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Abstract

Modern NLP tasks increasingly rely on dense
retrieval methods to access up-to-date and rele-
vant contextual information. We are motivated
by the premise that retrieval benefits from seg-
ments that can vary in size such that a content’s
semantic independence is better captured. We
propose LumberChunker, a method leveraging
an LLM to dynamically segment documents,
which iteratively prompts the LLM to identify
the point within a group of sequential passages
where the content begins to shift. To evaluate
our method, we introduce GutenQA, a bench-
mark with 3000 “needle in a haystack” type of
question-answer pairs derived from 100 pub-
lic domain narrative books available on Project
Gutenberg1. Our experiments show that Lum-
berChunker not only outperforms the most com-
petitive baseline by 7.37% in retrieval perfor-
mance (DCG@20) but also that, when inte-
grated into a RAG pipeline, LumberChunker
proves to be more effective than other chunking
methods and competitive baselines, such as the
Gemini 1.5M Pro.

1 Introduction

The rapid expansion of Large Language Models
(LLMs) has paved the way for tackling a wide
range of tasks, including translation (Alves et al.,
2024), summarization (Kedia et al., 2021), and
question answering (Huang et al., 2023), among
others (Zhao et al., 2023). However, a significant
issue arises when these models are tasked with gen-
erating responses based on information they lack,
often resulting in "hallucinations" - responses that,
while seemingly plausible, are factually incorrect
(Zhang et al., 2023). Given the broad accessibility
of these models, less informed users may accept
all generated content as accurate, potentially caus-
ing severe misinterpretations and adverse conse-

1Code and Data available at: https://github.com/
joaodsmarques/LumberChunker

quences, like the recent incident where a lawyer
cited fictitious cases produced by ChatGPT (Ope-
nAI, 2022) in court, resulting in sanctions for the
lawyer and highlighting the severe risks of unveri-
fied AI-generated information (Bohannon, 2023).

In the field of question answering, where preci-
sion and accuracy of information are paramount,
Retrieval Augmented Generation (RAG) systems
present a viable solution to hallucinations by
grounding the model’s generation on contextually
relevant documents (Lewis et al., 2020).

One often overlooked part of the RAG pipeline
is how textual content is segmented into ‘chunks’,
which can significantly impact the dense retrieval
quality (Shi et al., 2023). Real-world applications
tend to simplify this step and consider sentences,
paragraphs, or propositions as the usual granular-
ity level (Tiedemann and Mur, 2008; Chen et al.,
2023).

In this paper, we propose LumberChunker, a
novel text segmentation method based on the prin-
ciple that retrieval efficiency improves when con-
tent chunks are as independent as possible from
one another. This independence is best achieved by
allowing chunks to be of dynamic sizes. Given that
language models excel at analyzing text, we lever-
age their capabilities to identify optimal segmenta-
tion points. Specifically, we repeatedly instruct a
language model to receive a series of continuous
paragraphs and determine the precise paragraph
within the sequence where the content starts diverg-
ing. This approach ensures that each segment is
contextually coherent yet distinct from adjacent
segments, thereby enhancing the effectiveness of
information retrieval.

We introduce a new benchmark: GutenQA,
which consists of 100 public domain narrative
books manually extracted from Project Gutenberg2.
We create 3000 high-quality question-answer pairs

2https://www.gutenberg.org/
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Figure 1: LumberChunker follows a three-step process. First, we segment a document paragraph-wise. Secondly, a
group (Gi) is created by appending sequential chunks until exceeding a predefined token count θ. Finally, Gi is fed
as context to Gemini, which determines the ID where a significant content shift starts to appear, thus defining the
start of Gi+1 and the end of the current chunk. This process is cyclically repeated for the entire document.

from these books to evaluate the impact of Lumber-
Chunker on retrieval. Finally, we integrate Lum-
berChunker into a RAG pipeline for a downstream
QA task to assess its effect on the accuracy of the
generated outputs.

Our main contributions are as follows:

• We present LumberChunker, a novel text segmen-
tation method that leverages an LLM to create
semantically independent chunks, enhancing re-
trieval performance for dense passage retrieval
tasks.

• We introduce GutenQA, a new benchmark com-
posed of 100 narrative books from Project Guten-
berg, featuring 3000 question-answer pairs de-
signed to evaluate the effectiveness of text seg-
mentation models in retrieval tasks.

