti et al.,
2022). We aim to detect and erase such substruc-
tures, which are harmful for ATD generalization.

3.1 Linear decompositions of embeddings
PCA and the standard basis. Let x be some
text input, z ∈ Rd, its embeddings obtained by
some model, z = M(x), C = {c1, . . . , cd}, a
basis of Rd, and let αi be coefficients of z in C,
z =

∑d
i=1 αici. We want to split C into good

and bad parts, C = Cg ∪ Cb, so that components
in Cg contain most of the information general for
all domains, while Cb is responsible for spurious
domain-specific features. Then, we construct a
classifier on restricted embeddings z′ where the
“bad” part is nullified, z′ =

∑
i∈Cg αici. Intuitively,

information about the style, topic, and other se-
mantic properties is harmful for ATD, and we want
to focus on residual features that are less impor-
tant for other NLP tasks. Podolskiy et al. (2021)
show that PCA can serve as such a decomposi-
tion for a Transformer-based model: removing top
components computed for an in-domain dataset
improves OOD detection. Indeed, for a dataset
of natural texts D, subspace ⟨Cb⟩ should “explain”
the data variability, while the variance of D pro-
jected on ⟨Cg⟩ is expected to be low. PCA is a
theoretically optimal way to find such subspaces
(see Appendix A.1).

Despite PCA’s solid theoretical background, in
practice it does not always perform well; in ATD,
we usually deal with a small dataset that cannot
fully capture the real distribution, which is bad
for PCA. To access data properties beyond those
represented in our train set, we propose to utilize
the internal structure of the pretrained embedding
model. Indeed, Transformer-based models tend
to disentangle some data properties during train-
ing, and semantic interpretation has been discov-
ered for some neurons and embedding dimensions
(Luo et al., 2021; Timkey and van Schijndel, 2021;
Puccetti et al., 2022). We hypothesize that such
“built-in” disentanglement could lead to meaning-
ful subspaces spanned by a subset of the stan-
dard basis, i.e., vectors {e1 = [1, 0, . . . , 0], e2 =
[0, 1, . . . , 0], . . . , ed = [0, 0, . . . , 1]}. Projection to
a subspace ⟨ei|i ∈ S⟩ for some subset of indices
S can be done by simply nullifying all embedding
dimensions except S. Our experiments support this
intuition: PCA-based decomposition does not lead
to any significant changes in detector’s quality (see
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Appendix H), while coordinate-based subspace re-
moval significantly improves transfer scores.

Attention heads as linear substructures. Both
decompositions discover global linear structure,
i.e., universal directions in the embedding space
independent of input data. But it is much more
natural to rely on local linearity of the data and try
to discover substructures in a data manifold that
does not necessarily form global linear subspaces.
For text embeddings, the neural network represents
a function from Rd×T to a data manifold M. We
can decompose this function into a sum of input-
dependent components of the same functional form.
Cammarata et al. (2020) proposed linear circuits,
showing that the data flow in a Transformer can be
represented as the main residual stream with linear
addition of flows from other elements of the model
(attention heads and feed-forward blocks). We are
mostly interested in attention flows because it is
well known that attention heads in Transformers
have highly specialized functions (Kovaleva et al.,
2019; Pande et al., 2021), so we hypothesize that
head-wise decomposition should reflect the “built-
in” disentanglement of the pretrained model. We
can represent a Transformer-based embedding as

z = Π

[
α(x)x0 +

∑
l

βl(x)MLPl +
∑
l

∑
h

γl(x)A
l,h

]
, (1)

where Al,h are the outputs of attention heads, α, β,
γ are scalar functions, and Π is a centering projec-
tion Π(x) = x− 1

d

∑d
i=1 x

i (see Appendix A.2).
Concept erasure. Finally, we consider an em-

bedding space decomposition based on extracted
linear directions or low-rank subspaces responsible
for some harmful semantic feature zF . If such a
direction is found, we can remove it by subtracting
the component corresponding to this direction from
the embedding. Namely, we erase the feature as

ẑ = z− PF (z), (2)

where PF is the projection to the subspace zF .

3.2 Subspace removing methods

Greedy search. Our basic approach chooses the
best features using a small subset of domains.
Given a multi-domain dataset D = D1 ∪ · · · ∪Dk,
where Di are domain subsets, we choose two do-
mains Dsearch = {D1, D2} to perform feature se-
lection. On each step, we train a classifier on D1,
removing one component, and look how its perfor-
mance changes on D2, getting a feature ranking

on D1 → D2 transfer. Then, we do the opposite,
getting a ranking for D2 → D1. The final set of
residual features is obtained as the union of top-
score lists in both rankings (see Appendix B.4).

Head pruning removes some components in de-
composition (1) by replacing the output of a given
head with zeros on inference. Importantly, this ap-
proach is approximate because, besides its direct
impact as a component in the decomposition, each
head also has an indirect influence on all computa-
tions on subsequent layers. But Gandelsman et al.
(2023) showed that this indirect impact is small
and can be ignored (see also Appendix A.2). To
choose the set of heads for pruning, we note that
different layers contain different kinds of informa-
tion (e.g., semantic information is mostly in bottom
and middle layers), and the linguistic complexity of
tasks solved by attention heads grows from bottom
to top (Kovaleva et al., 2019; Tenney et al., 2019).
Therefore, we simply prune every layer separately.

Concept erasure by probing tasks. To remove
a linear subspace responsible for some data proper-
ties, we apply a concept erasure technique called
LEACE (Belrose et al., 2023). Suppose we have
a k-class classification task defined by a dataset
Z with one-hot labels Y , and we want to erase all
the knowledge required for linear separation of the
classes. LEACE is a projection-based method of
the form (2), with theoretical guarantees that any
linear classifier on top of ẑ cannot solve the classifi-
cation task better then a constant predictor. Erasing
a concept from an embedding z is defined as

ẑ = z−W+(WΣZY )(WΣZY )
+Wz, (3)

where W = (Σ
1/2
ZZ)

+, ΣZZ is Z’s covariance ma-
trix, ΣZY is the cross-covariance of Z and Y . Ge-
ometrically, LEACE is the least-squares-optimal
transform that maps centroids of different classes
of the dataset (Z, Y ) to the same point, making
linear separation impossible.

In this work, we utilize probing tasks provided
by Conneau et al. (2018), designed to represent ele-
mentary linguistic concepts (see Section 4). These
experiments allow us to not only improve ATD
robustness, but also obtain insights about the influ-
ence of interpretable linguistic features.

4 Data

ATD datasets. There are few high-quality datasets
with both human and artificial text. One such
dataset was presented by Wang et al. (2024b) and
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Figure 1: Mean accuracy in cross-domain (left) and
cross-model ATD by RoBERTa-base on SemEval

used in the SemEval-2024 competition2; it cov-
ers five domains: Wikipedia, Reddit, WikiHow,
PeerRead, and arXiv. We have used five text gen-
eration models: GPT-3.5 (Schulman et al., 2022),
Davinci0033, Cohere4 , Dolly-v2 (Conover et al.,
2023), and BLOOMz (Muennighoff et al., 2023).
Since the amount of human-written text in each
domain is larger than generated by each model, we
crop human data so that there are 3000 samples
of parallel data for each domain and model/human
combination.

Our second dataset, used by Tulchinskii et al.
(2023), has three domains—Wikipedia, Red-
dit, StackExchange—with davinci003 generations.
Compared to SemEval, it has a larger distribution
shift in basic text features (e.g., length), which
makes it harder for cross-domain transfer. We ex-
tend it by adding similar text generated by GPT-4o:
continuing text from Wikipedia articles, long-form
question answering on Reddit Q&A and StackEx-
change. Thus, we obtain a dataset, called below
GPT-3D, with six domain-model pairs.

