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Abstract

Natural language (NL) has long been the pre-
dominant format for human cognition and com-
munication, and by extension, has been simi-
larly pivotal in the development and applica-
tion of Large Language Models (LLMs). Yet,
besides NL, LLMs have seen various non-NL
formats during pre-training, such as code and
logical expression. NL’s status as the optimal
format for LLMs, particularly in single-LLM
reasoning and multi-agent communication, has
not been thoroughly examined. In this work,
we challenge the default use of NL by exploring
the utility of non-NL formats in these contexts.
We show that allowing LLMs to autonomously
select the most suitable format before reason-
ing or communicating leads to a 3.3 to 5.7%
improvement in reasoning efficiency for dif-
ferent LLMs, and up to a 72.7% reduction
in token usage in multi-agent communication,
all while maintaining communicative effective-
ness. Our comprehensive analysis further re-
veals that LLMs can devise a format from lim-
ited task instructions and that the devised for-
mat is effectively transferable across different
LLMs. Intriguingly, the structured communica-
tion format decided by LLMs exhibits notable
parallels with established agent communica-
tion languages, suggesting a natural evolution
towards efficient, structured communication in
agent communication. Our code is released at
https://github.com/thunlp/AutoForm.

1 Introduction

Natural language (NL) has long been recognized
as a fundamental format for human thought expres-
sion and communication, underscored by its pivotal
role in the cognitive processes and information ex-
change of humans (Chomsky, 2006; Lakoff, 2008;
Whorf, 2012). However, the human mind’s capa-
bilities often extend beyond the scope of NL, as
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A doesn't wear red. B wears green, what are their hat colors?
A, B and C wear different colored hats: red, blue, and green.

Natural Language

that A must wears blue. Then, C must wears red. 
Since A doesn't wear red and B wears green, we can know

Logical Expression

B=green ∧ A=¬red ⇒ A=blue,   A=blue ∧ B=green ⇒ C=red 

Code
colors = ["Red", "Blue", "Green"]                      
friends = {"Alice": None, "Bob": None, "Carol": None}  
…                                                      

Figure 1: LLMs may leverage non-NL thought format.

suggested by the concept of mentalese, a mental
language posited by linguists (Fodor, 1975; Pinker,
2003). Recent advancements in LLMs (OpenAI,
2023b; Google et al., 2023; Anthropic, 2023) have
been remarkable, leading to their increasingly so-
phisticated application in language agents (Yao
et al., 2023b; Park et al., 2023; Significant Gravi-
tas). These advancements, while impressive, pre-
dominantly utilize NL for both single-LLM reason-
ing via Chain-of-Thought (CoT) (Wei et al., 2022;
Kojima et al., 2022) and multi-agent communica-
tion (Wu et al., 2023; Park et al., 2023). Given
the human mind’s proficiency in transcending NL,
critical inquiries emerge: Is NL the optimal format
for LLMs in reasoning and inter-agent communi-
cation? If not, how should we determine the most
suitable format for these applications (Fig. 1)?

Recent research challenges the notion that NL is
the ideal intermediate format for LLM reasoning
and multi-agent communication. Emerging vari-
ants of CoT, such as Program-of-Thought (Chen
et al., 2022; Gao et al., 2023) and X-of-Thought
(Liu et al., 2023) have explored the use of alter-
native formats like code and mathematical equa-
tions, expanding the LLMs’ reasoning capabilities.
However, these approaches often integrate exter-
nal tools, where the alternative formats primarily
serve as a means to facilitate tool execution (e.g.,
prompting LLM to generate code and use code
interpreter execution result as the answer). This
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introduces complexity in discerning whether the
performance improvements are attributable to the
format itself or the accompanying tools. Addition-
ally, while the natural ambiguities and emotions
inherent in NL may align well with the nuances of
human communication, these may not be desired in
agent communication, where precision is more im-
portant. Nonetheless, current multi-agent research
predominantly utilizes NL (Li et al., 2023a; Wu
et al., 2023; Chen et al., 2023), with limited ex-
ploration of other potentially more accurate and
efficient communication formats.

In this study, we implement a straightforward
and effective mechanism that prompts the model
to favor non-NL formats for single-LLM reasoning
and multi-agent communication tasks. By adding
an instruction to the original CoT prompt that di-
rects LLMs to explore a non-NL format appropri-
ate for the current input, we showcase the LLMs’
capacity for autonomous format decisions. We ob-
serve that the LLMs can leverage many non-NL
formats such as ordered lists, logical expressions,
and markdown tables to reason better. Also, we ob-
serve that agents can use more structured language
as their communication language to enhance the ef-
ficiency of multi-agent collaboration. In particular,
our analyses across various single-LLM reason-
ing tasks demonstrate an average improvement in
performance by 3.3-5.7%. For multi-agent com-
munication, we observe a reduction in token usage
by up to 72.7% without sacrificing effectiveness.
These results highlight the considerable potential
of non-NL formats in amplifying the reasoning ca-
pabilities and communicative efficiency of LLMs.

Our investigation further extends to a compre-
hensive analysis revealing that LLMs can devise
a suitable format from a set of task-specific ex-
amples. Using the fixed devised format for the
whole task also leads to better answers. More-
over, we show that the formats devised by one
LLM are transferable to another LLM. And for the
multi-agent communication format, we find that
the format adopted by LLMs mirrors those of tra-
ditional Agent Communication Languages (ACLs)
like KQML (Finin et al., 1994), highlighting their
clarity, brevity, and structured format for efficient
exchanges. Empirically, our approach significantly
reduces token usage compared to both ACLs and
NL without sacrificing performance. Our work
underscores the efficacy of non-NL formats in ad-
vancing LLM reasoning and communication.

