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Abstract

Social media is recognized as an important
source for deriving insights into public opin-
ion dynamics and social impacts due to the
vast textual data generated daily and the ‘un-
constrained’ behavior of people interacting
on these platforms. However, such analyses
prove challenging due to the semantic shift phe-
nomenon, where word meanings evolve over
time. This paper proposes an unsupervised
dynamic word embedding method to capture
longitudinal semantic shifts in social media
data without predefined anchor words. The
method leverages word co-occurrence statis-
tics and dynamic updating to adapt embed-
dings over time, addressing the challenges of
data sparseness, imbalanced distributions, and
synergistic semantic effects. Evaluated on a
large COVID-19 Twitter dataset, the method
reveals semantic evolution patterns of vaccine-
and symptom-related entities across different
pandemic stages, and their potential correla-
tions with real-world statistics. Our key contri-
butions include the dynamic embedding tech-
nique, empirical analysis of COVID-19 seman-
tic shifts, and discussions on enhancing seman-
tic shift modeling for computational social sci-
ence research. This study enables capturing lon-
gitudinal semantic dynamics on social media
to understand public discourse and collective
phenomena.

1 Introduction

Social media has become an essential platform
for information dissemination and public opin-
ion expression, with over 4.5 billion global users
generating vast amounts of textual data daily (Li
et al., 2022; Wu et al., 2023a; De et al., 2023).
Large-scale, wide-coverage, and real-time social
media data provide a new source for computational
social science and cultural analysis research, en-
abling insights into public opinion dynamics, so-
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cial event impacts, and collective behavior pat-
terns through large-scale text analysis (Hua et al.,
2024). However, social media text analysis faces a
unique challenge: the semantic shift phenomenon.
Word semantics can change to a certain extent over
time due to evolving social events, user interests,
cultural trends, and other factors (Harrigian and
Dredze, 2022; Wang et al., 2023a). For instance,
during the COVID-19 pandemic, “Moderna” ini-
tially referred to a biotechnology company but
later became associated with its COVID-19 vaccine.
Failing to account for such dynamic semantic evo-
lution can affect the accuracy and interpretability of
text analysis, especially in long-term longitudinal
analyses spanning months or even years.

Existing mainstream semantic shift analysis
methods usually require pre-defining a set of an-
chor words as a reference (Ishihara et al., 2022;
Montanelli and Periti, 2023). However, these meth-
ods rely excessively on human experts’ prior expe-
riences that are usually highly subjective (Sharifian-
Attar et al., 2022), and cannot comprehensively de-
tect semantic shifts in longitudinal corpora. More-
over, social media text presents several challenges
for existing semantic shift analysis methods:

1. Data Sparseness: Social media text is highly
sparse, with only a few hundred core words
and categories exhibiting dynamic changes,
making it difficult for statistical language mod-
els to learn robust semantic representations.

2. Imbalanced Distribution: Core words have
a highly imbalanced distribution. This long-
tail distribution poses challenges for semantic
shift modeling, requiring targeted handling of
low-frequency and emerging words.

3. Synergistic Effects: Topic evolution on so-
cial media often manifests as the joint shift
of multiple related words. Focusing solely on
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isolated word changes may obscure overall
topic-level trends.

To address these challenges, this paper proposes
a novel framework aimed at better capturing longi-
tudinal semantic evolution patterns in the context
of social media and providing powerful semantic
analysis tools for computational social science re-
search. The proposed end-to-end unsupervised dy-
namic word embedding method is based on word
co-occurrence statistics and combines a dynamic
update strategy to adaptively capture the trajec-
tory of word semantic evolution over time, without
the need for manually defined anchor words. To
verify the effectiveness of the method in practical
applications, we applied it to a large-scale COVID-
19 Twitter dataset spanning more than two years,
from February 2020 to April 2022. We focused
on the semantic shift phenomenon of vaccine- and
symptom-related entity words and observed their
semantic shift patterns at different stages of the
pandemic, as well as their potential correlations
with real epidemic trends.