Experimental setup. Similar to Wang et al.
(2024b), we create two tasks for SemEval dataset:
(1) in the cross-domain task, we concatenate data
across generating models, getting five binary ATD
tasks in different domains; (2) in the cross-model
task, concatenation across domains yields five bi-
nary ATD tasks for each generator model. Thus,
results are presented as 5×5 heatmaps (e.g., Fig. 1)
and its aggregations.

For GPT-3D we report average OOD scores, i.e.
the accuracy of classifiers trained on one domain-
model subset and evaluated on the rest; average
accuracy values do not include training sets.

For more technical details, see Appendix B.
Probing datasets. For probing and concept era-

sure experiments, we use the dataset used by Con-
2https://semeval.github.io/SemEval2024/
3https://platform.openai.com/docs/models
4https://docs.cohere.com/docs/models

Domains W
iki

pe
dia

W
iki

How

Red
dit

Pe
erR

ea
d

arX
iv

Avg. transfer to: 57.2 54.7 64.7 70.4 85.1
Avg. transfer from: 72.5 61.8 76.3 66.3 55.2
Avg. sent. length 38.7 44.4 17.0 14.7 10.4
Avg. “!” count 0.24 0.79 0.25 0.08 0.01
Avg. “?” count 0.12 0.90 0.36 0.43 0.03

Generators da
vin

ci

Bloo
mz

Coh
ere

GPT
-3

.5
Doll

y

Avg. transfer to: 79.0 68.2 82.8 86.5 77.4
Avg. transfer from: 90.5 59.2 81.8 79.1 83.3
Avg. sent. length 17.7 10.9 15.3 22.6 21.2
Avg. “!” count 0.18 0.50 0.04 0.23 0.29
Avg. “?” count 0.08 0.39 0.11 0.13 0.22

Table 1: Average RoBERTa detector accuracy by do-
mains and by generators on SemEval (in %), avg length
of generated sentences (in symbols) and avg counts of
“!” and “?” marks per text sample; dark red – smallest
value in a row, dark green – largest value, red – domains
and generators with lowest transfer accuracy.

neau et al. (2018) with several supervised classi-
fication tasks: SentLen, predicting the length of
the sentence, TreeDepth, finding the depth of a
syntactic tree, TopConst, classifying the high-level
syntactic structure (top two nodes in the syntax
tree), classifying Tense, SubjNum (subject number),
and ObjNum (object number) in the main clause,
detecting errors with BShift (bigram shift, word or-
der inversion in a bigram), SOMO (Semantic Odd
Man Out, where a word is replaced with a random
grammatically fitting word), and CoordInv (Coordi-
nation Inversion, whether the coordination of two
clauses in the sentence is inverted), and predicting
exact words from a 1000-word vocabulary in WC
(Word Content).

5 Results and Analysis

Here we present results on baseline, heads pruning,
concept erasure and selecting coordinates. PCA-
based results are reported in Appendix H.

Baseline RoBERTa. As a baseline we use
logistic regression (LR) trained on mean-pooled
RoBERTa embeddings. Results are shown in Fig. 1
for SemEval and Fig. 3a for GPT-3D; the cross-
domain and cross-model settings are challenging in
both tasks. Fig. 1 shows that in-domain classifica-
tion is almost perfect for baseline LR on RoBERTa
embeddings, but the cross-domain part is very in-
consistent: e.g., transfer from Reddit to PeerRead
works well across all models (91% avg accuracy)
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but transfer from arXiv to WikiHow is uniformly
bad (54%). In SemEval, Wikihow is the hardest
domain to transfer to, while Arxiv is the hardest
domain to transfer from (Table 1); both domains
contain syntactic anomalies (very few or many “!”
and “?” marks, unusual average sentence lengths
etc.). Bloomz is the hardest model to transfer both
to and from (Table 1), and it also generates un-
usual texts (very short sentences replete with “!”
and “?”). But generally, it is not easy to predict
which transfer direction is easier in ATD or explain
the reasons for it; e.g., Wikipedia, often used for
NLP model evaluation (Merity et al., 2016), is far
from the best basis for transfer, especially in the
cross-model setting (Fig. 3a). We also compare
(Fig. 3f) our proposed methods with the approach
based on the intrinsic dimensionality (PHD) of real
and artificial texts tokens embedding point clouds,
according to (Tulchinskii et al., 2023).

Average transfer results. Table 3 and Fig. 3
show that our methods provide a stable improve-
ment of OOD scores for classifiers trained on sepa-
rate domain-model subsets, for both SemEval and
GPT-3D datasets. TopConst concept erasure yields
the highest increase among methods that do not
have access to OOD data (+3%), and improve-
ment increases for the most difficult domain pairs
(e.g., +6% for Wikipedia–Reddit). Interestingly,
the PHD method by Tulchinskii et al. (2023), while
providing very stable cross-domain results for GPT-
3-based generations, completely fails to deal with
GPT-4o (Fig. 3 (f)), while our methods increase
cross-model scores up to 10%. Still, results for
the most difficult pairs are unsatisfactory, falling
below the random baseline; the only method that
can achieve at least random level for any OOD sub-
set is head pruning, where the heads are selected
on validation set combined of all models and do-
mains examples (+9.1% “cross-all” compared to
full RoBERTa, Fig. 3 (e)). Further we describe
results for each method in details and in the Ap-
pendix D we describe the combination of methods.

Head pruning for transfer tasks. We adapt
head pruning (Voita et al., 2019) to remove a whole
layer of attention heads. Since layers of a model
have rough linguistic meanings (Jawahar et al.,
2019), thus we analyse the impact of structural-
level information on ATD. Fig. 2 and Table 2 show
detailed results for each layer pruned on SemEval.
Removing the first layer improves average cross-
domain accuracy by 3%, but the improvement is
unstable (from −7.1% to +18.9% in different do-

Cross-domain Cross-model
Avg Max ↑ Max ↓ Avg Max ↑ Max ↓

RoBERTa 73.0 - - 82.8 - -
1 76.0 18.9 -7.1 82.6 4.4 -4.4
2 73.9 6.3 -3.7 83.3 2.8 -2.4
3 75.0 8.6 -1.9 83.1 2.6 -1.8
4 74.6 8.4 -1.6 83.7 3.3 -1.6
5 73.7 3.6 -1.8 82.9 1.7 -1.4
6 72.6 2.8 -3.7 82.7 1.6 -2.1
7 72.3 1.3 -5.2 82.5 1.2 -3.0
8 73.3 3.5 -3.5 82.5 0.4 -1.8
9 73.1 4.5 -1.5 82.7 0.6 -1.2
10 72.7 3.2 -3.2 82.4 0.4 -2.2
11 73.2 3.8 -6.5 82.3 0.4 -1.4
12 73.7 7.2 -3.7 82.8 1.7 -1.1

Table 2: Balanced accuracy for OOD classification for
different pruned layers on SemEval
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Figure 2: Mean accuracy on SemEval with pruned
RoBERTa layers. Dashed lines show the baseline.

mains). Pruning layers 3 and 4 is more stable and
beneficial in both settings. Cross-domain ATD is
more challenging; Fig. 2 (top) shows that some
domains (Wikipedia and WikiHow) exhibit similar
patterns but others are unrelated. The best scores
are in transfer from Reddit, achieving 81% mean
balanced accuracy with 0-th layer pruned (+5% to
full RoBERTa). The cross-model setting is easier
and not greatly affected by pruning layers, with
the exception of BLOOMz. Here the best source
model is GPT-3.5-davinci, with 92% cross-model
accuracy after removing layer 4.

