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Abstract

Large language models have demonstrated sig-
nificant potential as the next-generation infor-
mation access engines. However, their reliabil-
ity is hindered by issues of hallucination and
generating non-factual content. This is par-
ticularly problematic in long-form responses,
where assessing and ensuring factual accuracy
is complex. In this paper, we address this gap
by proposing FACTALIGN, a novel alignment
framework designed to enhance the factuality
of LLMs’ long-form responses while main-
taining their helpfulness. We introduce fKTO,
a fine-grained, sentence-level alignment algo-
rithm that extends the Kahneman-Tversky Opti-
mization (KTO) alignment method. Leveraging
recent advances in automatic factuality evalua-
tion, FACTALIGN utilizes fine-grained factual-
ity assessments to guide the alignment process.
Our experiments on open-domain prompts and
information-seeking questions demonstrate that
FACTALIGN significantly improves the factual
accuracy of LLM responses while also improv-
ing their helpfulness. Further analyses identify
that FACTALIGN is capable of training LLMs
to provide more information without losing fac-
tual precision, thus improving the factual F1
score.1

1 Introduction

Generating natural language provides a natural in-
terface for humans to communicate with artificial
intelligence. With the emergence of large language
models (LLM) (Brown et al., 2020), they imme-
diately demonstrate the potential to become the
next-generation engine for information access due
to their ability to generate long-form natural lan-
guage response to human queries. Given the large-
scale pre-training on web-scale datasets, LLMs
demonstrate impressive capabilities of answering
diverse questions, showcasing the vast amount of

1Our source code, datasets, and trained models are publicly
available at https://github.com/MiuLab/FactAlign.

[1] The Eiffel Tower is a tower.
[2] The Eiffel Tower is in Paris.

The Eiffel Tower is a tower in Paris. It opened in 

the 20th century. The Tower is 300 meters tall.

Response

What is the Eiffel Tower?

Prompt

[1] It opened in the 20th
century.

[1] The Tower is 300 
meters tall.

Language
Model

Precision = 75%

Figure 1: An example of the evaluation long-form fac-
tuality. The long-form response is broken down into
subclaims and verified separately. The factual precision
score can be calculated as the precision of all subclaims.

knowledge they possess. The post training tech-
niques, i.e., instruction tuning (Wei et al., 2022)
and reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022), further train LLMs
to respond in a more human preferable way, e.g.,
generating coherent and detailed responses.

Despite their impressive reasoning capabilities
and wide-range knowledge, research has shown
that LLMs still struggle with hallucination (Xu
et al., 2024b; Rawte et al., 2023) and generating
non-factual content (Min et al., 2023). An exam-
ple of long-form generation and factuality assess-
ment is illustrated in Figure 1. These issues hinder
the reliability of LLMs and make it hard to be
adopted to real-world settings where factual accu-
racy is a crucial requirement for most applications.
The long-form responses make these issues more
complex as it is non-trivial to quantify the level of
long-form factuality (Wei et al., 2024), let alone
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to improve it. Meanwhile, most research focuses
on improving the helpfulness of LLM chatbots and
their reasoning capabilities, with little emphasis on
the factuality of the responses.

In this paper, we aim to improve the reliabil-
ity of LLMs by enhancing the factuality of their
long-form responses. Recent advances of auto-
matic factuality evaluators show that they are capa-
ble of providing factuality assessment at the atomic
fact level (Min et al., 2023; Wei et al., 2024). To
leverage those fine-grained factuality assessments,
we propose FACTALIGN, an alignment framework
designed to improve LLMs’ long-form factuality
while maintaining the same level of helpfulness.
We introduce a fine-grained alignment algorithm,
fKTO, which extends the Kahneman-Tversky Op-
timization (KTO; Ethayarajh et al. (2024)) align-
ment algorithm to sentence-level. We conduct
experiments on both open-domain prompts and
information-seeking questions and demonstrated
that our proposed FACTALIGN can effectively im-
prove long-form factuality of LMs while maintain-
ing their helpfulness.

Our main contributions can be summarized as
the following:

• We introduce fKTO, a sentence-level align-
ment algorithm that can leverage fine-grained
signals provided by a long-form factuality
evaluator.

• We propose FACTALIGN, a framework to
align LMs with fine-grained signals to gen-
erate responses that are more factual, while
keeping their helpfulness.

• The effectiveness of the proposed components
are validated through detailed analyses.

2 Related Work

2.1 Language Model Alignment

Alignment, i.e., aligning language models to hu-
man values, has been a very popular research field
recently. Prior work such as InstructGPT (Ouyang
et al., 2022) and LLaMA-2 (Touvron et al., 2023)
showcased that RLHF (Bai et al., 2022a) enhances
models’ ability to follow instructions significantly.
Fine-grained RLHF (Wu et al., 2024) proposed
to leverage fine-grained rewards for better align-
ment. Constituional AI (Bai et al., 2022b) and
RLAIF (Lee et al., 2023) introduced AI feedback
to eliminate the requirement of human annotation.