2 Related Work

LLM Reasoning. LLMs have exhibited impressive
reasoning performance, especially when employ-
ing Chain-of-Thought (CoT) technique (Wei et al.,
2022; Kojima et al., 2022). CoT requires LLMs to
articulate their reasoning process step-by-step be-
fore arriving at a final answer. Building on the CoT
framework, variants have been proposed. Program-
of-Thought (PoT) (Chen et al., 2022; Gao et al.,
2023) prompts models to generate code as thought,
and offloads the answer generation to a code inter-
preter. X-of-Thought (Liu et al., 2023) integrates
CoT, PoT and Equation-of-Thought, dynamically
ensembling these methods for improved reasoning.
Tree-of-Thought (Yao et al., 2023a) employs depth
and breadth-first search techniques to produce high-
quality reasoning chains. While some CoT variants
explore formats beyond NL for reasoning, the cho-
sen formats’ improvements are obscured by the
concurrent use of supplementary tools such as code
interpreters, blurring the distinction between for-
mat efficacy and tool execution. We focus on the
format itself, investigating whether alternative for-
mats to NL improve the CoT performance.

Multi-Agent Problem Solving. Advances in
Large Language Models (LLMs) have led to the
development of autonomous agents like Auto-
GPT (Significant Gravitas) and OpenAI Assis-
tant (OpenAI, 2023a), demonstrating success in
diverse tasks (Shinn et al., 2023; Mialon et al.,
2023; Zhou et al., 2023; Boiko et al., 2023). Re-
cent research extends this to multi-agent systems
for collaborative problem-solving (Du et al., 2023;
Osika, 2023; Hong et al., 2023; Qian et al., 2023).
CAMEL (Li et al., 2023a) explores collaborative
problem-solving between two agents through role-
playing. ChatEval (Chan et al., 2023) and PRD (Li
et al., 2023b) assess model responses using multi-
agent debates. AgentVerse (Chen et al., 2023) intro-
duces a comprehensive framework for multi-agent
collaboration, highlighting emergent inter-agent
behaviors. However, the alternative formats of
multi-agent communication remains underexplored
and NL is directly adopted across various research.
Pham et al. (2023) explores agent communication
with hidden states, but is limited to agents with the
same open-source LLM. Our work analyze com-
munication formats for both homogeneous and het-
erogeneous LLMs.

10627



Single-LLM Reasoning Multi-Agent Communication

Task

Chat

Alice Bob

Alice: Hi Bob! Now we 
have a task …
Bob: Hi Alice! I think …
…

Alice Bob

Chat
Alice: @Bob. Requesting 
info on the xxx
Bob: [A JSON dict]
…

!

 Features
AutoForm Prompt

Communicate in 
non-NL format

Clarity Brevity Structured

The answer is

The answer is

Response

ResponseTask

The answer is

The answer is

Response

Response

Use other
format!

AutoForm Prompt

Possible Alternative Media
Mathematical Equation Logical Operator
Markdown Language Code

…

Plain CoT

AutoForm
AutoForm

Thought
First, we can …
Next, we should …

(written in natural language)

Thought
We can use logical operators 
to solve the problem.

(written in logical experssion)

Figure 2: Overview of single-LLM reasoning and multi-agent communication using plain CoT versus the CoT with
AutoForm. The left side depicts the shift from natural language to alternative formats in single-LLM reasoning,
while the right side illustrates the enhanced efficiency in multi-agent communication.

3 Method

3.1 Problem Formulation

Consider an LLM parameterized by θ, denoted as
pθ. In response to a task description x and a prompt
p, CoT prompting initially guides the model to gen-
erate thought t = {ti} utilizing a thought format
mt. While this format is often unspecified and
defaults to natural language, alternative formats
are feasible. The LLM then formulates an answer
y = {yj} based on t. This process is mathemati-
cally expressed as sampling from the conditional
probability distribution:

pθ(y, t|p,x,mt) = pθ(y|t,p,x,mt)pθ(t|p,x,mt),

pθ(t|p,x,mt) =
∏

i

pθ (ti|t<i,p,x,mt) ,

pθ(y|t,p,x,mt) =
∏

j

pθ (yi|y<i, t,p,x,mt) .

(1)

In multi-agent scenarios, we extend this formula-
tion to encompass communication among multiple
LLMs, each characterized by θk. We consider a
set of LLMs {pθk} collaborating on a task. Com-
munication among these agents utilizes format mc,
which can be NL or other alternative formats. This
communication is formulated as:

pθk (yk, t|Y,p,x,mc,mt) =

pθk (yk|t,Y,p,x,mc) · pθk (t|Y,p,x,mt),
(2)

here we slightly abuse the notation and use yk to
denote the response generated by agent k, and Y
denote the communication history.

3.2 Format Choosing for LLMs

Building upon the framework delineated in Sec-
tion 3.1, our work investigates the effectiveness of

allowing the LLMs to decide the thought and com-
munication format before actually starting reason-
ing or communicating. At the heart of our method
is the exploration of alternative formats beyond
natural language. We hypothesize that various for-
mats, such as structured data formats (e.g., JSON,
markdown tables, lists) or symbolic representations
(e.g., logical expressions, mathematical equations),
can potentially yield more precise and effective
reasoning and streamline communication.

We employ a simple yet effective prompting
mechanism, where the LLMs are prompted to
select and utilize the format most conducive to
the task at hand, which we term as AutoForm
(Autonomously-Decided Format). The overview
of AutoForm is illustrated at Fig. 2. Specifically,
for single-LLM reasoning, we add an instruction
encouraging the use of non-NL formats to the orig-
inal CoT prompt. In multi-agent scenarios, a sim-
ilar instruction for format decision is also added.
In this way, the LLMs implicitly determine and
use the thought format m∗

t = pθ(x,pt) for single-
LLM reasoning and the communication format
m∗

c = pθ(x,pc) for multi-agent communication,
where pt and pc include instructions for format
decision.