• We present results showing that LumberChunker
outperforms the best prior segmentation baseline
by 7.37% in DCG@20. Our analysis also reveals
that LumberChunker chunks align more closely
with manually created chunks, further supporting
its effectiveness in text segmentation.

2 Background

The retrieval granularity at which a document is
segmented plays an essential role as ineffective
chunking strategies can lead to chunks with incom-
plete context or excessive irrelevant information,
which damage the performance of retriever models
(Yu et al., 2023).

Beyond typical granularity levels like sentences
or paragraphs (Gao et al., 2023b), other advanced
methods can be employed. Recursive character
splitting (Langchain, 2023) segments text based
on a hierarchy of separators such as paragraph
breaks, new lines, spaces, and individual charac-
ters. While this method better respects the doc-
ument’s structure, it may lack contextual under-
standing. To address this, semantic-based splitting
(Kamradt, 2024) utilizes embeddings to cluster se-
mantically similar text segments. This approach
ensures that chunks maintain meaningful context
and coherence by identifying breakpoints based on
significant changes in embedding distances.

The recent work by Chen et al. (2023) introduces
a novel retrieval granularity termed propositions -
minimal textual units, each conveying an individ-
ual fact in a clear, self-sufficient natural language
format. While this concept is valid for contexts
with fact-based information, like Wikipedia, it may
be less effective for narrative texts where the flow
and contextual continuity play a critical role (as il-
lustrated in Appendix A). Furthermore, the shift in
the search space from the original text to these new
representations also places considerable reliance
on the generating LLM to ensure their quality.

Retrieval granularity is often viewed at the doc-
ument level, but it can also involve adjusting the
query itself. Gao et al. (2023a) suggests the Hypo-
thetical Document Embeddings (HyDE) method,
where an LLM transforms the query into a potential
answer document.
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3 Methodology

3.1 LumberChunker

Our main contribution is a novel method for docu-
ment segmentation named LumberChunker, which
employs an LLM to dynamically segment docu-
ments into semantically independent chunks. Our
approach is grounded in the principle that retrieval
benefits from segments that can vary in size to bet-
ter capture the content’s semantic independence.
This dynamic granularity ensures that each chunk
encapsulates a complete, standalone idea, enhanc-
ing the relevance and clarity of the retrieved docu-
ments. By feeding the LLM a set of sequential pas-
sages, LumberChunker autonomously determines
the most appropriate points for segmentation. This
decision process takes into account the structure
and semantics of the text, thereby enabling the
creation of chunks that are optimally sized and con-
textually coherent.

Figure 1 displays the overall pipeline of Lum-
berChunker. We start by splitting the target docu-
ment paragraph-wise, with each paragraph being
uniquely identified by an incremental ID number.
Each paragraph is sequentially concatenated into a
group Gi until its collective token count surpasses a
pre-determined threshold, θ, which is strategically
set based on empirical insights, further discussed
in 5.1. The goal is to set θ large enough to avoid
bisecting relevant larger segments while ensuring
it is small enough to prevent overwhelming the
model with excessive context, which could hin-
der its reasoning accuracy. The group Gi is given
as input to the LLM (we choose Gemini 1.0-Pro
(Team et al., 2023)), which we instruct to pinpoint
the specific paragraph within Gi where the content
is perceived to diverge significantly from the pre-
ceding context. This detection marks the end of
a chunk. The document keeps being sequentially
partitioned into chunks in a cyclical manner, with
the starting point of each new Gi+1 group being
the paragraph identified in the previous iteration.
The prompt used is provided in Appendix B.

3.2 GutenQA

Our proposed benchmark comprises a collection
of 100 English books sourced from Project Guten-
berg. Due to the diverse and inconsistent HTML
structures of these books, we extract the content
manually. This avoids potential errors that often
arise with automatic text extraction, as discussed
in Appendix C.

We use ChatGPT (gpt-3.5-turbo-0125) to
generate questions and answers for each book. Ini-
tially, more than 10000 questions are automatically
generated, which are then filtered down manually
such that each book has 30 high-quality questions.
To better evaluate retrieval performance, we priori-
tize factual and specific questions that target unique
information, typically answerable in 1-2 sentences.
This selection strategy favors ‘what,’ ‘when,’ and
‘where’ questions over ‘why’ and ‘how’ questions.