Another line of research focused on alignment
without RL. DPO (Rafailov et al., 2023) derived
a simple objective for alignment, thus attracting
rapid adoption. KTO (Ethayarajh et al., 2024) elim-
inated the requirement of pairwise preference data.
Our proposed alignment algorithm, fKTO, extends
KTO to sentence-level, which can leverage the fine-
grained signals provided by a long-form factuality
evaluator.

2.2 Factuality of Langage Models

Factuality and hallucination have been long-
standing issues for natural language genera-
tion (Lee et al., 2022; Ji et al., 2023). Lee et al.
(2022), Li et al. (2023), and Chuang et al. (2024)
proposed decoding techniques that improved factu-
ality of LMs. Shuster et al. (2021) reduced halluci-
nation by retrieval-augmented generation. (Dhuli-
awala et al., 2023) proposed chain-of-verification to
reduce LLM hallucination. SelfCheckGPT (Man-
akul et al., 2023) proposed a method to self-
check factuality by sampling multiple generations.
FactScore (Min et al., 2023; Chiang and Lee, 2024)
and LongFact (Wei et al., 2024) both introduced
frameworks for evaluating factuality of long-form
generations. FAVA (Mishra et al., 2024) introduced
fine-grained hallucination categories to evaluate the
models and provided a detailed view of the hallu-
cination issues of LLMs. Our proposed method
also utilize a long-form factuality evaluator, while
focusing on leveraging the provided factuality as-
sessments for better factuality alignment.

Prior work has also worked on training LMs
to be more factual. FactTune (Tian et al., 2024)
leveraged FactScore to construct preference pairs
and demonstrated improvement on the bio gen-
eration task. FLAME (Lin et al., 2024) intro-
duced factuality-aware alignment which combines
FactTune with open-domain prompts. KnowTun-
ing (Lyu et al., 2024) proposed knowledge augmen-
tation which constructs synthetic pairs for DPO
training. On the other hand, recent work has shown
that fine-tuning LMs on new knowledge might
encourage hallucinations (Gekhman et al., 2024;
Kang et al., 2024). Our work additionally proposes
fKTO for fine-grained factuality alignment, which
achieves superior performance.

3 Preliminaries

In this paper, we aim to improve the long-form
factuality of LLMs by factuality alignment. In this
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section, we introduce an overview of the task of
long-form factuality and alignment algorithms.

3.1 Long-form Factuality
LLMs excel at generating long-form responses
with detailed description and explanation. How-
ever, evaluating the factuality of long-form gen-
erations is non-trivial. In this paper, we define
the factuality score of a long-form response as an
aggregation of the factuality score of each individ-
ual atomic fact, following FactScore (Min et al.,
2023) and LongFact (Wei et al., 2024). More for-
mally, given a knowledge corpus C, an user prompt
x and the response y = M(x) generated by a
model M, we first decompose y into atomic state-
ments A = {a1, · · · , a|A|}. For each atomic state-
ment ai, its factuality score f(ai) is defined as
whether it is supported by the knowledge in C, i.e.,
f(ai) = 1[ai is supported by C]. Then, the factual-
ity score of the long-form response y can be defined
as fA(y) = A({f(a1), · · · , f(a|A|)}), where A is
an aggregation function that can be defined in vari-
ous ways.

In this paper, we adopt two metrics for long-
form factuality: factual precision as defined in
FactScore (Min et al., 2023) and factual f1 score as
defined in LongFact (Wei et al., 2024). Factual pre-
cision measures the overall precision of the atomic
statements:

fprec(y) =

∑|S|
i=1 f(ai)

|A| .

While factual precision is simple, it could be easily
exploited. A model could obtain a very high factual
precision score by only generating one statement
that has the highest confidence.

On the other hand, factual f1 assumes that a
certain amount of information is desired by the
user and additionally considers the factual recall:

ff1@K(y) =

{
2·fprec(y)·frec@K(y)
fprec(y)+frec@K(y) if |A| > 0

0 if |A| = 0,

where frec@K(y) = min(1.0, |A|
K ) is the factual re-

call score assuming that at least K statements are
desired by the user. Factual f1 is less exploitable
than factual precision as it punishes the model
when it only generates few statements.

3.2 Kahneman-Tversky Optimization
Training LLMs that are aligned to human values
typically involves three stages: 1) pre-training, 2)

supervised fine-tuning, and 3) reinforcement learn-
ing from human feedback (RLHF). The first two
stages maximize the sequence generation likeli-
hood of the LM given a dataset of either diverse
pre-training data or human-annotated instruction-
following data. The third stage, RLHF, aims to
maximize the expected reward of LM generations,
where the reward usually is defined as human pref-
erences (Ouyang et al., 2022). As a result, the
RLHF stage enables LMs to generate responses
that are more preferable by humans, which is vital
for creating intelligent assistants.