4 Experiments

4.1 Experimental Settings

Single-LLM Reasoning. In a preliminary exper-
iment, we prompt various LLMs to use formats
other than NL for solving reasoning problems. The
results, shown in Table 6, reveal significant vari-
ability in performance across different formats. For
instance, GPT-3.5 exhibited a 66.8% performance
gap between using an ordered list and a multi-level
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Model Logic Grid Coin Flip Info Essen MM QA AQuA Average

GPT-3.5 CoT 46.7±1.6 23.1±1.0 32.3±3.2 24.9±0.8 60.9±1.2 41.1±1.8

+AutoForm 48.0±3.9 39.4±1.1 36.7±3.2 26.8±0.6 63.7±0.7 46.0±2.3

Gemini Pro CoT 49.7±0.2 47.5±0.2 34.3±0.7 28.1±0.7 56.3±0.6 43.2±0.5

+AutoForm 51.2±0.8 57.6±0.7 39.2±1.8 31.3±1.1 60.0±0.4 47.9±1.1

GPT-4 CoT 61.8±1.6 93.4±1.0 78.4±2.5 38.4±1.1 79.1±0.3 71.8±1.5

+AutoForm 65.8±2.2 98.4±0.2 76.9±2.5 41.7±0.9 80.4±0.8 74.1±1.6

Table 1: Comparative performance of single LLM reasoning across various datasets. "Information Essentiality"
dataset is abbreviated as "Info Essen," and "Minute Mysteries QA" is referred to as "MM QA" for conciseness.

list, highlighting the intrinsic suitability of specific
formats for different tasks.

However, in practical applications, selecting op-
timal formats for each task may be impractical. To
address this, we conduct a comprehensively eval-
uate the impact of automatically chosen thought
formats on LLMs’ reasoning performance. We se-
lect reasoning benchmarks covering different types
of reasoning, including logical reasoning (Logic
Grid Puzzle (Srivastava et al., 2022) and Informa-
tion Essentialy (Srivastava et al., 2022)), mathemat-
ical reasoning (AQuA (Ling et al., 2017)), causal
reasoning (Minute Mysteries QA (Srivastava et al.,
2022)) and symbolic reasoning (Coin Flip (Wei
et al., 2022)). For all these tasks, we require the
LLMs to generate the answer in a particular format,
and we extract the answer with a written regular
expression. The average accuracy and the standard
deviation of each dataset over 3 runs are reported
on most of the datasets. For more details on the
experimental settings, please refer to Appendix A.

Multi-Agent Communication. To measure
whether alternative formats can streamline commu-
nication, we consider scenarios where two agents
with different knowledge or contexts are tasked
with answering a question. The answer to the ques-
tion should be derived from the knowledge of only
one of the agents, or both agents’ knowledge col-
lectively, therefore requiring information exchange.
The two agents speak in turn to discuss and give
the final answer. To create such scenarios, we uti-
lize three existing datasets: Hotpot QA (Yang et al.,
2018), Wiki Hop (Welbl et al., 2018), and Narrative
QA (Kociský et al., 2018). Hotpot QA and Wiki
Hop are two multi-hop QA datasets, which require
multiple sentences or paragraphs to deduce the fi-
nal answer. We randomly assign the text segments
provided in the datasets to two different agents.
Communication is thus needed to derive the cor-
rect answer. We also explore assigning each agent

part of the supporting facts, thus needing more
communication to derive the answer. Narrative
QA requires the model to read the whole book and
answer a question. The length of a book often ex-
ceeds the context limit of the LLMs. We split the
books into nearly equal sizes for the two agents
and ask them to answer the question. While sup-
porting facts in Narrative QA are not guaranteed to
reside in different segments, this division still intro-
duces critical challenges: agents must identify who
possesses the necessary information, necessitating
communication. For evaluation, we use F1 score
as the primary metric. More details are elaborated
in Appendix A.

Research Questions. To comprehensively ex-
plore the potential of LLMs in selecting suitable
formats for both single-agent reasoning and multi-
agent communication, we conduct an in-depth
analysis addressing six pivotal research questions
(RQs). These questions aim to unravel the intrica-
cies of format selection by LLMs and its impact on
task performance across various scenarios:

• RQ1: Can LLMs select the suitable formats au-
tonomously? (Section 4.2)

• RQ2: What formats are chosen in single-LLM
reasoning? (Section 4.3)

• RQ3: Can LLMs devise a general format for a
task based on some task inputs? (Section 4.4)

• RQ4: Is the decided format transferable between
different LLMs? (Section 4.5)

• RQ5: What are the features of the formats used
in multi-agent communication? (Section 4.6)

• RQ6: Does the autonomously determined multi-
agent communication format align with conven-
tional agent communication languages such as
KQML (Finin et al., 1994)? (Section 4.7)
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Wiki Hop Hotpot QA Narrative QA

Model F1 # Tokens ∆Tokens F1 # Tokens ∆Tokens F1 # Tokens ∆Tokens

GPT-4 + GPT-3.5 0.53 281.5 - 0.64 345.5 - 0.39 178.3 -
+AutoForm 0.54 255.0 -9.4% 0.70 94.3 -72.7% 0.43 119.4 -33.0%

GPT-4 + GPT-4 0.53 237.5 - 0.67 145.2 - 0.43 240.7 -
+AutoForm 0.55 146.2 -38.4% 0.76 115.0 -20.8% 0.43 141.7 -41.1%

Table 2: Comparative performance in multi-agent communication across various QA datasets. The table highlights
RougeL scores, with better performance in different model pairing settings indicated in bold. The ∆Tokens column
quantifies the token reduction achieved by the AutoForm method.

4.2 RQ1: The Capability of LLMs on
Selecting Suitable Format

Single-LLM Reasoning. The comparative effi-
cacy of the AutoForm approach over the conven-
tional Chain-of-Thought (CoT) methodology in
single-LLM reasoning tasks is encapsulated in Ta-
ble 1. We observe clear performance improve-
ments when employing AutoForm across different
datasets, compared to the baseline CoT method.

For GPT-3.5, the implementation of AutoForm
leads to a significant improvement in accuracy, par-
ticularly notable in the Coin Flip dataset, where
accuracy escalates from 22.2% to 38.0%. This
substantial increase highlights the model’s en-
hanced ability in symbolic reasoning. Across
other datasets, AutoForm yields consistent en-
hancements, with increases generally ranging be-
tween 3% to 5%, culminating in an overall aver-
age performance boost of 5.4%. Similarly, for
Gemini Pro, AutoForm achieves an average per-
formance enhancement of 5.7%. GPT-4 also bene-
fits from AutoForm, with an average performance
uplift of 3.3% across all tasks. These consistent
improvements across various datasets demonstrate
the method’s model-agnostic robustness and the
efficacy of utilizing alternative formats in reason-
ing tasks. It also suggests that alternative formats,
apart from NL, can aid LLMs in task resolution. It
is just that without explicit reminders, the LLMs
do not explore alternative formats.