Concept erasure. Generally, results on SemEval
show that the best concepts to erase are TopConst
and TreeDepth, improving up to 2.1% on cross-
domain transfer and not hurting the cross-model
transfer. Erasing WC also performs well but is
less stable. Figs. 4 give more detailed informa-
tion. Although changes compared to Table 7 are
marginal on average, they range from −8.5% to
+13% across domains and models. Grammati-
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cal properties, (Tense, SubjNum, ObjNum) have
no significant impact, while erasing global syn-
tax information (TopConst, TreeDepth) improves
cross-domain transfer up to +13%, especially from
wikipedia and arxiv. This means that LLMs in gen-
eral are not good in mimicking complicated syntac-
tic structures, but have no problem with local gram-
matical categories. Erasing WC erasure leads to the
largest cross-domain improvement, which means
that word semantics produce domain-specific spuri-
ous features that harm generalization. There is one
outlier: wikihow→arxiv; we hypothesize that these
domains have common word-level features due to
many bullet points, numbered lists, and sequen-
tial structures in both. For cross-model transfer,
erasing all three tasks related to error detection in
sentence structure (BShift, CoordInv, SOMO) are
harmful for ATD performance and robustness; eras-
ing global syntax (TopConst, TreeDepth) improves
performance, while word content (WC) leads to
contradictory results.

We conclude that the ability to detect grammat-
ically correct sentences is crucial for robust AI-
generated text detection; the difference in global
syntax between natural and generated texts is signif-
icant, but varies between models and domains, so
erasing this information helps generalization, and
individual word semantics is a source of spurious
features. On the other hand, world-level grammati-
cal categories are captured well by all generators
and do not influence ATD performance.

Selecting embedding components and heads.
To evaluate component removal, we use Reddit and
Wikipedia domains from GPT-3D as Dsearch, as
they have the lowest cross-domain ATD accuracy.
For head selection, we used a lay-off evaluation
set with samples of all generators and domains
from GPT-3D. We evaluate on GPT-3D and Se-
mEval, using the same set of removed heads or
components. Fig. 3 and Table 3 show the results;
transfer to and from Wikipedia and Reddit subsets
has improved. Head selection greatly improves
performance on validation domains, achieving the
best scores among all the methods. In cross-task
transfer (from GPT-3D to SemEval, Appendix C),
component and head removal works better if com-
ponents are chosen on the same data distribution
where the classifier is trained; still, cross-dataset
transfer here is generally on par with the baseline.

Influence of the embedding model. RoBERTa
is commonly used as the encoder for ATD (Krishna
et al., 2023; Solaiman et al., 2019; Tulchinskii et al.,
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Figure 3: Mean accuracy in cross-domain/cross-model
ATD on GPT-3D by: (a) RoBERTa-base, (b) RoBERTa-
base with all attention heads pruned from layer 1, (c)
RoBERTa with TopConst concept erasure, (d) optimal
head removal, (e) best set of coordinates, (f) classifier
based on PHD intrinsic dimensions.

SemEval GPT-3D
RoBERTa CD CM CD CM CA

Baseline 73.0 82.8 84.1 71.0 70.1
Layer 1 76.0 82.6 84.8 72.7 72.9
Layer 4 74.6 83.7 84.9 72.3 72.0
TopConst erased 75.1 83.1 86.7 71.4 73.1
TreeDepth erased 73.9 83.0 85.3 73.3 72.0

Selected heads 74.3 80.0 86.6 79.3 79.2
Selected coordinates 74.5 82.6 85.4 71.9 72.8

Table 3: Balanced accuracy for OOD classification:
cross-domain (CD), cross-model (CM), cross-all (CA).
For confidence intervals on SemEval, see Appendix E.

2023), but we have tested other models as well. Ta-
ble 4 and Figure 14 in the Appendix H show the
results; in all cases, we trained LR on mean-pooled
embeddings of the last layer. There is an interest-
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BERT, GPT-3D Phi2, GPT-3D MiniCPM, GPT-3D
CD CM CA CD CM CA CD CM CA

Baseline 82.4 81.9 71.1 92.2 92.3 86.7 92.8 88.5 80.5
Layer 1 83.2 77.8 69.3 85.5 89.5 78.0 77.3 65.8 56.3
Layer 4 82.2 78.9 69.6 92.6 92.3 87.2 92.0 87.0 78.0
Selected heads 85.4 81.0 73.1 — — — — — —
TopConst erased 83.1 81.4 70.9 91.8 91.5 86.1 92.8 87.2 80.2
TreeDepth erased 84.0 83.2 71.8 93.3 91.8 87.0 93.4 88.6 80.6
Selected coordinates 92.1 88.0 85.2 93.1 89.9 86.7 — — —

Table 4: Aggregated OOD scores for BERT, Phi2, and MiniCPM embeddings: cross-domain (CD), cross-model
(CM), cross-all (CA). Best results are given in bold.
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Figure 4: Score change after concept erasure in cross-
domain and cross-model settings on SemEval.

ing difference between encoder and decoder-based
models: although the quality is very different and
correlates with model size, all tested encoders are
well suited for our context removal methods (their
performance increases, often significantly), while
the decoder’s behaviour is the opposite. Table 4
shows the results of subspace removal methods
for BERT (Devlin et al., 2019) and Phi-2 (Abdin
et al., 2023) embeddings; Phi-2 is larger, so its
baseline scores are much higher, but embedding
restriction does not lead to improvements while
BERT’s quality increases, making the results of
these models comparable after component removal
despite different model size. To test our methods
with more resource-efficient smaller LMs, we used
the MiniCPM-1B model (Hu et al., 2024). Table 4
shows that, as expected, concept erasure yields
marginal improvements and other methods do not.
In absolute values, MiniCPM is on par with Phi-2
in the cross-domain setup and behind Phi-2 and
BERT in cross-model and cross-all settings.

We believe that the different behaviour of our

methods reflects the fundamental difference in
the embedding space geometry of encoders and
decoders caused by limitations of the expressive
power of the attention due to the triangular attention
mask (e.g., the group of upper triangular matrices
does not contain any nontrivial rotations or orthogo-
nal transforms in general). On the other hand, high
performance of our methods for relatively small
encoder-based models shows that their text repre-
sentations contain disentangled elementary features
learned in pretraining and expressed by separate
embedding coordinates, attention heads (i.e., linear
terms in input-dependent embedding decomposi-
tions), or global directions in the embedding space.

We also report how removing components influ-
ences the embedding space geometry. PHD intrin-
sic dimension has the opposite behaviour in GPT-3
and GPT-4 families: the generalization ability of a
PHD-based ATD classifier decreases after remov-
ing embedding components (see Appendix G).

Probing experiments with restricted embed-
dings. To understand the semantics of the removed
components, we performed probing experiments
upon restricted embeddings. Namely, we compared
the results of a baseline model with those after re-
moving layers or coordinates (a subset selected to
optimize ATD robustness) on 10 probing tasks for
different linguistic properties (see Section 4).