While the success of the RLHF framework is
eminent, its adoption is hindered by the complex-
ity of the framework, the unstability of the train-
ing process, and the increased training time due to
the requirement of online sample generation. To
this end, prior work has proposed alignment al-
gorithms that do not require RL, thus attracting
mass adoption. Direct Preference Optimization
(DPO; Rafailov et al. (2023)) derives a simpler ob-
jective from the RLHF, eliminating the requirement
of a reward model and the RL optimization process.
More recently, Ethayarajh et al. (2024) introduced
Kahneman-Tversky Optimization (KTO), which
derives a family of human-aware alignment loss
functions. The objective function of KTO is even
simpler than DPO. It only requires a binary label
for each prompt-response pair (x, y), as opposed to
DPO which requires pairwise preference labels for
each triplet (x, y1, y2). This relaxed data require-
ment enables us to extend the algorithm to sentence-
level, which we will discuss in Section 4.2. More
formally, the KTO loss is defined as:

LKTO =
1

|B|
∑

x,y∈B
(λy − v(x, y)),

where B denotes the minibatch, λy denotes the
weight of the chosen and rejected samples, and

v(x, y) =

{
λcσ(β(rθ(x, y)− z0)) if c(x, y) = 1,

λrσ(β(z0 − rθ(x, y))) if c(x, y) = 0,

z0 = Ey′∼D[KL(πθ(y′ | x′)∥πref(y
′ | x′))],

rθ(x, y) = log
πθ(x, y)

πref(x, y)
,

where c(x, y) denotes the preference function, i.e.,
c(x, y) = 1 if the response y is chosen. Ethayarajh
et al. (2024) demonstrated that KTO achieves on
par or better alignment performance compared to
DPO. KTO also works well under the scenario
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where the number of chosen and rejected samples
are significantly unbalanced, e.g., 1:9.

4 FACTALIGN: Aligning Language
Models for Long-form Factuality

In this section, we introduce our proposed frame-
work FACTALIGN. An overview of our framework
is illustrated in Figure 2.

4.1 Automatic Long-form Factuality
Evaluator

Obtaining fine-grained factuality annotations for
long-form responses by human annotation is very
costly. For example, Min et al. (2023) estimated
that evaluating one generation costs $4. In this
work, we employ an automatic factuality evaluator
for long-form responses. The factuality evaluator,
following the design of FactScore (Min et al., 2023)
and SAFE (Wei et al., 2024), is a workflow of
4 stages: 1) atomic statement decomposition, 2)
query generation, 3) relevant knowledge search,
and 4) final factuality assessment. Note that stage
2 and 3 can be run multiple times to enrich the
searched knowledge.

Atomic Statement Decomposition The re-
sponse y is first split into sentences S =
{s1, · · · , s|S|}, and each sentence is decomposed
into atomic facts A. We add an additional step to
revise the decomposed atomic statements into self-
contained statements s′i with GPT-3.5-TURBO fol-
lowing SAFE.

Query Generation We prompt GPT-3.5-
TURBO to generate a search query given the
revised statement s

′
i and possibly the previously

generated queries and found knowledge snippets.

Relevant Knowledge Search We employ
Wikipedia as the knowledge corpus C following
FactScore. While the coverage of Wikipedia is
more limited compared to commercial search
engines like Google Search, we opt for Wikipedia
as this reduces cost and allows us to fully man-
age the knowledge search component under a
controlled setting. We perform search with the
generated query and obtain the top-k most relevant
knowledge snippets.

Final Factuality Assessment We prompt GPT-
3.5-TURBO to provide the final factuality assess-
ment of a revised statement s

′
i, which is either Sup-

ported if the statement is supported by the knowl-
edge snippets, or Not Supported otherwise. The

statement-level score is then defined as f(ai) =
1[ai is Supported]. Note that f(ai) represents
whether the statement is supported with respect
to Wikipedia, not whether it is globally true.

4.2 Long-form Factuality Alignment
At the core of the FACTALIGN framework is the
alignment algorithm, which operates on two granu-
larities: response-level and sentence-level.

4.2.1 Response-level Alignment
We employ the standard KTO loss LKTO for
response-level alignment. The preference labels
c(x, y) in the KTO loss can be defined and ob-
tained in various ways. For instance, most prior
work utilized human-annotated preference labels
or pseudo labels provided by LLMs. In order to
align for factuality, we treat a response y as a cho-
sen sample if the factual f1 score of the response is
greater than a threshold t:

c(x, y) = 1[ff1@K(y) > t].

By minimizing the response-level loss, we align the
LMs to generate responses that have higher factual
f1 scores.