Multi-Agent Communication. The outcomes
of our multi-agent communication experiments, de-
tailed in Table 2, provide valuable insights into the
efficiency and effectiveness of utilizing alternative
communication formats in collaborative environ-
ments. In this experiment, we experiment with
different model pairings to explore this robustness
more comprehensively. Since the initial speaking
agent often sets the tone for the communication

format, we vary the speaking order in pairings of
heterogeneous models, e.g., GPT-4 + GPT-3.5 in
the table indicates GPT-4 is the initiator. Due to
page limit, we place results where GPT-3.5 initiates
the conversation, and where the supporting facts are
split and distributed to two agents at Appendix B.

A key finding from our experiments is the no-
table efficiency achieved through AutoForm, as ev-
idenced by the substantial reduction in token usage
across diverse model pairings and speaking orders.
This efficiency, quantified in the ∆Tokens column,
illustrates the capability of LLMs to move beyond
their typical NL to adopt more concise and effi-
cient communication formats. This is particularly
evident in the Hotpot QA dataset with the GPT-4
and GPT-3.5 pairing, where we witness a token
reduction reaching 72.7%. On most of the other
datasets, AutoForm also obtains substantial token
reduction. These findings imply that LLMs, though
extensively trained on NL, are capable of exploring
and employing alternative formats to enhance com-
munication efficiency. Detailed case studies further
elucidating the features of the chosen formats will
be presented in Section 4.6.

Furthermore, the effectiveness of the multi-agent
communication facilitated by AutoForm, as gauged
by F1 scores, is found to be largely comparable
to, and occasionally exceeding, that of natural
language-based interactions. This is especially true
when GPT-4 initiates the conversation, suggesting
that more advanced LLMs possess a better ability
to select communication formats that strike a bal-
ance between conciseness and clarity. Conversely,
we show in Appendix B that with GPT-3.5 as the
initiator, despite the similar notable efficiency in
token usage, the performance is generally akin to
or slightly below that achieved with natural lan-
guage. These observations highlight the intricate
challenge of selecting an appropriate communica-
tion format, a task that proves demanding even for
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sophisticated LLMs, and the importance of balanc-
ing brevity with the need to preserve the integrity
of the communicative content.

4.3 RQ2: Formats Chosen in Single-LLM
Reasoning

In addressing RQ1, we investigate the formats
selected from LLMs when tasked with reason-
ing. This analysis is pivotal in understanding how
LLMs, when granted the autonomy to choose, navi-
gate away from the default NL format to potentially
more efficient alternatives.

We analyze a randomly sampled set of 50 ex-
amples from each dataset, investigate the reason-
ing traces produced with AutoForm, and manually
count the number of appeared formats. Fig. 3(a-
c) display the distribution of formats chosen by
Gemini Pro, GPT-3.5 and GPT-4, and Fig. 3(d)
displays their combined preferences across vari-
ous tasks. The data indicates a notable diversity in
format selection by LLMs. A shift towards struc-
tured formats, such as lists, logical expressions, and
markdown tables is observed. These formats are
particularly favored in tasks that demand logical
reasoning, offering clearer and more concise data
representation, as illustrated in Fig. 3(d).

4.4 RQ3: Generalization of Format Selection
Based on Task Inputs

An examination of Fig. 3(d) reveals a discernible
variation in the LLMs’ format preferences across
different tasks. This variation aligns with the expec-
tation that the optimal format would naturally differ
between tasks, each with its unique requirements.
In addressing RQ2, we probe whether LLMs are
capable of identifying a general format suitable
for a given task based on a subset of inputs, and
then consistently applying this format for problem-
solving. In AutoForm, as delineated in Section 3.2,
LLMs typically select a format implicitly for each
instruction on a case-by-case basis. Nonetheless, it
stands to reason that certain tasks may be inherently
conducive to a specific format. To investigate this
hypothesis, we introduce the two-step AutoForm.
This approach tasks an LLM with first determining
the most efficient format and subsequently utiliz-
ing that format in the CoT problem-solving stage.
That is, we turn the implicit format decision into an
explicit step, which mathematically follows Eq. (1)
instead of merging the two steps.

The two-step AutoForm experiments with two
distinct settings: 1) Instance-Based, where the

LLM selects a format for each instruction, and 2)
Task-Based, where the LLM deduces a general for-
mat for the entire task by analyzing 5 inputs from
the task. Note that, unlike few-shot prompting, the
Task-Based setting does not provide answers within
the inputs, and these inputs are only utilized during
the format decision step.

The results are detailed in Table 3. The Task-
Based setting demonstrates that both GPT-3.5 and
Gemini Pro can effectively generalize a thought
format from a limited set of inputs within a task,
and often outperforming the Instance-Based setting.
In contrast, GPT-4 shows similar performance lev-
els in both Task-Based and Instance-Based settings,
suggesting that its advanced capabilities may afford
it greater flexibility in format usage. These findings
indicate that LLMs, particularly less sophisticated
ones like GPT-3.5, may benefit from exposure to
multiple inputs from a task to better generalize an
effective thought format. This ability of LLMs to
generalize the format for a task makes the Auto-
Form approach more practical since the format can
be identified only once for a specific task.

4.5 RQ4: Transferability of Format Across
Different LLMs

This subsection delves into RQ3, the transferability
of the format across LLMs. The concept of format
transferability is crucial in understanding the uni-
versality of formats decisions made by LLMs and
their applicability across various models. Instead
of using the same model for format selection and
problem-solving (homogeneous setting) as we have
done in Section 4.4, we explore the heterogeneous
setting of the two-step AutoForm, where different
models are employed for the two steps.

The results are presented in the last group of Ta-
ble 3. Generally, the format is transferable, but may
lead to slightly inferior performances compared to
the homogeneous setting. For example, transfer-
ring the format decided by GPT-4 to GPT-3.5 or
Gemini Pro leads to a decrease compared to the
homogeneous setting for the two LLMs in most of
the tasks except for Coin Flip. On the other hand,
when transferring the format decided by GPT-3.5
to GPT-4, the results are generally comparable to
the homogeneous setting for GPT-4. For informa-
tion essentiality, the format selected by GPT-3.5
is generally less efficient, leading to incomplete
problem-solving processes. For other tasks, the
format generated by GPT-3.5 proves adequate and
is easily interpreted by GPT-4, resulting in simi-
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Figure 3: Format distribution chosen by Gemini Pro (a), GPT-3.5 (b) and GPT-4 (c), and the overall format
distribution across tasks from both models (d).