The model is additionally instructed to output a
concise verbatim span from the text that contains
the answer to each question. This span serves as
the ground-truth passage for evaluating retrieval
accuracy. Given the size and specificity of the span,
irrespective of the chunking method employed, the
correct chunk will fully contain the specified string.
Our evaluation method relies on performing an
exact match search for this substring within the
retrieved text chunks.

The prompt used to instruct the model to gen-
erate questions, along with statistics about the dis-
tribution of question types within the dataset, is
provided in Appendix D.

4 Experiments

We evaluate LumberChunker using a series of di-
verse experiments. The key questions that guide
our experimental evaluation are as follows:

• What is the optimal threshold for target to-
ken count in each LumberChunker prompt?
The number of tokens in the prompt provided to
the LLM directly correlates with the token count
in the resulting chunk. Intuitively, one might
hypothesize that increasing the prompt length re-
duces retrieval difficulty, as larger chunks reduce
the overall search space, thereby increasing the
likelihood of retrieving the correct chunk. To test
this hypothesis, we analyze how LumberChun-
ker’s DCG@k scores, where k is the number of
chunks being retrieved, are influenced by differ-
ent prompt lengths θ ∈ [450, 1000] tokens.

• Does LumberChunker enhance retrieval?
We evaluate LumberChunker’s ability to locate
highly specific information within the docu-
ments, as represented by our GutenQA questions.
We compare its DCG@k and Recall@k scores
against other baseline methods, such as Semantic
or Proposition-Level chunking.
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Table 1: Passage retrieval performance (DCG@k and Recall@k) on GutenQA with different granularities on the
questions† and on the retrieval corpus passages. The best scores in each column are highlighted in bold.

DCG @ k Recall @ k

1 2 5 10 20 1 2 5 10 20

Semantic Chunking 29.50 35.31 40.67 43.14 44.74 29.50 38.70 50.60 58.21 64.51
Paragraph-Level 36.54 42.11 45.87 47.72 49.00 36.54 45.37 53.67 59.34 64.34
Recursive Chunking 39.04 45.37 50.66 53.25 54.72 39.04 49.07 60.64 68.62 74.35
HyDE† 33.47 39.74 45.06 48.14 49.92 33.47 43.41 55.11 64.61 71.61
Proposition-Level 36.91 42.42 44.88 45.65 46.19 36.91 45.64 51.04 53.41 55.54
LumberChunker 48.28 54.86 59.37 60.99 62.09 48.28 58.71 68.58 73.58 77.92

• Do LumberChunker chunks enhance genera-
tion quality? It is natural to question whether
the increased computational cost of segmenting a
document with our method is worthwhile. To ad-
dress this, we evaluate if LumberChunker chunks
improve generation quality in a QA task. For this
purpose, we integrate our chunks into a RAG
pipeline and create a smaller QA test set com-
prising 280 questions based on four narrative
autobiographies. As these elements are outside
the paper’s main scope, further details are pro-
vided in Appendix E. We compare our approach
with other RAG pipeline variants using different
chunking techniques, including manually created
chunks, which we consider the gold standard
for optimal retrieval. We also employ non-RAG
baselines like Gemini 1.5 Pro (Reid et al., 2024),
capable of processing up to 1.5 million input to-
kens, and a closed-book setup where Gemini Pro
relies solely on internal knowledge.

• How similar are LumberChunker chunks to
the manually created ones? We employ the
Rouge-L metric to quantify the similarity be-
tween the chunks produced by LumberChunker
and the manually created ones for the smaller QA
test set. This approach enabled us to assess the
degree to which LumberChunker can replicate
human judgment in chunk creation and whether
this alignment correlates with differences in ac-
curacy performance.

5 Results and Discussion

5.1 Context Size

Figure 2 reveals that among the various thresholds
tested, θ = 550 leads to the best performance,
achieving the highest DCG@k scores across all
values of k tested. This indicates that prompts with
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Figure 2: Optimizing Context Size θ (≈ number of
tokens in the LumberChunker prompt.)

around 550 tokens optimize the quality of docu-
ment retrieval by effectively balancing context cap-
ture and passage length. Following this, thresholds
θ = 450 and θ = 650 show similar but slightly
lower performances, suggesting that while they are
effective, they do not capture the optimal balance as
well as θ = 550. The threshold θ = 1000 performs
the worst, with noticeably lower DCG@k scores.
Given that this task requires advanced reasoning,
an excessively long prompt may overwhelm the
model’s capacity to focus on the relevant parts of
the input, thus compromising its performance.