In addition to the data for factuality alignment,
the response-level loss is compatible to other forms
of preference data. For example, in order to make
the model more helpful, we can include diverse
preference datasets that are based on human pref-
erences. In practice, we include general-domain
alignment datasets during training to make sure the
model is aligned to diverse human values.

4.2.2 Sentence-level Alignment
Since our factuality evaluator provides assessments
at a finer granularity, we propose a fine-grained
alignment algorithm, fKTO, to leverage these sig-
nals by extending the KTO alignment algorithm to
sentence-level. The fKTO loss is defined as

LfKTO =
1

|B|
∑

x,y∈B

1

|S|

|S|∑

i=1

(λf − v(x ∥ s<i, si)),

where x ∥ s<i denotes the concatenation of x and
s<i which denotes sentences before si. In this
objective function, a sentence si is treated as the
completion given x ∥ s<i. A sentence is chosen
if the average precision of its atomic statements is
higher than a threshold ts.

c(x ∥ s<i, si) = 1

[∑|Asi |
j=1 f(aj)

|Asi |
> ts

]
,
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[1] The Eiffel Tower is a tower.
[2] The Eiffel Tower is in Paris.

Long-form Factuality Assessment

The Eiffel Tower is a tower in Paris. It opened in 

the 20th century. The Tower is 300 meters tall.

Long-form Factuality Alignment

Policy 
Model

Iterative Optimization

Response

What is the Eiffel Tower?

Prompt

What is the Eiffel Tower?

Prompt

The Eiffel Tower is a tower in Paris. 

It opened in the 20th century. 

The Tower is 300 meters tall.

Response

[1] It opened in the 20th
century.

[1] The Tower is 300 meters 
tall.

Revise to be self-continued

[1] The Eiffel Tower is a tower.
[2] The Eiffel Tower is in Paris.

[1] The Eiffel Tower opened in 
the 20th century.

[1] The Eiffel Tower is 300 
meters tall.

Rate with Wiki

ℒ!"#

ℒ$!"#

Sentence labels

Response label

Aligned
Model

Figure 2: An overview of our FACTALIGN framework. Top: the pipeline for long-form facutality assessment.
Bottom: the long-form factuality alignment process.

where Asi = {aj | aj ∈ si} denotes the atomic
statements in sentence si. The sentence-level loss
provides training signals at a finer-grained level,
thus enabling the model to be aligned more ef-
fectively. Note that the relaxed data requirement
enables KTO to be easily extended to the sentence-
level, as opposed to algorithms that require pair-
wise preference labels, e.g., DPO.

Finally, the loss function we optimize is the com-
bination of the response-level and sentence-level
losses:

L = LKTO + λ · LfKTO,

where λ is the weight of the sentence-level loss.

4.3 Iterative Optimization
With the alignment algorithms introduced above,
we can align LMs to be more factual and more
helpful. However, the responses and factuality as-
sessments are obtained in an offline fashion, i.e.,
we sample the responses and their factuality la-
bels before training the model and use this data
throughout training. This creates a discrepancy be-
tween the assessed responses and the model being
trained, which would hinder the alignment process
due to distributional shift. Hence, we employ an
iterative optimization procedure, where we periodi-
cally sample new responses with the trained model
and assess their factuality. The newly generated
responses are then included in the training dataset
for the next iteration.

5 Experimental Stetup

We conduct experiments to validate the effective-
ness of our proposed framework FACTALIGN. Fur-
thermore, we perform analyses to discuss the effec-
tiveness of each component in the framework.

5.1 Datasets
Supervised Fine-tuning (SFT) We employ the
Deita dataset (Liu et al., 2024) for supervised
fine-tuning before performing alignment to en-
sure basic instruction-following capabilities of the
model. The Deita dataset consists of high-quality
data selected from UltraChat (Ding et al., 2023),
ShareGPT2, and WizardLM (Xu et al., 2024a).

General-domain Alignment We follow the
Zephyr recipe (Tunstall et al., 2023) and employ
the UltraFeedback dataset (Cui et al., 2023) as the
general-domain alignment dataset. The UltraFeed-
back consists of prompts across multiple domains
and completions generated from multiple LLMs to
enrich diversity. We use the binarized version of
the dataset3 and decouple the pairs for the KTO
loss.

Factuality Alignment We generate information-
seeking prompts following the data creation proce-
dure from LongFact (Wei et al., 2024). LongFact

2https://sharegpt.com
3https://huggingface.co/datasets/

HuggingFaceH4/ultrafeedback_binarized
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consists of 38 topics chosen to ensure diverse cov-
erage. For each topic, we generate 30 prompts with
GPT-4-TURBO and sample generations with our
policy model. The generations are then assessed by
the long-form factuality evaluator and labeled with
factuality assessments at an atomic statement level.
For each iteration of iterative optimization, we gen-
erate a new set of prompts and sample generations
with the currently aligned model.