Model Logic Grid Coin Flip Info Essen MM QA AQuA Average

GPT-3.5 (Instance-Based) 48.0 49.2 39.7 26.1 66.5 45.9(+7.5%)

GPT-3.5 (Task-Based) 51.0 62.8 42.6 28.1 65.0 49.9(+11.5%)

Gemini Pro (Instance-Based) 39.5 44.8 35.3 27.1 59.4 41.2(+2.5%)

Gemini Pro (Task-Based) 41.5 47.8 35.3 28.6 59.4 42.5(+3.8%)

GPT-4 (Instance-Based) 71.5 100.0 76.5 41.4 78.3 73.5(+3.2%)

GPT-4 (Task-Based) 70.0 99.8 75.0 41.4 79.5 73.1(+2.8%)

GPT-4 ⇒ GPT-3.5 (Task-Based) 47.5 83.0 35.3 23.2 59.4 49.7(+11.2%)

GPT-4 ⇒ Gemini Pro (Task-Based) 40.0 74.6 25.0 25.6 47.2 42.5(+3.8%)

GPT-3.5 ⇒ GPT-4 (Task-Based) 65.5 98.6 72.1 42.9 79.5 71.7(+1.3%)

Table 3: Comparative performance of two-step AutoForm with single LLM reasoning across various datasets. The
notation model1 ⇒ model2 denotes using model1 for format selection, and model2 for problem-solving. Average
performance improvements over CoT results, as presented in Table 1, are denoted with a subscript.

lar performances to the homogeneous setting for
GPT-4.

4.6 RQ5: Features of Communication Format

In addressing RQ4, this subsection investigates the
characteristics of the formats used by language
agents in multi-agent communication scenarios.
Our goal is to identify key attributes contributing to
efficient communication by examining the formats
used during their interactions.

We analyze 50 random interaction logs for each
dataset and present some cases in Fig. 4. Despite
some retained characteristics of NL, the communi-
cation formats decided via AutoForm display dis-
tinct features:

Clarity and Structure. An important feature
of the selected formats is an emphasis on clar-
ity. LLMs consistently favor formats facilitating
unambiguous and straightforward communication,
which is vital in our multi-agent scenarios. In these
scenarios, agents possess divergent knowledge sets,
making the clear exchange of this distinct infor-
mation indispensable. Structured formats, which
provide an organized method of presenting informa-
tion, are also prevalent. These formats enhance the
comprehensibility and accessibility of the content.
Contrasting this with the use of NL, we observe that
the LLM-decided formats tend to be more direct

and clear, effectively reducing redundancy.
Brevity and Efficiency. Another key feature

is the focus on brevity, enhancing communication
efficiency. Formats chosen by LLMs often omit
elements like pleasantries or emotive expressions,
resulting in concise exchanges. This brevity con-
serves computational resources and concentrates
dialogue on the task at hand, optimizing the com-
munication process for faster, more efficient infor-
mation exchange. This is particularly beneficial
in scenarios requiring rapid and effective decision-
making.

4.7 RQ6: Alignment with Conventional Agent
Communication Languages

RQ5 probes the extent to which the communica-
tion formats determined by LLMs using AutoForm
align with traditional Agent Communication Lan-
guages (ACLs), such as KQML (Finin et al., 1994)
and FIPA-ACL (FIPA, 2001). These ACLs have
been instrumental in structuring communication
between intelligent agents to foster cooperation
and coordination. A typical KQML message, as
shown below, exemplifies the structured nature of
traditional ACLs:
(ask-one
:sender joe
:content (PRICE IBM ?price)
:receiver stock-server
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Question 1: Are Darren Benjamin Shepherd and Rémi Lange 
both American?

Emily

I have information on Rémi Lange, who is a French film director, […introducing Rémi 
Lange]. But I don’t have information on Darren Benjamin Shepherd. Do you have any 
details on him, Fiona?

Darren Benjamin Shepherd is an American screenwriter, […introducing Benhamin 
Shepherd]. Answer: no

Answer: No

@Fiona: ContextCheck: Darren 
Benjamin Shepherd nationality?

@Emily: Darren Benjamin Shepherd 
is American. Answer: Yes

Emily Fiona

Answer: No
@Emily: Discrepancy Detected: 
Provide context for Rémi’s nationality

@Fiona: ContextProvided: Rémi 
Lange is French. Answer: No Answer: No

Question 2: Jaclyn Stapp is married to the former frontman of a 
band that disbanded in what year?

Emily

Fiona, based on the context provided to me, Jaclyn Stapp is married to Scott Stapp, who 
was […introducing Scott]. However, the context does not specify the year that Creed 
disbanded. Do you have any information on when Creed disbanded in your context?

Hi Emily, yes, I can provide you with the information you're looking for. Creed disbanded 
in 2004. Scott Stapp, […introducing Scott]. We can now give our final answer.

Answer: 2004

@Fiona: Requesting information on the band that Jaclyn Stapp's husband, Scott Stapp, 
was a former frontman of and the year that band disbanded.

@Emily: Scott Stapp was the former frontman of the band Creed, which disbanded in 
2004. 

Emily

Answer: 2004

Answer: 2004

Answer: 2004

(b) Brevity and Efficiency(a) Clarity and Structured

Answer: No

Figure 4: Multi-agent communication examples. The top panel illustrates a traditional natural language conversation,
and the bottom panel shows a conversation using AutoForm. Necessary information related to the question is
marked in green , redundant information is marked in red , and speech-act-related phrases are marked in orange .

:reply-with ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

Our examination of the communication patterns
emerging from AutoForm reveals an interesting
resemblance to these structured elements. As de-
picted in Fig. 4, LLMs frequently employ a struc-
tured format where "@" denotes the receiver, verb
phrases such as "ContextCheck" indicate the per-
formative (the "ask-one" in the above example),
and a succinct text string encapsulates the content.
This structuring mirrors the composition of ACL
messages, where each part serves a specific func-
tion in the communication process.