The main contributions are summarized as fol-
lows: 1) We propose a dynamic word embedding
method that can adaptively detect semantic shift
phenomena in longitudinal corpora without manual
annotation; 2) We integrate it with Named Entity
Recognition (NER) and Large Language Model
(LLM)-based entity normalization to systemati-
cally investigate the semantic shift in extensive
and longitudinal social media corpora during the
COVID-19 pandemic; 3) Our experimental results
reveal the semantic evolution patterns of vaccine-
and symptom-related topics during the COVID-19
pandemic, offering a new perspective on the study
of epidemic evolution and its social impact. This
provides a novel paradigm for leveraging computa-
tional linguistics in social and medical research.

2 Related Work

Semantic shift analysis is a crucial research prob-
lem in the fields of computational linguistics and
natural language processing. Over time, the seman-
tics of words evolve, reflecting changes in language
usage and socio-cultural dynamics. Researchers
have recently proposed various data-driven meth-
ods to automatically detect semantic shift phenom-
ena at the word level.

Early studies on semantic shift primarily relied
on word frequency statistics, analyzing the tempo-
ral variation of word frequencies in books (Michel

et al., 2011) and in web search queries (Choi and
Varian, 2012). However, it has been noted that
word frequency changes are not always directly cor-
related with semantic shifts (Kulkarni et al., 2015),
with frequency information alone being insufficient
to accurately capture subtle semantic variations.

Distributional semantics has been proven to be
an effective tool for semantic shift analysis (Turney
and Pantel, 2010; Baroni et al., 2014). By lever-
aging word co-occurrence statistics, distributional
representations of words can be learned, directly
encoding their semantics as vectors. Jurgens and
Stevens (2009) pioneered quantitative analysis of
semantic shifts with word vector updates to dynam-
ically model semantic evolution, with subsequent
studies employing various word embedding algo-
rithms, such as Latent Semantic Analysis by Sagi
et al. (2011) and Local Mutual Information by Gu-
lordava and Baroni (2011). Kim et al. (2014) in-
troduced predictive word embedding models (e.g.,
word2vec) to the semantic shift detection task, fol-
lowed by works comparing performance of differ-
ent types of word embedding models (Hamilton
et al., 2016b) which found that predictive models
like skip-gram with negative sampling (SGNS) out-
perform explicit counting methods.

Other studies (Mitra et al., 2015) have looked
at characterizing semantic shift types, such as the
emergence of novel senses, splitting and merging
of word senses, which falls under fine-grained se-
mantic shift analysis. Hamilton et al. (2016a) ex-
plored the distinction between cultural and linguis-
tic shifts as the two modes of semantic evolution,
with the former closely related to socio-cultural
changes and manifesting as global displacement
in the word vector space, and the latter reflecting
the internal evolution of language and character-
ized by changes in local neighborhoods. Semantic
shift analysis through the topic evolution lens is ex-
plored through dynamic topic models to track the
temporal variation of topic distributions (Wang and
McCallum, 2006) or temporal evolution of Google
search topics (Wijaya and Yeniterzi, 2011).

The emergence of contextualized word embed-
dings capable of capturing diversity and subtle
changes in word semantics in pre-trained language
models such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019) has led to the use of
BERT for semantic shift detection, with a novel
representation splitting method to improve detec-
tion accuracy (Hu et al., 2019). Subsequent studies,
such as those by Giulianelli et al. (2020) have con-
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Figure 1: Overall framework of the proposed unsupervised dynamic word embedding method. (1) Co-occurrence
Analysis: Word co-occurrence matrices from a diachronic corpus are computed and normalized; (2) Adaptive
Selection of Time Slices: Adjacent time slices with high word co-occurrence similarity are merged adaptively; (3)
Dynamic Word Embeddings Update: Word embeddings are dynamically updated based on the current and previous
time slices. (4) Semantic Shift Detection and Analysis: Word semantic shifts are detected by embedding similarity
and tracking the associations of word pairs that change over time.

firmed their superior performance over static ones
with systematic evaluations of different types of
contextualized word embeddings on this task.