5.2 Long-form Factuality Evaluator

We employ gpt-3.5-turbo to perform atomic
statement decomposition, query generation, and
final factuality assessment. The generation tem-
perature is set to 0.1. We use the preprocessed
Wikipedia corpus from the Dec. 20, 2021 dump
released by Izacard et al. (2024) as our knowledge
corpus C, which consists of 33 million passages.
A pre-trained retriever ColBERT-v2 (Santhanam
et al., 2022) is used to encode all passages and
perform retrieval given a query. We retrieve top-3
passages for each query and combine them with
the previously retrieved passages for final factuality
assessment. At most 2 search steps are performed
to retrieve relevant passages for each statement.
Detailed prompts can be found in Appendix A.

5.3 Models

We employ the pre-trained gemma-2b model (Team
et al., 2024) as our policy model, which is an open-
weight model pre-trained on large-scale datasets
across diverse domains. The model is first fine-
tuned with the Deita SFT dataset, and then aligned
with the alignment datasets.

We also conduct experiments on LLaMA-3
8B (Meta, 2024) and Phi3-Mini models (Abdin
et al., 2024), which are both open-weight models
which were aligned with proprietary data.

5.4 Evaluation Procedure

The trained models are evaluated on two aspects:
long-form factuality and helpfulness.

Long-form Factuality Evaluation We evaluate
models’ long-form factuality following the proce-
dure of SAFE (Wei et al., 2024)4. We choose the
LongFact-object subset following the original work,
which consists of 38 topics. We change the Google
Search API to our Wikipedia retriever due to re-
source and budget constraint. In preliminary ex-

4https://github.com/google-deepmind/
long-form-factuality

periments, we find that this change have very little
impact on the evaluation outcome. Our evaluator
has correlation scores of 0.93 and 0.82 with SAFE
for the number of Supported and Not Supported
assessments, respectively. We follow SAFE to add
an postamble to each prompt to ask for the model
to generate as many details and examples as pos-
sible. We report f1@100 as the main evaluation
metric. We also report the factual precision and
factual recall scores. In addition, we evaluate mod-
els with FactScore (Min et al., 2023). We run the
evaluation from its official implementation5 and
use GPT-3.5-TURBO as the evaluator instead of
InstructGPT. FactScore can be interpreted as the
factual precision of bio generation.

Helpfulness Evaluation We evaluate models’
helpfulness on MT-Bench (Zheng et al., 2023), a
popular benchmark that includes challenging multi-
turn open-ended questions for evaluating chat as-
sistants. The automatic judgement is performed by
GPT-4 with a score of 1 to 10, which is shown to
be highly-correlated with human judgement. The
evaluation is done with their official implementa-
tion6.

5.5 Implementation Details

We set the threshold t to 0.75, meaning that the
response is chosen if its f1@100 is higher than
0.75. The threshold for sentences ts is set to 1.0,
i.e., the sentence is only chosen if all of its atomic
statements are supported. During training, we set
β = 0.1 for KTO and βf = 0.5 for fKTO. The
weight of LfKTO, λ, is set to 2.0. The learning rate
is set to 5e-7 with a linear learning rate schedule.
We set the effective batch size to 16 and train for 1
epoch for each iteration. In order to reduce GPU
memory consumption during training, we optimize
the model with the 8-bit version of the AdamW
optimizer. We iteratively optimize the LM as de-
scribed in Section 4.3 for 3 iterations. All experi-
ments are run on 4xV100 GPUs. Each training run
takes 1 to 2 hours to finish. We estimate that each
evaluation run costs $25 in API credits.

6 Results

We present the main results in Table 1, where we
contrast FACTALIGN with both proprietary models
(GPT-4-Turbo and GPT-3.5-Turbo), a prominent

5https://github.com/shmsw25/FActScore
6https://github.com/lm-sys/FastChat/tree/main/

fastchat/llm_judge
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LongFact FactScore MT-Bench
f1@100 Precision # claims FS # claims

GPT-4-Turbo 91.85 87.99 108.9 83.98 49.7 8.99
GPT-3.5-Turbo 61.59 89.25 52.4 75.79 18.1 7.94
Olmo-7B-Instruct 75.42 66.8 131.6 - - -
LLaMA-2-70B-Chat 83.78 79.33 112.5 59.06 65.4 6.85

Gemma-2B-SFT 61.74 77.41 66.8 57.02 27.4 4.41
+ FACTALIGN 86.51 79.59 135.1 59.77 51.7 5.70

Phi3-Mini 66.91 74.41 81.5 58.33 36.7 6.58
+ FACTALIGN 82.31 78.29 106.7 61.21 49.6 6.63