Table 5 shows the results. Interestingly, remov-
ing the coordinates leads to a dramatic decrease
in performance on five tasks, which means that
the corresponding properties are almost completely
“erased” from the embeddings. On the contrary,
layer pruning has virtually no influence on any of
the tasks, which means that elementary linguistic
knowledge is fully kept. It is important to note that
the probing tasks in Table 5 are all related to gram-
mar and syntax rather than semantics and style.
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BERT Removing:
Task Coords Layer 1 Layer 4

BShift 86.9 78.3 88.6 86.5
CoordInv 64.0 56.3 62.2 62.0
ObjNum 82.9 65.7 83.0 83.0
SOMO 64.6 60.4 64.6 65.2
Tense 89.2 82.7 88.7 89.1
SentLen 73.8 44.1 77.9 75.5
SubjNum 87.3 72.7 88.3 87.5
TopConst 60.7 36.7 63.6 62.1
TreeDepth 31.9 22.2 32.9 34.5
WC 24.5 8.4 30.2 25.4

Table 5: Probing experiments.

6 Conclusion

In this work, we aim to improve the robustness of
artificial text detectors via linear feature removal
from text embeddings. We propose three ideas
that are extremely easy to implement and achieve
stable improvement in robustness averaged across
domains and models, up to 14% depending on the
text encoder. More importantly, we conclude with
the following novel insights from our work.

First, new generation models can completely
break detectors; e.g., on the GPT-4 family previ-
ous detectors’ perform below random, while on
the same model classifiers demonstrate very high
performance in the cross-domain setting. The rea-
son could be the presence of watermarks in GPT-4
generations; if so, watermarks unknown for ATD
developers are dangerous, leading to unpredictable
black-box behaviour.

Second, performance with respect to the training
subset is often counterintuitive; e.g., a classifier
trained on Wikipedia may perform worse than on
Reddit, although Wikipedia is considered a cleaner
domain, better suited for general-purpose models.

Third, Transformer encoders learn disentangled
intrinsic features in coordinates and attention heads,
and simple decompositions perform better for ATD
than more complex approaches. But this effect is
less pronounced for decoder models. We plan to
study differences in the geometry of encoder and
decoder-based text representations in future work.

Finally, global syntax and sentence complexity
is a key point for ATD, but the exact differentiating
features are domain- and model-specific, so this
information should be ignored. Local grammatical
categories do not provide an important signal for
ATD. Instead, the classifier should rely on features
for detecting various types of inconsistencies.

7 Limitations

In this work we show how state of the art ATD
methods may fail, for instance, to transfer to new
generative models. Our method increases OOD
performance on some generators, but there is no
guarantee that this property will be preserved for all
future models. Novel pretraining techniques, data
collection and processing paradigms, and model
architectures can change the picture entirely. Since
our method is based on supervised classification,
it is not clear which features are actually impor-
tant for it. It can also lead to unexpected results,
especially in the presence of watermarks, small
changes in data distribution inside each generated
sample deliberately injected by generative model
developers. We believe that for truly reliable ATD
detection, all conclusions should be interpretable,
so that a human analyst could inspect the decision.
By proposing the concept erasure approach, we
have made a step towards interpretable ATD.

We have tested our approaches using relatively
small subsets of uni-model or uni-domain data
and demonstrated promising quality improvements.
Nevertheless, it is still not identical to real-world
scenarios, where at least several domains and gener-
ators are available in training time, and even more
have to be considered during the model’s applica-
tion. One of our objectives in this work has been
to propose a novel direction that can significantly
improve ATD methods in the future and make them
more reliable, but currently it is not yet a fully prac-
tical production-ready solution.

Finally, we do not address the real-word case of
post-processed and paraphrased generations, and
also texts partially written by humans. For example,
if some sentences of this section have been gener-
ated by GPT-4o but then partially corrected by the
authors, most probably the methods considered in
this work would not be able to detect it. We leave
this direction for further study.

Acknowledgements

The work of Sergey Nikolenko was supported by
a grant for research centers in the field of artificial
intelligence, provided by the Analytical Center for
the Government of the Russian Federation in accor-
dance with the subsidy agreement (agreement iden-
tifier 000000D730321P5Q0002) and the agreement
with the Ivannikov Institute for System Program-
ming of the Russian Academy of Sciences dated
November 2, 2021 No. 70-2021-00142.

17044



References
Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio

César Teodoro Mendes, Weizhu Chen, Allie Del
Giorno, Ronen Eldan, Sivakanth Gopi, Suriya Gu-
nasekar, Mojan Javaheripi, Piero Kauffmann, Yin Tat
Lee, Yuanzhi Li, Anh Nguyen, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Michael San-
tacroce, Harkirat Singh Behl, Adam Taumann Kalai,
Xin Wang, Rachel Ward, Philipp Witte, Cyril Zhang,
and Yi Zhang. 2023. Phi-2: The surprising power of
small language models.

Nora Belrose, David Schneider-Joseph, Shauli Ravfo-
gel, Ryan Cotterell, Edward Raff, and Stella Bider-
man. 2023. LEACE: Perfect linear concept erasure in
closed form. In Thirty-seventh Conference on Neural
Information Processing Systems.

Amrita Bhattacharjee, Raha Moraffah, Joshua Garland,
and Huan Liu. 2024. Eagle: A domain generalization
framework for ai-generated text detection. arXiv
preprint arXiv:2403.15690.

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan,
and Kenneth Church. 2021. On attention redundancy:
A comprehensive study. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 930–945, Online. As-
sociation for Computational Linguistics.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian
Chen, Adam Jermyn, Tom Conerly, Nick Turner,
Cem Anil, Carson Denison, Amanda Askell, et al.
2023. Towards monosemanticity: Decomposing lan-
guage models with dictionary learning. Transformer
Circuits Thread, page 2.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah,
Michael Petrov, Ludwig Schubert, Chelsea Voss, Ben
Egan, and Swee Kiat Lim. 2020. Thread: Circuits.
Distill. Https://distill.pub/2020/circuits.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Joshua Engels, Isaac Liao, Eric J Michaud, Wes Gurnee,
and Max Tegmark. 2024. Not all language model
features are linear. arXiv preprint arXiv:2405.14860.

Yossi Gandelsman, Alexei A Efros, and Jacob Stein-
hardt. 2023. Interpreting clip’s image representation
via text-based decomposition. In The Twelfth Inter-
national Conference on Learning Representations.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection
and visualization of generated text. arXiv preprint
arXiv:1906.04043.

Evan Hernandez and Jacob Andreas. 2021. The low-
dimensional linear geometry of contextualized word
representations. In Proceedings of the 25th Confer-
ence on Computational Natural Language Learning,
pages 82–93, Online. Association for Computational
Linguistics.

Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun
He, Weilin Zhao, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Xinrong Zhang, Zhen Leng
Thai, Chongyi Wang, Yuan Yao, Chenyang Zhao, Jie
Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia,
Guoyang Zeng, dahai li, Zhiyuan Liu, and Maosong
Sun. 2024. MiniCPM: Unveiling the potential of
small language models with scalable training strate-
gies. In First Conference on Language Modeling.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks
V. S. Lakshmanan. 2020. Automatic detection of ma-
chine generated text: A critical survey. In COLING,
pages 2296–2309.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Ryo Kamoi and Kei Kobayashi. 2020. Why is the ma-
halanobis distance effective for anomaly detection?
arXiv preprint arXiv:2003.00402.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers,
and Anna Rumshisky. 2021. BERT busters: Outlier
dimensions that disrupt transformers. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3392–3405, Online. Association
for Computational Linguistics.