Intrigued by this similarity, we conduct an exper-
iment where LLMs are prompted to communicate
using a format similar to KQML:
(performative
:content ...
:receiver ...)

The results of this experiment on two GPT-4-
based agents are presented in Table 4. We have two
settings, one prompts the LLMs to use the exact
KQML format as presented above, and the other
setting uses the JSON version of KQML format,
considering that LLMs may be more adept at JSON.
While both settings show worse or comparable per-
formance to AutoForm in terms of F1, the number
of tokens consumed is larger than AutoForm. This
finding suggests that while LLMs can indeed emu-
late the formality of traditional ACL formats, the
AutoForm approach optimizes the communication
by enhancing clarity and structure, yet concurrently
reduces token usage.

These results highlight two key implications.
First, AutoForm can generate communication pat-

Hotpot QA Wiki Hop Narrative QA

Format F1 #Tokens F1 #Tokens F1 #Tokens

KQML 0.74 313.8 0.53 368.1 0.27 343.3
JSON 0.69 346.0 0.54 291.4 0.21 385.2

AutoForm 0.74 115.0 0.53 146.2 0.43 141.7

Table 4: Multi-agent communication performances us-
ing conventional ACL format.

terns similar to established ACLs. Second, it ef-
ficiently distills these traditional formats into a
more concise form, conserving computational re-
sources while maintaining communicative effec-
tiveness. This balance of clarity, structure, and
brevity makes AutoForm a powerful tool for facili-
tating intelligent agent communication in various
contexts.

5 Conclusion

In this work, we demonstrate that LLMs can au-
tonomously determine suitable non-NL formats
for reasoning and communication using the Aut-
oForm prompting method. Our analyses address
six key research questions, showing that LLMs can
generalize a reasoning format from task-specific
examples and transfer it across different models.
Additionally, the communication formats gener-
ated by LLMs resemble traditional ACLs, offer-
ing both precision and efficiency. These insights
enhance our understanding of LLMs’ capabilities
beyond NL, improving LLM reasoning and inter-
agent communication.
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Limitations

Despite we have shown many kinds of formats
can facilitate LLMs reasoning and communication,
the scope of alternative formats explored is still
not exhaustive. The potential of numerous other
formats and their specific applications to various
LLM architectures warrants further investigation.

Moreover, the generalization of chosen formats
across tasks, while promising, shows variability in
effectiveness depending on the complexity of the
task and the specific LLM used. This variability
highlights the nuanced nature of format suitability
and its impact on task performance, suggesting that
further exploration is necessary to fully harness the
capabilities of alternative formats.
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A Experimental Settings

In this section, we introduce the details of our ex-
perimental settings.

A.1 Models
For OpenAI’s models, we use gpt-3.5-turbo-1106
and gpt-4-1106-preview. For Gemini pro, we use
the Gemini pro 1.0 in 2024.1.

A.2 Dataset Pre-Processing
The statistics of the processed data are presented
at Table 5. We now elaborate the dataset download
and pre-process process.

Single-LLM Reasoning. For Logic Grid, Infor-
mation Essentiality and Minute Mysteries QA that
are from Big-Bench, we download the dataset
from the official repo1. For Coin Flip, we down-
load the dataset from https://huggingface.co/
datasets/skrishna/coin_flip, and use the first
500 examples in the test set. For AQuA, we down-
load the dataset from https://huggingface.co/
datasets/aqua_rat/ and use its test set.

Multi-Agent Communication. For the Hotpot
QA dataset, we adhere to the methodology out-
lined by Reflexion (Shinn et al., 2023), obtaining
the dataset from their repository 2. In the case of
Wiki Hop, we acquire it through the Huggingface
Datasets platform, from which we randomly se-
lected 100 examples from its validation set for our
study. For the Narrative QA dataset, also sourced
from Huggingface Datasets, we note inconsisten-
cies in the quality of the e-books included. To
ensure higher data quality, we exclusively utilize e-
books from Project Gutenberg by checking whether
the e-book starts with "Project Gutenberg’s". Fur-
thermore, considering the context length limitation
of 16k tokens in GPT-3.5, we exclude e-books ex-
ceeding 30k tokens. This exclusion is to enable
splitting the content into two segments, each fit-
ting within the GPT-3.5 context limit. From this
refined dataset, we randomly chose 100 examples
for analysis.

A.3 Metrics
For single-LLM reasoning, we report the accuracy
by comparing the generated answer with the label.
For multi-agent communication, we report the F1
score of the generated answer.

1https://github.com/google/BIG-bench
2https://github.com/noahshinn/reflexion/tree/

main/hotpotqa_runs/data

B Additional Experimental Results for
Multi-Agent Communication

Due to constraints on the paper length, the com-
prehensive experimental results, including those
where GPT-3.5 serves as the initiating agent, are
detailed in Table 8. Our analysis reveals that the
performance of AutoForm tends to be suboptimal
when compared to the baseline in scenarios initi-
ated by GPT-3.5. A closer examination of these
interactions indicates that GPT-3.5, when merely
prompted to employ non-NL formats without ad-
ditional guidance, frequently produces overly suc-
cinct responses, or simply gives a hallucinated an-
swer, resulting in diminished performance. This
observation underscores the need for further re-
search into optimizing prompts for less advanced
LLMs to effectively utilize non-NL formats for
communication, representing a promising avenue
for future exploration.

Additionally, we conduct experiments with a
specific setting for HotpotQA to evaluate the per-
formance of LLMs when supporting facts are dis-
tributed between two agents. This setting, termed
separate context, ensures that the supporting facts
are divided and distributed between the agents, ne-
cessitating effective communication to aggregate
the information and derive the correct answer.