LLaMA3-8B-Chat 79.98 71.89 121.5 54.96 50.6 7.38
+ FACTALIGN 87.32 78.46 132.6 62.84 55.7 7.44

Table 1: Main results of our experiments. FS denotes the FactScore and # claims denotes the average number of
claims. We report percentage points for f1@100, precision, and FS. We mark the best scores among the Gemma-2B
models in bold.

open-weight model (LLaMA-2-70B-Chat (Tou-
vron et al., 2023)), and a fully open-source model
(Olmo-7B-Instruct) (Groeneveld et al., 2024). The
comparison involves our baseline model, the
Gemma-2B model7, which has been fine-tuned us-
ing our SFT dataset, Deita. This model serves
as the foundational policy model for all subse-
quent aligned models. Additionally, we bench-
mark against the rejection sampling fine-tuning
method (Yuan et al., 2023), involving supervised
fine-tuning with selected samples from our align-
ment dataset. This method shows modest improve-
ments.

Remarkably, our FACTALIGN framework sig-
nificantly improves the long-form factuality and
helpfulness of the baseline model, achieving rela-
tive improvements of 40.1% and 29.2% in terms of
f1@100 and average score on MT-Bench, respec-
tively. These results demonstrate our capability to
simultaneously refine LMs for enhanced factuality
and utility. Moreover, FACTALIGN also boosts the
FactScore of the baseline models and outperforms
larger models like GPT-3.5-Turbo and LLaMA-
2-70B-Chat in both f1@100 and FactScore met-
rics. This demonstrates the potential for smaller
LMs, through precise alignment, to surpass general-
domain large LMs in factual accuracy.

With a detailed examination of the metrics, it is
evident that FACTALIGN primarily improves fac-
tual recall, increasing the output of factual claims
from 66.8 to 135.1, while slightly improving fac-

7https://huggingface.co/google/gemma-2b

f1@100 Precision

FACTALIGN 86.51 79.59
- Iterative Optimization 77.10 78.44

- fKTO 73.12 73.27
- General Dataset 61.33 65.72
- Factuality Dataset 68.86 69.93

Rejection Fine-tuning 68.33 77.86

Table 2: Ablation study on LongFact (%).

tual precision from 77.41 to 79.59. This enhance-
ment suggests that FACTALIGN primarily amplifies
output volume while maintaining factual precision.
This trend echoes findings from general-domain
alignment research, which indicates that alignment
algorithms typically promote longer outputs, likely
due to a combined human and LM preference for
more extensive responses (Dubois et al., 2024). A
qualitative example of this can be found in Ap-
pendix B.

6.1 Ablation Study
To validate the effectiveness of our proposed com-
ponents, we conduct an ablation study to under-
stand their contribution to the final improvement.
The results are reported under FACTALIGN in Ta-
ble 2.

Firstly, we remove the iterative optimization
technique, where we only perform 1 iteration of
training. As shown in the results, removing iter-
ative optimization significantly degrades the per-
formance, where f1@100 drops by over 10 points.

16369

https://huggingface.co/google/gemma-2b


Seen Unseen

Gemma-2B-SFT 61.97 61.36
General-domain only 69.45 68.23
Seen topics only 76.49 72.23

Table 3: Performance on seen and unseen topics (%).
We report the f1@100 score on LongFact.

βf threshold t f1@100

0.5 0.65 74.32
0.5 0.75 77.10
0.5 0.85 73.66
0.1 0.75 75.86
1.0 0.75 75.12

Table 4: Performance with various number of βf and
threshold t (%).

This result demonstrates that it is crucial to per-
form iterative optimization or online sampling in
order to achieve better performance. We also ob-
serve that training on the same dataset for multiple
epochs yields worse performance, showcasing that
the alignment data quickly becomes stale and no
longer is a good sample after 1 epoch of training.
Note that for all other ablation experiments, we
also only performs 1 iteration of training.

Next, we remove the fKTO loss LfKTO and align
the model with only LKTO. Without LfKTO, the
factual f1 score degrades by 4 points from 77.10 to
73.12, demonstrating that the proposed fine-grained
alignment objective fKTO can align LMs more ef-
fectively. Note that we observe that the fKTO loss
occasionally makes the training process unstable.
We hypothesize that this is due to the amount of
factuality data being much less than the general-
domain data, thus making the instances with fine-
grained label sparse during training. Hence, the
estimation of the fKTO loss becomes slightly un-
stable. We will also discuss the sensitivity to hy-
perparameters in Section 6.4.

We also conduct an experiment where we ex-
clude the general-domain alignment dataset from
our training data. The performance degrades signif-
icantly on all datasets after removing the general-
domain alignment dataset. Upon further investi-
gation, we observe that without general-domain
data, LMs easily overfit and often generate repet-
itive outputs. This result indicates that a mixture
of general-domain datasets and factualy-specific
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Figure 3: The precision-recall curve with varying ratios
of data mixture. SFT denotes the supervised fine-tuned
baseline. The labels denote the ratio of the precision
data points used.

datasets is important to maintain a balance and pre-
vent catastrophic forgetting.