17045

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://openreview.net/forum?id=awIpKpwTwF
https://openreview.net/forum?id=awIpKpwTwF
https://doi.org/10.18653/v1/2021.naacl-main.72
https://doi.org/10.18653/v1/2021.naacl-main.72
https://doi.org/10.23915/distill.00024
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.conll-1.7
https://doi.org/10.18653/v1/2021.conll-1.7
https://doi.org/10.18653/v1/2021.conll-1.7
https://openreview.net/forum?id=3X2L2TFr0f
https://openreview.net/forum?id=3X2L2TFr0f
https://openreview.net/forum?id=3X2L2TFr0f
https://doi.org/10.18653/v1/2020.coling-main.208
https://doi.org/10.18653/v1/2020.coling-main.208
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/2021.findings-acl.300
https://doi.org/10.18653/v1/2021.findings-acl.300


Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In Conference on Empirical Methods in
Natural Language Processing.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2023. Paraphras-
ing evades detectors of ai-generated text, but re-
trieval is an effective defense. arXiv preprint
arXiv:2303.13408.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ziyang Luo, Artur Kulmizev, and Xiaoxi Mao. 2021.
Positional artefacts propagate through masked lan-
guage model embeddings. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5312–5327, Online. Association
for Computational Linguistics.

Samuel Marks and Max Tegmark. 2023. The geometry
of truth: Emergent linear structure in large language
model representations of true/false datasets. arXiv
preprint arXiv:2310.06824.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Neural
Information Processing Systems.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. arXiv preprint
arXiv:2301.11305.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir Radev,
Alham Fikri Aji, Khalid Almubarak, Samuel Al-
banie, Zaid Alyafeai, Albert Webson, Edward Raff,
and Colin Raffel. 2023. Crosslingual general-
ization through multitask finetuning. Preprint,
arXiv:2211.01786.

Madhura Pande, Aakriti Budhraja, Preksha Nema,
Pratyush Kumar, and Mitesh M Khapra. 2021. The
heads hypothesis: A unifying statistical approach to-
wards understanding multi-headed attention in bert.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13613–13621.

Kiho Park, Yo Joong Choe, and Victor Veitch. 2023.
The linear representation hypothesis and the geome-
try of large language models. In Causal Representa-
tion Learning Workshop at NeurIPS 2023.

Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Eka-
terina Artemova, and Irina Piontkovskaya. 2021. Re-
visiting mahalanobis distance for transformer-based
out-of-domain detection. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 13675–13682.

Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and
Felice Dell’Orletta. 2022. Outlier dimensions that
disrupt transformers are driven by frequency. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 1286–1304, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha
Roy, Shreyas Padhy, and Balaji Lakshminarayanan.
2021. A simple fix to mahalanobis distance for
improving near-ood detection. arXiv preprint
arXiv:2106.09022.

William Rudman, Nate Gillman, Taylor Rayne, and
Carsten Eickhoff. 2022. IsoScore: Measuring the
uniformity of embedding space utilization. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 3325–3339, Dublin, Ireland.
Association for Computational Linguistics.

John Schulman, Barret Zoph, Christina Kim, Jacob
Hilton, Jacob Menick, Jiayi Weng, Juan Felipe Ceron
Uribe, Liam Fedus, Luke Metz, Michael Pokorny,
Rapha Gontijo Lopes, Shengjia Zhao, Arun Vi-
jayvergiya, Eric Sigler, Adam Perelman, Chelsea
Voss, Mike Heaton, Joel Parish, Dave Cummings,
Rajeev Nayak, Valerie Balcom, David Schnurr,
Tomer Kaftan, Chris Hallacy, Nicholas Turley, Noah
Deutsch, Vik Goel, Jonathan Ward, Aris Konstan-
tinidis, Wojciech Zaremba, Long Ouyang, Leonard
Bogdonoff, Joshua Gross, David Medina, Sarah
Yoo, Teddy Lee, Ryan Lowe, Dan Mossing, Joost
Huizinga, Roger Jiang, Carroll Wainwright, Diogo
Almeida, Steph Lin, Marvin Zhang, Kai Xiao, Kata-
rina Slama, Steven Bills, Alex Gray, Jan Leike, Jakub
Pachocki, Phil Tillet, Shantanu Jain, Greg Brockman,
Nick Ryder, Alex Paino, Qiming Yuan, Clemens Win-
ter, Ben Wang, Mo Bavarian, Igor Babuschkin, Szy-
mon Sidor, Ingmar Kanitscheider, Mikhail Pavlov,
Matthias Plappert, Nik Tezak, Heewoo Jun, William
Zhuk, Vitchyr Pong, Lukasz Kaiser, Jerry Tworek,
Andrew Carr, Lilian Weng, Sandhini Agarwal, Karl
Cobbe, Vineet Kosaraju, Alethea Power, Stanislas
Polu, Jesse Han, Raul Puri, Shawn Jain, Benjamin
Chess, Christian Gibson, Oleg Boiko, Emy Parparita,
Amin Tootoonchian, Kyle Kosic, and Christopher
Hesse. 2022. Introducing chatgpt.

Haipeng Shen and Jianhua Z Huang. 2008. Sparse prin-
cipal component analysis via regularized low rank
matrix approximation. Journal of multivariate analy-
sis, 99(6):1015–1034.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah

17046

https://doi.org/10.18653/v1/2021.acl-long.413
https://doi.org/10.18653/v1/2021.acl-long.413
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2211.01786
https://arxiv.org/abs/2211.01786
https://openreview.net/forum?id=T0PoOJg8cK
https://openreview.net/forum?id=T0PoOJg8cK
https://aclanthology.org/2022.findings-emnlp.93
https://aclanthology.org/2022.findings-emnlp.93
https://doi.org/10.18653/v1/2022.findings-acl.262
https://doi.org/10.18653/v1/2022.findings-acl.262
https://openai.com/index/chatgpt/


Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Edward Tian and Alexander Cui. 2023. Gptzero: To-
wards detection of ai-generated text using zero-shot
and supervised methods.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger,
and Neel Nanda. 2023. Linear representations
of sentiment in large language models. CoRR,
abs/2310.15154.

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4527–4546, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Eduard Tulchinskii, Kristian Kuznetsov, Kushnareva
Laida, Daniil Cherniavskii, Sergey Nikolenko,
Evgeny Burnaev, Serguei Barannikov, and Irina Pi-
ontkovskaya. 2023. Intrinsic dimension estimation
for robust detection of AI-generated texts. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Saranya Venkatraman, Adaku Uchendu, and Dongwon
Lee. 2023. Gpt-who: An information density-based
machine-generated text detector. arXiv preprint
arXiv:2310.06202.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hammed Afzal, Tarek Mahmoud, Giovanni Puc-
cetti, Thomas Arnold, et al. 2024a. Semeval-2024
task 8: Multidomain, multimodel and multilingual
machine-generated text detection. arXiv preprint
arXiv:2404.14183.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Chenxi White-
house, Osama Mohammed Afzal, Tarek Mahmoud,
Toru Sasaki, Thomas Arnold, Alham Aji, Nizar
Habash, Iryna Gurevych, and Preslav Nakov. 2024b.
M4: Multi-generator, multi-domain, and multi-
lingual black-box machine-generated text detection.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1369–
1407, St. Julian’s, Malta. Association for Computa-
tional Linguistics.

A Residual subspaces for ATD

A.1 Formal definitions and theory
In this subsection, we introduce formal definitions
and recap some statements from linear algebra that
are useful for a better understanding of the geome-
try and properties of residual subspaces. First, we
define the notion of explained variance and rela-
tive explained variance to be able to quantify the
properties of residual subspaces.