5.2 Main Results

The results presented in Table 1 highlight that for
all values of k, LumberChunker consistently out-
performs every other baseline both on DCG@k
and Recall@k metrics3. This is particularly ev-
ident at k = 20, where LumberChunker’s DCG
score reaches 62.09, while the closest competitor,
Recursive chunking, only achieves a score of 54.72.
Similarly, in terms of Recall@k, LumberChunker

3Chunks are encoded with text-embedding-ada-002 em-
beddings from OpenAI.
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attains a score of 77.92 at k = 20, compared to
Recursive Chunking’s 74.35.

A closer examination of the baselines reveals
that methods like Paragraph-Level and Semantic
chunking fail to scale effectively as k increases,
indicating their limitations in maintaining rele-
vance over a larger number of retrieved documents.
HyDE, which uses Recursive chunking as its doc-
ument granularity level, also fails to outperform
its simpler counterpart for every value of k. This
suggests that the additional augmentation layer the
HyDE introduces may not be suited for this task.

The scores for Proposition-Level chunking are
notably lower than those of LumberChunker.
While Proposition-Level chunking excels in con-
texts with fine-grained, fact-based information,
such as Wikipedia text, it is less effective for nar-
rative texts where flow and contextual continuity
play a critical role. For details on the segmentation
of GutenQA, refer to Appendix F.

5.3 Impact on QA Systems
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Figure 3: QA Accuracy on Autobiographies Test Set.

In Figure 3, we observe the performance of dif-
ferent QA methodologies applied to several auto-
biographies. Surprisingly, the Open-Book method
achieves an accuracy of 37.76%. Despite being de-
signed to handle large inputs, the model struggles
to efficiently process and utilize all the information.
In contrast, all RAG methods outperform Open-
Book, highlighting the effectiveness of retrieval-
based approaches.

Furthermore, our proposed LumberChunker,
when integrated into the RAG pipeline, outper-
forms again Recursive chunking, which was the
most competitive baseline in the retrieval evalua-
tion (Table 1). This reinforces our view that better
retrieval directly improves accuracy. LumberChun-
ker only falls short of the RAG with manual chunks,
which is the expected gold standard for the task.

5.4 Chunk Similarity

Table 2 presents the average Rouge-L scores, com-
paring the chunks generated by LumberChunker
and Recursive Chunks (our top two automated
methods from the QA experiment) against the man-
ually created (gold standard) chunks.

Table 2: Average Rouge-L scores of methods compared
to Manual Chunks.

Method Average Rouge-L Score

LumberChunker 0.709
Recursive Chunks 0.689

The high Rouge-L scores indicate a significant
overlap between the chunks produced by both Lum-
berChunker and Recursive Chunks when compared
to the manual chunks. LumberChunker achieves
the highest Rouge-L score, supporting our hypoth-
esis that it generates chunks more closely aligned
with the manual segmentation. This similarity is
likely a key factor contributing to the improved QA
accuracy observed in Figure 3, where the RAG sys-
tem using LumberChunker chunks outperforms the
Recursive Chunks baseline.

6 Conclusions

In this study, we introduce LumberChunker, a novel
text segmentation method leveraging LLM textual
capabilities to dynamically segment documents
into semantically coherent chunks.

We also present GutenQA, a collection of 100
carefully parsed public domain books, segmented
with LumberChunker, for which we create 3000
curated question-answer pairs.

Our experiments demonstrate that LumberChun-
ker significantly improves retrieval performance
over competitive baselines, and when integrated
into a RAG pipeline, it also enhances the accuracy
of generated answers.
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Limitations

Despite LumberChunker demonstrating superior
performance compared to all baselines, it should
be highlighted that it requires the use of an LLM,
which automatically renders it more expensive and
slower compared to traditional methods like Recur-
sive chunking (further details in Appendix G).

LumberChunker is designed for narrative texts,
which are somewhat unstructured and benefit from
semantic textual interpretation. However, for sce-
narios with highly structured texts like those in the
legal domain, LumberChunker may be an unnec-
essarily complex solution because it would likely
achieve similar segmentations as those employing
document-wise structure parsing (like Markdown
segmentation), but at a more expensive cost.