Finally, we exclude the factuality dataset dur-
ing training, i.e., only align the LM on general-
domain datasets. As shown in the results, align-
ing with general-domain dataset also improves the
long-form factuality and helpfulness of the baseline
model. This indicates that factuality might be en-
coded in the diverse array of human values present
in the general-domain alignment dataset. How-
ever, including the factuality dataset sill achieves
significantly superior performance for long-form
factuality.

6.2 Generalization to New Topics

Since the training data is created with the same set
of topics in LongFact, all the topics should be con-
sidered seen during evaluation. Note that prompts
used in evaluation are excluded during training. To
validate whether FACTALIGN could generalize to
unseen topics, we conduct an additional experiment
where we split the topics into 19 seen topics and 19
unseen topics. We only include the data from the
seen topics during training and perform evaluation
on the unseen topics. The results are reported in Ta-
ble 3. The results show that FACTALIGN performs
slightly worse on unseen topics. Nonetheless, it
still outperforms the baseline models significantly,
showcasing that the alignment can generalize to
unseen topics.

6.3 Relationship of Precision-Recall

By varying the ratio of data points using precision
as the threshold and those using recall, we can
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control the tradeoff between the precision score
and the recall score. We train models with different
data mixture and plot the corresponding precision-
recall curve in Figure 3. The model trained with
100% precision data achieves the highest precision
score, and the model trained with 100% recall data
achieves the highest recall score. Furthermore, we
can achieve a specific level of factual precision and
recall scores on the curve by changing the ratio.
This result demonstrates that FACTALIGN enables
control over the desired factual precision and recall
scores.

6.4 Sensitivity of Hyperparameters

We report the performance of FACTALIGN under
various hyperparamter settings. The results are re-
ported in Table 4. We observe that the threshold t
affects performance slightly, with 0.75 being the
best setting. We also notice that with t = 0.75, the
labels are balanced, i.e., the number of chosen sam-
ples is roughly equal to the number of rejected sam-
ples. This indicates that constructing a balanced
dataset perform better for our alignment algorithm.

We also vary the hyperparameter βf and notice
that it degrades performance slightly. Note that the
best βf value is higher than the β value typically
set for KTO, i.e., 0.1. Our hypothesis is that since
fKTO operates on the sentence-level, the log prob-
ability difference naturally has a lower magnitude
compared to the response-level case. Thus, a higher
value of βf is needed to promote the fine-grained
loss to a similar level as the response-level loss.

7 Conclusion

In this paper, we address the issue of long-form
actuality in LLMs by proposing a novel align-
ment framework, FACTALIGN. Our approach,
which incorporates a proposed data construction
process alongside the fine-grained alignment al-
gorithm fKTO, significantly enhances the factual-
ity of LLMs over long-form responses, while also
boosting their helpfulness. Our analysis demon-
strates that FACTALIGN enables detailed control
over the desired level of factual precision and recall
scores. We believe that the insights and method-
ologies presented in our work can motivate further
advancements in the factuality alignment of LLMs.

Limitations

Our work focuses on the factuality aspect of LLMs,
which we define as whether the generated response

is supported by retrieved evidence. This defini-
tion makes the performance dependent to the per-
formance of the retriever and the coverage of the
knowledge corpus. Moreover, our data creation
and evaluation pipeline rely on automatic factuality
evaluators. Even though prior work has validated
the effectiveness of these evaluators by showing
high correlation with human judgements, the auto-
matic evaluators inevitably might make incorrect
judgements.

While FACTALIGN significantly improves the
factuality of LLMs, they still are prone to generate
non-factual content. A calibration method would
be complimentary to our method to ensure the reli-
ability of LLMs.

We focus on a controlled setting where the
information-seeking prompts are all questions
about a certain object. This is to ensure the relia-
bility of the automatic evaluation process. Future
work could extend the coverage of the information-
seeking prompts to more diverse user queries.
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Instructions:
1. Ask a general question about a specific
object (such as a person, place, event, act,
company etc.).
2. The object should be very specific and
niche within the topic of {topic}.
4. Do not ask about any particular aspect
of the object (such as history,
significance, impact, role, purpose, etc.).
5. Follow the question styles in the
provided examples.
6. Wrap the question in square brackets.

The following prompt is used for query genera-
tion:

Instructions:
1. You have been given a STATEMENT and
some KNOWLEDGE points.
2. Your goal is to try to find evidence
that either supports or does not
support the factual accuracy of the
given STATEMENT.
3. To do this, you are allowed to
issue ONE search query that you think
will allow you to find additional
useful evidence.
4. Your query should aim to obtain
new information that does not appear
in the KNOWLEDGE. This new information
should be useful for determining the
factual accuracy of the given STATEMENT.
5. Format your final query by putting
it in a markdown code block.