Definition 1 (Subspace explained variance (Shen
and Huang, 2008; Gandelsman et al., 2023)). Let
D ⊂ Rd, D = {x1, . . . ,xN} be a dataset, and
S ⊂ Rd is an arbitrary subspace, with Pr(x) :
Rd → S being the projection function onto S. We
call the variance of the projections Pr(D) the ex-
plained variance of subspace S with respect to D:

EVD(S) = ED∥Pr(x− E[x])∥2 =

=
1

N

∑

x∈D
∥Pr(x)− Pr(µ)∥2,

where µ = 1
N

∑
x∈D x.

If X̄ is a matrix of centered data vectors (x−µ)
for x ∈ D (row-wise), and V is the k × d matrix
defining an arbitrary basis of the subspace S, S =
⟨v1, . . . , vk⟩, then the explained variance EVD(S)
can be written in matrix form:

EVD(S) = Tr(Pr(X̄)TPr(X̄)), (4)

where the projection operator Pr(X) can be com-
puted as

Pr(X̄) = X̄V T (V V T )−1V. (5)

In the case of an orthonormal basis, V TV = I, for-
mulas (4) and (5) become a simple decomposition
into the sum of component-wise variations:

EVD(S) =
k∑

i=1

VD
i , (6)

where VD
i is the variance along the ith basis vector.

Relative explained variance reflects the relative
importance of a subspace by the ratio of the sub-
space explained and total variance of the data:

RVD(S) =
EVD(S)
Var(D)

.
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Figure 5: Geometric intuition of our approaches.

For data distributed equally over all directions,
it is proportional to the subspace dimension. For
example, for D ∼ N (µ, σ2) for any subspace S

RVD(S) =
dim(S)

d
.

Definition 2. A subspace S is called an α-residual
subspace with respect to D if and only if its relative
explained variance is not greater than α:

RVD(S) ≤ α. (7)

The simplest way to find residual subspaces for
a given α follows from (6). We can compute the
variances Vari with respect to each coordinate of
the embeddings, and then select the coordinates
{ui1 , . . . , uim} with the smallest variances while
their sum does not exceed the desired portion of the
total variance. But this method does not guarantee
that the required subspace will be found even if
it exists for a given dataset. Figure 5 shows the
geometric intuition of our approaches; in particular,
the residual subspace, even if it exists, may not be
spanned by any subset of the standard basis. The
following proposition provides a guaranteed way
to find the α-residual subspace if it exists.

Proposition 1. Let {u1, . . . ,ud} be the princi-
pal components of a dataset D with correspond-
ing singular values λ1, . . . , λd (in descending or-
der). Then the explained variance of a subspace
spanned by d− k last principal components Rk =
⟨uk+1, . . . ,ud⟩ is

EVD(Rk) =

d∑

i=k+1

λi. (8)

Moreover, Rk has the minimal explained variance
among all (d− k)-dimensional subspaces.

Proof. The first statement follows from (4), taking
in account that the trace of a matrix is invariant
under the change of the basis. Therefore, we can
apply a singular transform to X̄ and obtain

Tr(Pri(X̄)TPri(X̄)) =

= Tr(Pri(diag(λ1, . . . , λd))) = λi.

The second statement follows from the Frobe-
nius theorem, which says that for any matrix X̄ the
projection of its rows to the first k singular compo-
nents leads to the best rank-k approximation with
respect to Frobenius norm:

⟨u1, . . . ,uk⟩ = argmin
S,dimS=k

∑

x∈X̄
∥x− PrS(x)∥2,

where the sum goes over rows of X̄ . This can
be rewritten in terms of the residual subspace
R = ⟨uk+1, . . . ,ud⟩, which is unambiguously
defined as the orthogonal complement of S =
⟨u1, . . . ,uk⟩:

⟨uk+1, . . . ,ud⟩ = argmin
R,dimR=d−k

∑

x∈X̄
∥PrR(x)∥2

= argmin
R,dimR=d−k

EVD(R),

which completes the proof.

As a corollary, PCA allows to find the α-residual
subspace for a given dataset D, if it exists. Namely,
we can select its singular values starting from the
least until their relative sum exceeds α. Then, the
number of components in the sum is equal to the
maximal subspace dimension, and the subspace
spanned by the corresponding singular vectors pro-
vides the necessary subspace.

A.2 Head-wise decomposition
In our derivation of the form of head-wise flows,
we follow the ideas proposed by Gandelsman et al.
(2023). In the following, we consider Transformer
blocks with post-layer-normalization, such as in
BERT and RoBERTa models. The transformation
inside each layer can be written as

ẑl = LN(zl−1 +MHA(zl−1)), (9)

zl = LN(ẑl +MLP(ẑl)), where (10)

LN(x) =
x− x̄

∥x− x̄∥2 , (11)
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and x̄ = 1
d

∑d
i=1 xi is the mean of the components

of a vector x. The numerator of (11) can be rewrit-
ten as a linear transform

x− x̄ = (I− 1

d
1)x = Πx, (12)

where I is the identity matrix, 1 is the square ma-
trix consisting of ones, and d is the dimension of
x. Note that this transform is in fact an orthogonal
projection to the hyperplane defined by the equa-
tion x1 + · · · + xd = 0. As all projections, Π is
idempotent:

Π2 = Π. (13)

Applying (12) and (13) to (9), we can write a
layer-wise linear decomposition for post-layer-
norm Transformers:

M(z) = α(z)Π(z0) +
∑

l

βl(z)Π(MLP(ẑl))+

+
∑

l

γl(z)Π(MHA(zl−1)) =

= α(z)Π(z0) +
∑

l

βl(z)Π(MLP(ẑl))+

+
∑

l

∑

h

γl(z)Π(Al,h(zl−1)), (14)

where α, β, γ are input-dependent scalars, Π is the
projection transform (12), and Al,h denotes atten-
tion head h on layer l.

B Technical details of the experiments

B.1 Preprocessing and models
For text preprocessing, we only replaced consec-
utive spaces, trailing spaces, and a newline char-
acters with one space, as was done by Tulchinskii
et al. (2023).

For embeddings extraction, we used stan-
dard pretrained models from the Hugging-
Face5 library: roberta-base (125M param-
eters), microsoft/phi-2 (2.7B parameters),
bert-base-uncased (110M parameters). We use
each text sample as an input for chosen model and
obtain the resulting embedding from the last layer
of this model. We take the mean pooling of that
embedding to decrease the dimensionality and get
a vector of dimension 768; this is our text feature
vector.

For all further experiments with embeddings, we
use the logistic regression model from the scikit-
learn6 package on the training subset with default

5https://huggingface.co/
6https://scikit-learn.org/stable/

parameters: lbfgs solver, L2 regularization coeffi-
cient C = 1, and maximum amount of iterations
max_iter = 100.

B.2 Computational resources
For all of our experiments we used two servers with
the following computational resources:

• 1 V100 16Gb GPU + 32 CPUs (Intel(R)
Xeon(R) Gold 6151), 126GB RAM

• 2 V100 16GB GPUs + 64 CPUs (Intel(R)
Xeon(R) Gold 6151), 252GB RAM

B.3 Detailed experimental setup on GPT-3D
For experiments on the GPT-3D dataset, we con-
sider texts generated by either the davinci or GPT-4-
o generator on the ith topic from the list and the cor-
responding human-written texts on the same topic
as one dataset, labeling the generated and human-
written texts with “0” and “1” respectively. We
use each text sample as an input for the RoBERTa
model and take the mean-pooled embeddings to
obtain a vector of dimension d = 768; this is our
text feature vector.