The results presented in Table 7 reveal signifi-
cant insights into the performance of LLMs under
the separate context setting. The application of
the AutoForm mechanism shows a distinct impact
on both models. For GPT-3.5, the RougeL score
slightly decreases from 0.62 to 0.53, with a corre-
sponding 22.4% reduction in the number of tokens
generated. In contrast, the GPT-4 models exhibit an
increase in performance with the AutoForm mech-
anism, achieving a RougeL score of 0.69 and a
33.8% reduction in token usage. This improvement
highlights the effectiveness of AutoForm in not
only maintaining but enhancing the performance of
more advanced models while optimizing resource
utilization.
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Dataset # Examples Input Output Category License

Single-LLM Reasoning
Logic Grid Puzzle 200 Clues + Question Number Logical Reasoning Apache License 2.0
Information Essentiality 68 Question + Statement Options Option Number Logical Reasoni Apache License 2.0
AQuA 254 Mathematical Question + Options Option Number Mathematical Reasoning Apache License 2.0
Minute Mysteries QA 203 Story + Question + Options Option Number Causal Reasoning Apache License 2.0
Coin Flip 500 Action Sequence Yes / No Symbolic Reasoning MIT License

Multi-LLM Communication
HotPot QA 100 Passages + Question Free Text Multi-Hop QA CC BY-SA 4.0
Wiki Hop 100 Sentences + Question Free Text Multi-Hop QA CC BY-SA 3.0
Narrative QA 100 Book + Question Free Text QA Apache License 2.0

Table 5: The datasets we use in our experiments.

Dataset Model Math
Equation

Unordered
List

Ordered
List

Markdown
Table

Multi-level
List

Logical
Expression

Logic
Grid

GPT-3.5 50.0 47.0 46.0 48.5 45.0 41.0
GPT-4 58.0 65.0 59.0 55.0 62.0 59.0

Gemini Pro 42.0 50.5 48.0 49.0 48.0 49.0

Coin
Flip

GPT-3.5 71.0 39.0 86.0 66.0 19.2 48.0
GPT-4 75.0 95.0 100.0 99.0 98.0 71.4

Gemini Pro 47.0 61.6 60.4 63.4 56.4 59.6

Info
Essen

GPT-3.5 22.0 30.8 30.8 29.4 30.8 30.8
GPT-4 73.5 73.5 76.4 73.5 76.4 75.0

Gemini Pro 45.6 29.4 32.4 29.4 44.1 38.2

MM QA
GPT-3.5 22.2 22.2 23.2 27.1 22.7 20.2
GPT-4 39.9 41.9 37.7 36.9 42.4 37.9

Gemini Pro 29.6 27.6 25.6 27.6 28.1 24.1

AQuA
GPT-3.5 63.4 62.2 63.0 56.7 59.8 66.0
GPT-4 76.4 72.4 80.3 78.0 78.0 79.8

Gemini Pro 56.7 57.5 59.8 47.2 55.5 56.3

Table 6: Effectiveness of various formats across different models and datasets.

Hotpot QAseparate context

Model F1 # Tokens ∆Tokens

GPT-3.5 + GPT-3.5 0.62 369.3 -
+AutoForm 0.53 286.6 -22.4%

GPT-4 + GPT-4 0.65 151.0 -
+AutoForm 0.69 100.0 -33.8%

Table 7: Performance on HotpotQA under the separate context setting. The supporting facts are distributed between
two agents, necessitating inter-agent communication for aggregating information and deriving the correct answer.
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Wiki Hop Hotpot QA Narrative QA

Model RougeL # Tokens ∆Tokens RougeL # Tokens ∆Tokens RougeL # Tokens ∆Tokens

GPT-3.5 + GPT-3.5 0.53 192.6 - 0.53 499.7 - 0.31 140.0 -
+AutoForm 0.49 163.9 -14.9% 0.48 236.1 -52.8% 0.30 35.5 -74.6%

GPT-3.5 + GPT-4 0.56 246.8 - 0.71 333.9 - 0.33 208.8 -
+AutoForm 0.57 200.3 -18.8% 0.62 102.3 -69.4% 0.26 125.4 -39.9%

GPT-4 + GPT-3.5 0.53 281.5 - 0.64 345.5 - 0.39 178.3 -
+AutoForm 0.54 255.0 -9.4% 0.70 94.3 -72.7% 0.43 119.4 -33.0%

GPT-4 + GPT-4 0.53 237.5 - 0.67 145.2 - 0.43 240.7 -
+AutoForm 0.55 146.2 -38.4% 0.76 115.0 -20.8% 0.43 141.7 -41.1%

Table 8: Comparative performance in multi-agent communication across various QA datasets. The table highlights
RougeL scores, with better performance in different model pairing settings indicated in bold. The ∆Tokens column
quantifies the token reduction achieved by the AutoForm method.

PROMPT FOR COIN FLIP
CoT:
Question:
${task_description}

At the end of your response, you must give your answer in the form of "the answer is: no" or "the answer is: yes". Let’s think
step-by-step.

AutoForm:
Question:
${task_description}

To enhance clarity and eliminate ambiguities inherent in natural language, consider employing more structured and concise
forms of communication for your step-by-step solutions. Suitable formats include code, pseudocode, JSON, markdown tables,
logical operators, or mathematical equations.

At the end of your response, you must give your answer in the form of "the answer is: no" or "the answer is: yes". Remember to
be concise and accurate.

Table 9: Prompt for Coin Flip

PROMPT FOR LOGIC GRID
CoT
—
${task_description}
—

At the end of your response, you must give your answer in the form of "the answer is: {number}", where {number} is the answer
number. Now solve the problem step-by-step. Use as few words as possible.

AutoForm
—
${task_description}
—

To enhance clarity and eliminate ambiguities inherent in natural language, consider employing more structured and concise
forms of communication for your step-by-step solutions. Suitable formats include code, pseudocode, JSON, markdown tables,
logical operators, or mathematical equations.

At the end of your response, you must give your answer in the form of "the answer is: {number}", where {number} is the answer
number. Remember to be concise and accurate.

Table 10: Prompt for Logic Grid

10638



PROMPT FOR MINUTE MYSTERIES QA
CoT:
—
${task_description}
—

Now solve the problem step-by-step. At the end of your response, you must give your answer in the form of "the correct option
is: number", where number is the index of the chosen option.

AutoForm:
—
${task_description}
—

To enhance clarity and eliminate ambiguities inherent in natural language, consider employing more structured and concise
forms of communication for your step-by-step solutions. Suitable formats include code, pseudocode, JSON, markdown tables,
logical operators, or mathematical equations.