KNOWLEDGE:
{_KNOWLEDGE_PLACEHOLDER}

STATEMENT:
{_STATEMENT_PLACEHOLDER}

The following prompt is used for final answer
assessment:

Instructions:
1. You have been given a STATEMENT and
some KNOWLEDGE points.
2. Determine whether the given STATEMENT
is supported by the given KNOWLEDGE.
The STATEMENT does not need to be explicitly
supported by the KNOWLEDGE, but should be
strongly implied by the KNOWLEDGE.
3. Before showing your answer, think
step-by-step and show your specific reasoning.
As part of your reasoning, summarize the main
points of the KNOWLEDGE related to the
STATEMENT.
4. If the STATEMENT is supported by the
KNOWLEDGE, be sure to show the supporting
evidence.
5. After stating your reasoning, restate
the STATEMENT and then determine your final
answer based on your reasoning and the
STATEMENT.
6. Your final answer should be either
"Supported" or "Not Supported". Wrap your
final answer in square brackets.

B Qualitative Examples

We include a qualitative in Table 5.
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Model Response # Claims f1@100

Prompt: Could you provide some details about the Hague Conventions?

Gemma-2B-SFT Sure! The Hague Conventions are a set of international treaties that were
designed to protect the rights of civilians in international armed conflicts. Here
are some specific details and examples related to the Hague Conventions:
1. The First Hague Convention: The First Hague Convention was signed in 1899
and was designed to protect the rights of civilians in international armed conflicts.
It was signed by 31 countries and established the principle that civilians should
not be targeted by military forces.
Example: In 1904, during the Boxer Rebellion in China, British and French
troops were sent to suppress the rebellion. However, they were ordered to avoid
killing or injuring the Chinese civilians. The British and French troops complied
with this principle and did not fire on the civilians.
2. The Second Hague Convention: The Second Hague Convention was signed in
1907 and established the principle that the use of prohibited weapons in war is
prohibited. It was signed by 33 countries and established the principle that the
use of prohibited weapons in war is prohibited.
Example: During World War I, the use of poison gas by both the German and
British armies was prohibited under the Second Hague Convention. However,
the German army still used poison gas and was criticized for its use.
3. The Fourth Hague Convention: The Fourth Hague Convention was signed in
1907 and established the principle that the use of prohibited weapons in war is
prohibited. It was signed by 33 countries and established the principle that the
use of prohibited weapons in war is prohibited.
Example: During World War II, the use of chemical weapons by both the German
and Soviet armies was prohibited under the Fourth Hague Convention. However,
the Soviet army used chemical weapons against the Polish army in 1939, which
was not a violation of the Hague Convention.
· · ·
These are just a few examples of how the Hague Conventions have been used
to protect the rights of civilians in international armed conflicts. The Hague
Conventions have been ratified by more than 190 countries and have been
instrumental in shaping international law and protecting the rights of civilians in
armed conflicts.

67 63.4

FACTALIGN The Hague Conventions are a series of international treaties that were signed in
the Netherlands city of The Hague in 1899. These conventions were designed
to address the issue of international law and to promote cooperation between
different countries.
The Hague Conventions are divided into several different treaties, each address-
ing a different aspect of international law. Some of the most significant Hague
Conventions include:
1. The Hague Convention for the Protection of Cultural Property in the Event
of Armed Conflict (1954) 2. The Hague Convention Respecting the Laws and
Customs of War on Land (1907) 3. The Hague Convention for the Protection of
Victims of International Armed Conflicts (1977) 4. The Hague Convention on
the Civil Aspects of International Litigation (1971) 5. The Hague Convention
on the International Sale of Goods (1980) 6. The Hague Convention on the
Protection of the Rights of Visigothic Migrants (1998)
These conventions were signed by a large number of countries, and they have had
a significant impact on international law. For example, the Hague Convention for
the Protection of Cultural Property in the Event of Armed Conflict was signed in
1954, and it has been ratified by a large number of countries. This convention
has been used in a number of different situations, including the conflict in Bosnia
and Herzegovina.
· · ·
In terms of specific examples, the Hague Conventions have been used in a number
of different situations. For example, the Hague Convention for the Protection of
Cultural Property in the Event of Armed Conflict has been used in a number of
different conflicts, including the conflict in Bosnia and Herzegovina. The Hague
Convention Respecting the Laws and Customs of War on Land has been used in
a number of different situations, including the conflict in Afghanistan.
Overall, the Hague Conventions are considered to be some of the most significant
international treaties of the 20th century. They have had a significant impact on
international law, and they continue to be relevant today.

65 78.9

Table 5: An example of model generations. The generations are cut short due to space limit.
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