Within the present methodology, LumberChun-
ker also faces scalability issues with the length of
individual documents and the volume of documents
that need to be processed. While each document
needs to be processed only once, the iterative na-
ture of prompting the language model to identify
segmentation points can become a drawback when
dealing with large number of documents.

Ethical Considerations

This paper focuses on improving text segmenta-
tion methods by leveraging existing large language
models. Our released dataset, GutenQA, uses only
public domain texts, ensuring there are no privacy
concerns or handling of sensitive data. Regarding
LumberChunker, we do not foresee any direct im-
pact on malicious activities, disinformation, surveil-
lance, or any significant environmental impact be-
yond the typical computational requirements.

The only ethical consideration we would like to
highlight is our extensive use of black box mod-
els. Unlike traditional chunking techniques like
Recursive Chunking, which are fully transparent
and easily reproducible, black box models intro-
duce some uncertainty regarding their outputs. As
a result, it is not impossible that our methodology
might have some biases we are unaware of.
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A Propositions Example on Narrative Texts

Table 3: Example of good passage transformation into propositions.

Passage 1: Elon Musk’s attraction to risk was a family trait. In that regard, he took after his maternal
grandfather, Joshua Haldeman, a daredevil adventurer with strongly held opinions who was raised
on a farm on the barren plains of central Canada. He studied chiropractic techniques in Iowa, then
returned to his hometown near Moose Jaw, where he broke in horses and gave chiropractic adjustments
in exchange for food and lodging.

Proposition 1.1: Elon Musk’s attraction to risk was a family trait.

Proposition 1.2: His maternal grandfather was Joshua Haldeman.

Proposition 1.3: Joshua Haldeman was a daredevil adventurer with strongly held opinions.

Proposition 1.4: Joshua Haldeman was raised on a farm on the barren plains of central Canada.

Proposition 1.5: Joshua Haldeman studied chiropractic techniques in Iowa.

Proposition 1.6: Joshua Haldeman returned to his hometown near Moose Jaw.

Proposition 1.7: In his hometown, Joshua Haldeman broke in horses and gave chiropractic adjustments.

Proposition 1.8: Joshua Haldeman received food and lodging in exchange for his chiropractic services.

Table 4: Example of poor passage transforming into propositions.

Passage 2: He was eventually able to buy his own farm, but he lost it during the depression of the
1930s. For the next few years, he worked as a cowboy, rodeo performer, and construction hand. His
one constant was a love for adventure. He married and divorced, traveled as a hobo on freight trains,
and was a stowaway on an oceangoing ship.

Proposition 2.1: He was eventually able to buy his own farm.

Proposition 2.2: He lost his own farm during the depression of the 1930s.

Proposition 2.3: For the next few years, he worked as a cowboy.

Proposition 2.4: For the next few years, he worked as a rodeo performer.

Proposition 2.5: For the next few years, he worked as a construction hand.

Proposition 2.6: His one constant was a love for adventure.

Proposition 2.7: He married and divorced.

Proposition 2.8: He traveled as a hobo on freight trains.

Proposition 2.9: He was a stowaway on an oceangoing ship.

Comment: Unlike the example in Table 3, the pronoun ‘He’ in Table 4 passage cannot be accurately
co-referenced, resulting in somewhat ambiguous propositions. Consequently, if a user asks a question
like ’Who in Elon Musk’s family worked as a rodeo performer?’, a model that uses only propositions as
retrieval units will not be able to provide an accurate response.

6480



B LumberChunker Gemini Prompt

Table 5: LumberChunker Gemini Prompt example for the book: Winnie the Pooh by A. A. Milne.

Prompt: You will receive as input an English document with paragraphs identified by ‘ID XXXX:
<text>’.

Task: Find the first paragraph (not the first one) where the content clearly changes compared to the
previous paragraphs.

Output: Return the ID of the paragraph with the content shift as in the exemplified format: ‘Answer:
ID XXXX’.

Additional Considerations: Avoid very long groups of paragraphs. Aim for a good balance between
identifying content shifts and keeping groups manageable.

Document:
ID 0001: Here is Edward Bear, coming downstairs now, bump, bump, bump, on the back of his head,
behind Christopher Robin. It is, as far as he knows, the only way of coming downstairs, but sometimes
he feels that there really is another way, if only he could stop bumping for a moment and think of it.
And then he feels that perhaps there isn’t. Anyhow, here he is at the bottom, and ready to be introduced
to you. Winnie-the-Pooh.