Now solve the problem step-by-step. At the end of your response, you must give your answer in the form of "the correct option
is: number", where number is the index of the chosen option.

Table 11: Prompt for Minute Mysteries QA

PROMPT FOR AQUA
CoT:
Solve the problem presented below:
—
${task_description}
—

RESPONSE GUIDELINES:
1. Think step by step.
2. Concluding with the Answer: End your response with "Answer: {answer}", where {answer} is the final result of your
problem-solving process. The {answer} should be a single capital letter.

AutoForm:
Solve the problem presented below:
—
${task_description}
—

RESPONSE GUIDELINES:
1. Initial State Representation: Begin by providing a clear and detailed representation of the initial state or conditions of the
problem.
2. Step-by-Step Solution Process: Progressively update the state representation as you work through each step of the solution.
This should include all logical reasoning and calculations leading to the final answer.
3. Concluding with the Answer: End your response with "Answer: {answer}", where {answer} is the final result of your
problem-solving process. The {answer} should be a single capital letter.

Table 12: Prompt for AQuA
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PROMPT FOR INFORMATION ESSENTIALITY
3.5+CoT:
Solve the problem presented below:
—
${task_description}
—

RESPONSE GUIDELINES:
1. Think step by step.
2. Your answer should be ended with "Answer: {answer}" where {answer} is the answer to the problem.

3.5+AutoForm:
Solve the problem presented below:
—
${task_description}
—

RESPONSE GUIDELINES:
1. Initial State Representation: Begin by providing a clear and detailed representation of the initial state or conditions of the
problem.
2. Step-by-Step Solution Process:Progressively update the state representation as you work through each step of the solution.
This should include all logical reasoning and calculations leading to the final answer.
3. To enhance clarity and eliminate ambiguities inherent in natural language, consider employing more structured and concise
forms of communication for your step-by-step solutions. Suitable formats include code, pseudocode, JSON, markdown tables,
logical operators, or mathematical equations.
4. Concluding with the Answer: End your response with "Answer: {answer}", where {answer} is the final result of your
problem-solving process.

4+CoT:
Solve the problem presented below:
—
${task_description}
—

RESPONSE GUIDELINES:
1.You should think step by step.
2. You should consider three scenarios: using only Statement 1, using only Statement 2, and using both Statements.
3. Note (IMPORTANT): When considering Statement 1, the use of information from Statement 2 is prohibited. When considering
Statement 2, the use of information from Statement 1 and the analysis derived from Statement 1 is prohibited. Both conditions
can only be analyzed simultaneously during the stage where both Statements are considered together.
4. In sometime , both statement 1 and statement 2 can lead to answer alone.
5. Concluding with the Answer: End your response with "Answer: {answer}", where {answer} is the final result of your
problem-solving process.

4+AutoForm:
Solve the problem presented below:
—
${task_description}
—

RESPONSE GUIDELINES:
1. Initial State Representation: Begin by providing a clear and detailed representation of the initial state or conditions of the
problem.
2. Step-by-Step Solution Process:Progressively update the state representation as you work through each step of the solution.
This should include all logical reasoning and calculations leading to the final answer.
3. To enhance clarity and eliminate ambiguities inherent in natural language, consider employing more structured and concise
forms of communication for your step-by-step solutions. Suitable formats include code, pseudocode, JSON, markdown tables,
logical operators, mathematical equations and so on.
4. You should consider three scenarios: using only Statement 1, using only Statement 2, and using both Statements.
5. Note (IMPORTANT): When considering Statement 1, the use of information from Statement 2 is prohibited. When considering
Statement 2, the use of information from Statement 1 and the analysis derived from Statement 1 is prohibited. Both conditions
can only be analyzed simultaneously during the stage where both Statements are considered together.
6. In sometime , both statement 1 and statement 2 can lead to answer alone.
7. Concluding with the Answer: End your response with "Answer: {answer}", where {answer} is the final result of your
problem-solving process.

Table 13: prompt for Information Essentiality
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PROMPT FOR HOTPOT QA, WIKI HOP, NARRATIVE QA
Shared portion of the prompt
You are ${agent_name}. Together with ${all_roles}, you are providing accurate answer to the user. Each of you will be provided
parts of the contexts and a shared question.
EXAMPLE 1
—
# Context
${example_context_1}
# Question
${example_question_1}
—
${example_answer_1}.
EXAMPLE 2
—
# Context
${example_context_2}
# Question
${example_question_2}
—
${example_answer_2}.

Now the user gives you some contexts and the question:
—
# Context
${knowledge}
# Question
${task_description}
—

Baseline:
Given that each individual, including yourself, possesses unique contexts, it’s essential to actively share and discuss this informa-
tion with others to formulate a complete answer. Your specific context is unknown to others unless explicitly communicated.
This collaborative effort is key to reaching an accurate answer based on the amalgamation of everyone’s distinct contexts.

When you have reached the final answer, conclude it with "<A>xxx</A>", where "xxx" will be extracted and compared with
ground truth. To end the conversation, all the players should end their responses with "<A>xxx</A>".
You are ${agent_name}. Now communicate with ${all_roles} to give the answer.

AutoForm(3.5-3.5,3.5-4,4-3.5,4-4):
Given that each individual, including yourself, possesses unique contexts, your specific context is unknown to others unless
explicitly communicated.
You are ${agent_name}, collaborating with ${all_roles}, who are also intelligent assistants. Your goal is to provide a clear and
concise answer to the user’s question. Unlike typical communication, you will not use natural language, as it often contains
ambiguities and emotional nuances. Instead, choose a more straightforward and precise communication medium, such as
structured data, JSON, XML or code.
Now, start communicating with ${all_roles} using your selected non-natural language medium. Remember, clarity and brevity
are key.
Once you have formulated the final answer,you must enclose it within "<A>xxx</A>", where "xxx" represents the answer phrase
selected from the given choices. The conversation concludes when all participants have presented the same answer in this format.
If you have different opinion, explain it to your teammates.
Don’t forget to enclose your answer within "<A>xxx</A>"

Table 14: prompt for Hotpot QA, Wiki Hop, Narrative QA
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