We split the resulting dataset of these feature
vectors into training and test subsets. We train lo-
gistic regression on the training subset and test the
resulting classifier on the test subset of every other
generator we have. The resulting accuracy values
comprise the ith row of our resulting diagram. We
repeat this process for every considered topic.

B.4 Greedy search for embedding components
Recall that for these experiments, we chose two do-
mains {D1, D2}, and train the classifier on subset
D1, using corresponding feature vectors of size d.
To find the “harmful” subspace, we start to remove
the components of these feature vectors one-by-one.
First, we train the classifier with 0-th component
of the feature vector removed, than with 1-st com-
ponent removed and so on, up to the last d-th com-
ponent, remembering, which component removal
increases out-of-domain accuracy on D2 the most
(or decreases it the least). After finding that most
“harmful” component, we remove it for good and
repeat the process again for the vector of size d− 1
to see, which one from the remaining components
is the most harmful (or least useful) now. We repeat
this process until only one component remains in
the feature vector.

After this, we get a list of the removed com-
ponents and correseponding accuracy scores. We
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Figure 6: Accuracy (vertical axis) as a function of the
number of components removed from the RoBERTa
embedding (horizontal axis).

Figure 7: Accuracy (vertical axis) as a function of the
number of removed components (similar to Fig. 6) for
data with all symbols except English letters, numbers,
and “!”, “?”, “,”, and “.” symbols filtered out.

remember a list of the components, removal of
which gives the best OOD accuracy D1 → D2.
Then we repeat all the same, training classifier on
D2 and checking it’s performance on D1 to get the
list of the components, removal of which gives the
best OOD accuracy in the opposite direction, i.e.
D2 → D1.

Intersection of these lists is the final list of the
components that we remove in this method. After
removing it, we remain with a union of the best
components that need to remain to get the best
D1 → D2 and D2 → D1 scores, as described in
Section 3.2.

The resulting scores for greedy search of the
embeddings components to remove, in both di-
rections, SReddit→Wikipedia and SWikipedia→Reddit,
are shown in Figure 6. We also provide another
similar plot in Figure 7 in the setting where all sym-
bols except English letters, numbers, and “!”, “?”,
“,”, and “.” symbols have been filtered out. This ex-
periment shows that the text preprocessing method
can significantly influence the process of choosing
the best components.

B.5 Layer-wise head pruning on GPT-3D
dataset, exrtended with GPT-4
generations

The GPT-3D dataset contains natural and artifi-
cially generated texts (by two models: GPT-3.5-
davinci-003 and GPT-4-o) in three different do-
mains: Wikipedia articles, long-form question an-

swering from Reddit (general topics), and Stack-
Exchange (more technical texts). For each (do-
main, generating model) pair, the dataset contains
an equal number of generated and natural texts
from that domain; therefore, classes are balanced
in all settings. For each (domain, generating model)
pair, we split the data into training and evaluation
subsets in the 13:2 ratio. None of the evaluation
subsets intersect with any of the training subsets.

Although our main track of research on our GPT-
3D dataset was conducted using GPT-4-o data, we
also generated a small sample of data by the ear-
lier GPT-4 generator. This model is more expen-
sive so the amount of data fit to our budget was
not sufficient for a stable evaluation of all the pro-
posed methods; but below we report interesting
findings obtained by layer-wise head pruning. Ta-
ble 6 demonstrates, that in this data-sparse regime
the performance of OOD transfer of GPT-4 gener-
ations is low, but 1st layer pruning corrects it by
as much as 16%. This observation does not corre-
spond to the results obtained by GPT-4-o genera-
tions. Besides, the quality of cross-model transfer
significantly improved. We believe that this obser-
vation requires an additional study with a larger
GPT-4 dataset.

Below we described the detailed experimental
setup for this study.

The experiment was conducted as follows: first,
a classifier was trained on data for one (domain,
generating model) pair and then evaluated on two
other domains with the same generating model;
we call this the OOD (out-of-distribution) setting.
Then, the classifier is evaluated on all three do-
mains but with a different generating model (Trans-
fer). The results are presented in Table 6, which
reports average accuracy across all domains.

The first row of the table (Full) contains results
obtained using the unaltered RoBERTa-base model.
Then we separately prune each layer of attention
heads (“turn off” all 12 attention heads of each
layer by zeroing their output); this can be done,
e.g., with the prune_heads method of the RoBER-
TaModel class from the HuggingFace library. Re-
sults for these cases are reported in other rows of
Table 6.

Table 6 shows full results across the layers, indi-
cating that pruning the lower layers of the model,
especially Layer 0, yields better results.
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davinci GPT-4 davinci to GPT-4 GPT-4 to davinci
OOD OOD transfer transfer

Full model 81.3 64.3 66.4 70.4

Pruned layer
#0 83.2 80.1 80.0 83.2
#1 83.4 78.8 74.7 79.2
#2 82.1 78.8 72.7 77.4
#3 81.8 82.0 73.6 78.1
#4 83.4 79.6 71.6 76.4
#5 82.2 78.1 72.9 75.6
#6 84.0 76.3 72.3 74.4
#7 82.8 75.4 70.1 74.6
#8 82.8 72.1 68.5 73.4
#9 83.2 73.2 68.7 71.4
#10 83.1 71.0 68.1 72.8
#11 86.6 68.2 67.3 71.7

Table 6: Average accuracy of artificial text detection
over three domains (Wikipedia, Reddit, StackExchange)
and two generating models (GPT3.5-davinci and GPT4).
Detector is trained on one domain against one generator
and evaluated on other domains (OOD) and on all do-
mains against unseen generating model (transfer). Best
results are given in bold, runner-ups are underlind.

Cross-domain Cross-model
Avg Max ↑ Max ↓ Avg Max ↑ Max ↓

Roberta 73.0 - - 82.8 - -
Bshift 73.0 6.4 -6.8 82.2 1.5 -2.6
CoordInv 72.1 1.1 -3.7 82.1 0.9 -3.4
ObjNum 72.9 0.9 -1.5 83.0 0.7 -0.0
SOMO 72.9 6.8 -3.8 82.1 0.6 -4.1
Tense 72.7 0.4 -1.6 82.8 1.0 -0.4
SentLen 73.0 4.1 -3.0 82.6 0.2 -1.2
SubjNum 72.8 0.4 -1.6 82.9 0.5 -0.4
TopConst 75.1 12.6 -1.8 83.1 2.2 -0.9
TreeDepth 73.9 12.1 -1.4 83.0 1.0 -0.3
WC 74.1 11.0 -8.5 83.0 2.9 -2.9

Table 7: Balanced accuracy results for out-of-domain
classification for different erased concepts on SemEval

B.6 Concept erasure on SemEval

Table 7 reports detailed results on concept erasure
on the SemEval dataset. For concept erasure we
use an open-source implementation7.

C Cross-dataset transfer

Table 8 compares the classifiers trained on SemEval
dataset with the same setup trained on GPT-3D
data, but tested on SemEval. Surprisingly, in cross-
domain transfer heads and coordinates selection
on GPT-3D leads to an improvement of the per-
formance on SemEval. However, the cross-model
performance degrades.