ID 0002: When I first heard his name, I said, just as you are going to say, "But I thought he was a boy?"

ID 0003: "So did I," said Christopher Robin.

ID 0004: "Then you can’t call him Winnie?"

ID 0005: "I don’t."

...

ID 0018: So I tried.

ID 0019: Once upon a time, a very long time ago now, about last Friday, Winnie-the-Pooh lived in a
forest all by himself under the name of Sanders.

ID 0020: "What does ’under the name’ mean?" asked Christopher Robin.

Answer: ID 0019
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C Project Gutenberg - Manual Extraction

Table 6: Passage manually extracted from Project Gutenberg regarding the book: Anna Karenina, by Leo Tolstoy.

GutenQA Verbatim: They were carrying something, and dropped it.
“I told you not to sit passengers on the roof,” said the little girl in English; “there, pick them up!”
“Everything’s in confusion,” thought Stepan Arkadyevitch; “there are the children running about
by themselves.” And going to the door, he called them. They threw down the box, that represented
a train, and came in to their father.
The little girl, her father’s favorite, ran up boldly, embraced him, and hung laughingly on his neck,
enjoying as she always did the smell of scent that came from his whiskers. At last the little girl
kissed his face, which was flushed from his stooping posture and beaming with tenderness, loosed
her hands, and was about to run away again; but her father held her back.
“How is mamma?” he asked, passing his hand over his daughter’s smooth, soft little neck. “Good
morning,” he said, smiling to the boy, who had come up to greet him. He was conscious that he
loved the boy less, and always tried to be fair; but the boy felt it, and did not respond with a smile
to his father’s chilly smile.

Table 7: Passage from NarrativeQA (Kočiský et al., 2018) regarding the book: Anna Karenina, by Leo Tolstoy.

NarrativeQA Verbatim: They were carrying something, and dropped it.\n\nâ\x80\x9cI told you
not to sit passengers on the roof,â\x80\x9d said the little girl in\nEnglish; â\x80\x9cthere, pick
them up!â\x80\x9d\n\nâ\x80\x9cEverythingâ\x80\x99s in confusion,â\x80\x9d thought Stepan
Arkadyevitch; â\x80\x9cthere are\nthe children running about by themselves.â\x80\x9d And going
to the door, he\ncalled them. They threw down the box, that represented a train, and\ncame in to
their father.\n\nThe little girl, her fatherâ\x80\x99s favorite, ran up boldly, embraced him,\nand
hung laughingly on his neck, enjoying as she always did the smell\nof scent that came from his
whiskers. At last the little girl kissed\nhis face, which was flushed from his stooping posture and
beaming with\ntenderness, loosed her hands, and was about to run away again; but her\nfather
held her back.\n\nâ\x80\x9cHow is mamma?â\x80\x9d he asked, passing his hand over his daugh-
terâ\x80\x99s smooth,\nsoft little neck. â\x80\x9cGood morning,â\x80\x9d he said, smiling to the
boy, who had\ncome up to greet him. He was conscious that he loved the boy less, and\nalways
tried to be fair; but the boy felt it, and did not respond with\na smile to his fatherâ\x80\x99s chilly
smile.

Comment: The differences between the passages on Table 6 and Table 7 are significant. The latter
passage is marked by misplaced ‘\n’ characters and the presence of non-standard characters such as ‘â’
and ‘\x80\x9c’, which likely result from encoding issues during the data extraction process. In contrast,
the first passage, manually extracted from Project Gutenberg, is more readable and free from such errors.
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D Artificial Test Data Generation - GutenQA

Table 8: Test set questions prompt template for the book: Anna Karenina, by Leo Tolstoy.

System Prompt: Your task is to generate a question-answer pair that is specific to the provided
text excerpts from the book "Anna Karenina" by Leo Tolstoy. The question should be unique to
the passage, meaning it cannot be easily answered by other parts of the book.
Instructions:

Read the Passage: Carefully read the provided text excerpt from the book. Understand the
context, key events, and specific details mentioned.

Formulate a Question: Create a question that is:

Directly related to the passage: The question should be based on the specific information or
events described in the text.

Unique to the passage: The question should not be answerable with information from other parts
of the book.

Type: Focus on creating a "When/What/Where" question to encourage specificity and conciseness.

Provide a Concise Answer: Write an answer that is:

Direct and informative: Limit the answer to a maximum of two sentences. Ensure it directly
addresses the question and is supported by the passage.