Moreover, some studies focused on the inter-
pretability of semantic shift detection. Rosin et al.
(2022) proposed an interpretable semantic shift
model based on attention mechanisms, explaining
the reasons for word semantic evolution by visu-
alizing attention weights. You (2021) employed
causal inference methods to investigate the socio-
cultural driving factors behind lexical semantic
shifts. These works contribute to a deeper under-
standing of semantic shift phenomena from both
computational and humanistic perspectives. In
comparison to the above-mentioned methods, sup-
pressing high-frequency core words and dynami-
cally updating weights ensure that we can detect
stable semantic shifts in embeddings.

Regarding the analysis of COVID-19 discus-
sions on social media, several studies have explored
this topic from different perspectives. Choudrie
et al. (2021) investigated the role of machine
learning in identifying misinformation during the
pandemic, and explored how older adults inter-
acted with online information, often finding it dif-
ficult to verify and preferring traditional media
sources. Wicke and Bolognesi (2020) focused on
the metaphorical language used in social media,
particularly war-related terms, showing how certain

metaphors shaped public conversations around the
virus and its effects. Gencoglu and Gruber (2020)
analyzed the relationship between pandemic trends,
such as infection rates, and shifts in public senti-
ment on Twitter, using causal modeling to distin-
guish between events that influenced public atten-
tion and those that were merely correlated. These
studies collectively offer insights into the dynamic
nature of COVID-19 discourse online, shaped by
both statistical methods and human perception.

3 Methodology

This section introduces the proposed unsupervised
dynamic word embedding method for detecting
and analyzing semantic shifts of words in detail.
The overall framework is shown in Figure 1. Our
method leverages word co-occurrence statistics and
adopts adaptive selection and time slice dynamic
updating strategies to analyze and capture the evo-
lution of word semantics over time.

3.1 Co-occurrence Analysis
Let D = {D1,D2, . . . ,DT } denote the diachronic
text corpus, where Dt represents the text collection
of the t-th time slice. We collect and pre-process
large-scale text data from a number of time periods,
including news articles, books, social media posts,
and more, to ensure the data covers a broad tempo-
ral span and is representative of each period. We
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compute the word co-occurrence frequency matrix
Xt ∈ R|V |×|V | on each time slice Dt, where |V |
represents the size of the vocabulary. Xt

ij repre-
sents the co-occurrence frequency of words wi and
wj in the t-th time slice, reflecting the contextual
information of words in different time periods.

To address the data sparseness, we apply a
smoothing method to process co-occurrence matri-
ces. Specifically, add-one smoothing is employed
to add a small constant α to all elements of the
matrix:

X̃t
ij = Xt

ij + α (1)

where X̃t denotes the smoothed co-occurrence ma-
trix. This smoothing technique helps mitigate the
impact of sparse data and improves the robust-
ness of subsequent computation. Furthermore, to
handle the unbalanced distribution of core words,
we apply frequency-based normalization to the co-
occurrence matrices. Specifically, we use loga-
rithmic scaling to balance the importance of core
words based on their frequency:

X̂t
ij = log(1 + X̃t

ij) (2)

where X̂t denotes the normalized co-occurrence
matrix. This normalization technique helps reduce
the impact of extremely frequent words and gives
more weight to less frequent but potentially infor-
mative words. We pre-train word vectors using
traditional static word embedding methods (such
as word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014)) to obtain preliminary embed-
ding for each time slice t, i.e. W t ∈ R|V |×d, where
d is the embedding dimension.

3.2 Adaptive Selection of Time Slices
We adaptively adjust the span of time slices based
on the temporal granularity of word co-occurrence
statistics. First, we compute a similarity measure
between word co-occurrence matrices of adjacent
time slices. Then, by setting a similarity threshold
τ , we merge adjacent time slices with a similarity
score higher than the threshold, forming slices with
larger time spans. This ensures the continuity of
semantic evolution while reducing the number of
time slices and improving computational efficiency.