7https://github.com/EleutherAI/
concept-erasure

SemEval GPT-3D
RoBERTa CD CM CD CM CA

Baseline 73.0 /
76.4*

82.8 /
76.3* 84.1 71.0 70.1

Selected heads 74.3 /
75.6*

80.0 /
75.4* 86.6 79.3 79.2

Selected
coordinates

74.5 /
75.4*

82.6 /
75.3* 85.4 71.9 72.8

Table 8: Balanced accuracy for OOD classification:
cross-domain (CD), cross-model (CM), cross-all (CA).
Numbers with asterisks correspond to cross-dataset
transfer.

Method CM Combination CM

Baseline 81.9 L1 + L4 73.4
Layer 1 77.8 L1 + L4 73.4
Layer 4 78.9 TreeDepth+TopConst 83.0
TopConst 81.4 L1+TreeDepth 78.4
TreeDepth 83.2 TreeDepth+Coord 89.5
Coord 89.5 L1+TreeDepth+Coord 88.2

Table 9: Result for BERT model, GPT-3D dataset, cross-
model setup.

D Assessing combination of methods

To investigate the effectiveness of combining meth-
ods, we conducted experiments where multiple
techniques were applied simultaneously. The re-
sults, presented in Table 9, show that the combined
approach does not result in any significant improve-
ment. The joint outcomes are either worse or ap-
proximately the same as the best individual compo-
nent. Removing multiple layers simultaneously is
particularly detrimental, whereas concept removal
can be combined with other methods more effec-
tively.

E Confidence intervals for SemEval

Since the SemEval dataset is more diverse than
GPT-3D, we present the results using averaged
statistics. For more detailed information, we re-
port confidence intervals for accuracy changes on
the SemEval dataset in Table 10. We observe that
these intervals are predominantly positive, showing
improvements of up to 6% in cross-domain setups.

F Removing “bad” outliers and how it
influences the geometry of embeddings

Previous studies have shown that some dimensions
skew the embedding space greatly and have a dra-
matic influence on its geometry. In particular,
Timkey and van Schijndel (2021) have shown that
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Cross-Domain Cross-Model

Layer 1 (0.77, 6.65) (-1.47, 0.68)
Layer 4 (0.88, 3.18) (0.4 , 1.68)
TopConst (0.55, 4.10) (-0.06, 0.7)
TreeDepth (-0.24, 2.62) (-0.07, 0.31)
Coords (-0.80 , 5.76) (-0.98, 1.19)

Table 10: Confidence intervals for accuracy changes in
SemEval using RoBERTa model

Figure 8: IsoScore and cosine similarity of the
RoBERTa embeddings before and after removing their
“bad” components; the embeddings were calculated on
GPT-3D dataset.

the embeddings of BERT, RoBERTa, and some
other Transformer-based models lie in a narrow
cone. To show this, they use the mean cosine simi-
larity of the embeddings: if the cosine similarity of
all embeddings is high, it means that they are simi-
lar to each other along some dimensions; the larger
the average cosine similarity, the less isotropic the
embedding space is.

Rudman et al. (2022) introduced a more complex
tool for measuring the anisotropy of the embed-
ding space: IsoScore. The fundamental motivation
for IsoScore is that it roughly reflects the fraction
of dimensions uniformly utilized by a given point
cloud. According to the authors’ estimation, less
than 20% of dimensions of the BERT model embed-
ding space are utilized uniformly. Larger IsoScore
values correspond to more isotropic embedding
spaces.

Figure 8 shows how removing the components
that are “bad” for cross-domain and cross-model
generalization abilities influences the IsoScore and
cosine similarity scores for RoBERTa embeddings.

We see that after removing these “bad” dimen-
sions, the embeddings of fake and real texts change
their isotropy in different rates, but both become
more isotropic in general. Based on this observa-
tion, we hypothesize that the isotropy of the embed-
ding space can be connected to the model’s gener-
alization abilities; we leave testing this hypothesis
for future research.

Test

80.4 71.6 78.7 45.7 33.4 49.7

80.1 72.0 79.2 45.1 33.7 49.5

77.0 70.6 83.6 38.4 34.3 49.4

40.0 36.3 26.4 72.2 55.9 49.9

30.3 44.3 38.1 50.7 61.6 49.8

62.5 64.0 71.1 35.6 43.9 49.4

(a) RoBERTa, full (PHD)

Avg

59.9

59.9

58.9

46.8

45.8

54.4
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Figure 9: PHD-based logistic regression accuracy
before and after components removal, mean accu-
racy in cross-domain/cross-model ATD on GPT-3D:
(a) RoBERTa, full embeddings, (b) RoBERTa after com-
ponents removal, (c) BERT, full embeddings, (d) BERT,
after components removal.

G Components removal and PHD

We conducted additional experiments to evaluate
the influence of removing embedding components
(selected with the greedy search outlined in Section
3.2 Subspace removing methods) in the RoBERTa
and BERT models on the cross-domain and cross-
model generalization abilities of the persistent ho-
mological fractal intrinsic dimensionality-based
method. Figure 9 shows a consistent decrease in
accuracy for both cross-model and cross-domain
ATD as components are being removed. Such re-
moval typically reduces the intrinsic dimension-
ality of human-written texts, hence degrading the
discriminative power of linear classifiers in ATD.

An interesting observation is that the PHD of
a newer generation LLM (GPT-4o) is higher than
that of human-written texts, while the PHD of the
older generation (GPT-3.5-davinci) is lower that of
human-written texts. This may explain the poor
generalization ability between the models on GPT-
3.5-davinci and GPT-4o. See Figure 10 for details.
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Figure 10: PHD of RoBERTa full embeddings and embeddings after component removal for real/fake texts from the
GPT-3D dataset.

Figure 11: Concept erasure, cross-model setting

H PCA

We investigated the PCA decomposition of the em-
bedding spaces of RoBERTa, BERT and Phi-2. We
tried to remove components with highest and low-
est variance to check how it affects the overall ac-
curacy and generalization abilities of the models.
The results are shown in Figures 13 and 14.

Figure 13 shows that while we remove PCA com-

ponents of the RoBERTa embedding space with the
largest variance, the transferability between the dif-
ferent domains and models drops significantly. At
first, the transferability from GPT-4o to GPT-3.5-
davinci goes down to random; next, transferabil-
ity between different domains of texts generated
with GPT-3.5-davinci goes down to random; and fi-
nally, transferability between GPT-3.5-davinci and
GPT-4o drops down. Interestingly, transferability
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Figure 12: Concept erasure, cross-domain setting

Figure 13: Classification quality on PCA components of RoBERTa embeddings on the GPT-3D dataset. Top left —
all components are present; top right — 10% of the components with the largest variance are removed; bottom left —
50% of the components with the largest variance are removed; bottom right — 90% of the components with the
largest variance are removed.
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Figure 14: Mean accuracy on the GPT-3D dataset, depending on the number of PCA components left; e.g., “top
10% components” means that we have removed 90% of the components with the smallest variance.

between different domains of GPT-4o remains sig-
nificantly higher than random even after removing
90% of the high-variance components.

Figure 14 shows that removing the first PCA
component with the highest accuracy does not af-
fect the classification quality much, suggesting that
it does not play a distinct role in classification.
However, removing 25% of the components with
high variance is damaging for all three models,
while removing the components with low or aver-
age variance does not hurt the model performance.

Overall, we see that high-variance components
in the PCA space generally play some important
role in the generalization ability of all three models
(RoBERTa, BERT, and Phi-2); however, we have
not been able to significantly improve the quality
of classification by simply removing low-variance
PCA components on any model.

I Datasets license

We release our dataset under CC BY-SA 4.0 licence
agreement. For the information about the licence
of M4 (SemEval) subsets, see original paper by
Wang et al. (2024b).
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