Self-contained: The answer should make sense on its own and should not require additional
context from outside the passage.

Cite the Supporting Passage: Include the passage that contains the information needed to answer
the question. This will be used to verify the accuracy of the answer and the relevance of the
question. Do not use ‘...’. The passage should be quoted without breaks.

User Prompt: Example:
Passage: “Vous comprenez l’anglais?” asked Lidia Ivanovna, and receiving a reply in the
affirmative, she got up and began looking through a shelf of books. “I want to read him ‘Safe and
Happy,’ or ‘Under the Wing,’” she said, looking inquiringly at Karenin.”

Question: What book does Countess Lidia Ivanovna want to read to Karenin?

Answer: She wants to read him ’Safe and Happy,’ or ’Under the Wing.’

Supporting Passage: “I want to read him ‘Safe and Happy,’ or ‘Under the Wing,’” she said,
looking inquiringly at Karenin.

Table 9: Frequency of the first token in GutenQA questions.

What How Why Who Where When Other

Frequency 49.3% 20.1% 15.2% 7.7% 2.8% 0.3% 4.5%
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E LumberChunker impact on Generation - Details

E.1 RAG Pipeline

We build a RAG-based QA pipeline specifically tailored to biographical books. We employ a hybrid
retrieval format, combining OpenAI text-ada-embedding-002 dense embeddings with BM25. Based
on Figure 4, we outline the step-by-step process employed in our system.

Query
Q: “What is your 
favorite drink?”

People or Events mentioned?
# Docs BM25  = 3

No

Retrieve Top-15 Dense Embeddings

# Docs BM25  = 1

Yes

Set of	𝑘 Relevant  
Docs (𝑘 = 16|	18)

(1) Query Routing and Document Integration

𝑆!

(2) Document Re-Ordering and Re-Ranking (3) Answer Generation

𝑘…654321

Docs get Reordered → 1 + 𝑘/2; 	𝑘 Flip Position

	𝑆"

1 +	(𝑘/2)…𝑘 − 1𝑘𝑘/2…21

	𝑆!

ChatGPT
Docs are Re-Ranked by ChatGPT

	𝑆#

	𝑆!

	𝑆′!

Filter to keep Top-5

ChatGPT

Query

Final Answer
A: “There is nothing like a good cold coffee!”

Figure 4: RAG Pipeline for QA on Autobiographies

Query Routing and Document Integration: Each query undergoes an evaluation by a detector that
identifies mentions of people or events. If the detector identifies relevant mentions within the query,
the top-3 most relevant chunks are retrieved using the BM25 algorithm. A single document is retrieved
as a precautionary measure if no mentions are detected (acknowledging occasional detector failures).
Concurrently, the top-15 chunks are retrieved through a dense retrieval mechanism. This step is designed to
enhance the retrieval quality by accessing deeper semantic relations that BM25 might miss. We implement
an intersection check between the documents retrieved by BM25 and those from dense retrieval, and
overlapping documents from BM25 are removed to avoid redundancy. The highest-ranked document from
BM25 is then prioritized at the top of the retrieval list, with the second and third (if available) placed at
the end, ensuring a blend of retrieval strategies.

Document Re-Ordering and Re-Ranking: The retrieved chunks are integrated into the context
window of ChatGPT (gpt-3.5-turbo). If the context includes six or more chunks, we employ a strategy to
reverse the order of the chunks from the midpoint onwards. This re-ordering aims to potentially minimize
the model’s ‘Lost in the Middle’ problem, where model performance degrades for information located
in the middle of long contexts but starts recovering towards the end, creating a U-shaped performance
curve (Liu et al., 2024). ChatGPT is then prompted to identify and re-order the documents based on their
decreasing relevance to the query.

Final Answer Generation: The response is generated in this final step. The top-5 documents, as
determined by the model, are retained for the final answer generation. The model synthesizes the
information from the top documents into a coherent and contextually accurate answer, aiming to address
the query comprehensively.
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E.2 Autobiography Questions
We created a dataset based on four autobiographies: (1) Mahatma Gandhi, (2) Helen Keller, (3) Benjamin
Franklin, and (4) Francisco Pinto Balsemão (Ghandi, 1929; Keller, 2000; Franklin, 2006; Balsemão,
2021). Each book includes 70 questions, a combination of manually crafted and ChatGPT-generated ones.
Specifically, 40 questions are auto-generated following the methodology described for the GutenQA,
while the remaining 30 questions are manually created by a human while reading the book.

Each book contains manually created questions and is also manually segmented, as one of the baselines
for the task is a RAG Pipeline with manual chunks. Both tasks are time-consuming but crucial for ensuring
the true impact of LumberChunker on the generation quality.

F LumberChunker and Baseline methods - Chunks Statistics

Table 10: The average number of tokens per chunk and the total number of chunks after segmenting each book in
the GutenQA.

Avg. #Tokens / Chunk Total #Chunks

Semantic Chunking 185 tokens 191059
Paragraph Level 79 tokens 248307
Recursive Chunking 399 tokens 31787
Proposition-Level 12 tokens 914493
LumberChunker 334 tokens 36917

From Table 10, we observe that the average number of tokens per chunk for LumberChunker is
approximately 40% below the intended input size of 550 tokens. This suggests that, on average, the LLM
does not frequently select IDs near the end of the input context. This is a positive sign, as consistently
choosing IDs near the end could imply the model is not reasoning over the input effectively, leading to the
’lost in the middle’ problem (Liu et al., 2024).

Both Paragraph, Recursive, and Proposition-Level chunking exhibit values that align with expec-
tations. The high prevalence of dialogue in the dataset explains the relatively small average number
of tokens per chunk at the paragraph level. Recursive chunking achieves an expected value since the
RecursiveCharacterTextSplitter from langchain4 was configured with an optimal value of 450
tokens in mind. Additionally, the average chunk size for propositions is consistent with findings by Chen
et al. (2023), which reported an average proposition length of 11.2 tokens for the processed Wikipedia
corpus.

On the other hand, Semantic chunking appears to have a relatively small average token size. We
hypothesize that this is primarily due to the nature of the documents (narrative books), which often contain
significant amounts of dialogue, resulting in short paragraphs. Consequently, Semantic chunking may not
fully capture the broader semantic context intended for each paragraph, thus fragmenting the text more
than necessary.

4https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_
text_splitter/
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G Computational Efficiency and Cost Analysis - LumberChunker and Baselines

G.1 Efficiency

Table 11: The time required to apply LumberChunker or one of the baselines on each book.

Avg. Seconds to Complete a Book

A Christmas Carol
(710 Paragraphs)

The Count of Monte Cristo
(14339 Paragraphs)

Semantic Chunking 212 seconds 4978 seconds
Recursive Chunking 0.1 seconds 0.6 seconds
HyDE 75 seconds 79 seconds
Proposition-Level 633 seconds 10302 seconds
LumberChunker 95 seconds 1628 seconds

From Table 11, we observe the impact of document size on the completion times of the tested approaches.
Recursive chunking, although demonstrating a sixfold time increase between both books, is still the faster
method. We attribute this efficiency mainly to the fact that Recursive chunking does not involve any
LLM API requests. HyDE, despite employing an LLM, maintains a constant number of LLM queries
per book (always 30 API requests), resulting in its completion time being invariant to the document
size. On the other hand, LumberChunker, Semantic, and Proposition-Level chunking exhibit significant
increases in completion time with larger documents. It is important to note that both Semantic and
Proposition-Level chunking can be optimized by making asynchronous OpenAI API requests, significantly
reducing completion times. However, LumberChunker does not allow for such optimization because its
methodology requires dynamic queries to the LLM that cannot be pre-established. While LumberChunker
does enhance retrieval performance over every other baseline, we acknowledge the potential for further
optimization.

G.2 Costs
We conducted tests to evaluate the cost of segmenting books. The costs are based on Gemini-1.0-Pro with
an input window size of ±550 tokens which, at the time of writing, charges $ 0.50 per million tokens.

Table 12: Cost comparison of segmenting two books with significantly different lengths.

Book Name

A Christmas Carol The Count of Monte Cristo

Length 28k words 450k words
#LumberChunker Chunks 92 1476
Cost $ 0.03 $ 0.4

These estimates illustrate that while smaller books incur minimal costs, larger documents may require
more consideration due to the increased processing requirements. However, segmentation is a one-time
process, and the additional cost can be justified by the improved performance it yields. Moreover, as LLM
pricing continues to decrease and model capabilities advance, LumberChunker is likely to benefit from
these trends in the future.
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