We use cosine similarity between the normalized
word co-occurrence matrices X̂t and X̂t+1 of ad-
jacent time slices t and t + 1, which is given by:

sim(X̂t, X̂t+1) =
vec(X̂t) · vec(X̂t+1)

|vec(X̂t)|2|vec(X̂t+1)|2
(3)

where vec(·) denotes flattening the matrix into
a vector. If the semantic similarity is greater than
a predefined threshold τ , the two time slices are
merged into one. The corresponding word embed-
dings are then re-computed based on the merged
corpusDt andDt+1. These steps are repeated until
there are no similar co-occurrence matrices for any
two consecutive time slices.

3.3 Dynamic Word Embeddings Update
We adopt a progressively dynamic update strategy.
Given the smoothed word co-occurrence matrix X̃t

of the current time slice t and the word embedding
matrix W t−1 learned from the previous time slice,
we update the word embeddings by minimizing the
following objective:

W t = arg min
W

∣∣∣X̂t −WW T
∣∣∣
2

F
+λ
∣∣W −W t−1∣∣2

F

(4)
where | · |F denotes the Frobenius norm of a ma-
trix, and λ is a weight coefficient balancing the
reconstruction error of the current time slice and
the similarity with the embeddings from the previ-
ous time slice. This enables word embeddings to
adapt to current semantic information while retain-
ing previously learned semantics.

We introduce a forgetting factor γ ∈ (0, 1] to
control the speed at which word embeddings forget
outdated semantics. Before each update, we decay
the word embeddings from the previous time slice:

W̃ t−1 = γW t−1 (5)

Then, we substitute the decayed word embeddings
W̃ t−1 into the optimization objective for updating.
A smaller γ value promotes faster forgetting of
outdated semantics, while a larger γ value helps
maintain the continuity of semantics. To maintain
the global semantic stability of word embeddings,
we introduce a regularization term in the dynamic
update optimization objective:

W t = arg min
W

∣∣∣X̂t −WW T
∣∣∣
2

F

+ λ1

∣∣∣W − W̃ t−1
∣∣∣
2

F
+ λ2

∣∣WW T − X̄
∣∣2
F

(6)

where X̄ = 1
T

∑T
t=1 X̂

t, represents the average
normalized word co-occurrence matrix across all
time slices, and λ2 controls the weight of global
stability. By minimizing the difference between
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the inner product of word embeddings WW T and
the average word co-occurrence matrix X̄ , this reg-
ularization term encourages word embeddings to
maintain global semantic consistency across differ-
ent time and suppresses excessive semantic shift.

3.4 Semantic Shift Detection and Analysis

To analyze semantic shift under complex inter-
actions and capture synergies between words,
we introduce higher-order co-occurrence statistics.
Specifically, we calculate the cosine similarity be-
tween word pairs across different time slices.

By tracking changes in cosine similarity of word
pairs across different time slices, we can uncover
dynamic patterns of semantic association evolution,
such as strengthening, weakening, or shifting of as-
sociations. For instance, if the cosine similarity
between “COVID-19” and “vaccine” gradually in-
creases over time, it suggests that their semantic
association becomes stronger with the progress of
vaccine development and deployment.

4 COVID-19 Case Study

4.1 Dataset construction

We leveraged large-scale Twitter data to support an
in-depth analysis of the characteristics and evolu-
tion patterns of COVID-19 symptoms. We selected
471,553,966 non-retweet English tweets posted be-
tween February 1, 2020, and April 30, 2022, as
the raw dataset. This time span covered multiple
key stages of the pandemic, including the initial
outbreak, global spread, vaccine development, and
rollout. The substantial data volume and extended
time range provide a comprehensive and longitudi-
nal perspective on the pandemic’s full picture.

To accurately identify self-reported symptoms
mentioned in the massive tweet corpus, we de-
signed a rigorous data preprocessing pipeline con-
sisting of three steps:

1. Strict COVID-19 relevance filtering: We
matched each tweet to a COVID-19 vocabu-
lary consisting of 92 core keywords, derived
from an infoveillance study on COVID-19
symptoms (Wu et al., 2023a), to ensure that
the filtered tweets were highly relevant to the
pandemic. The vocabulary covers multiple
semantic categories closely related to the pan-
demic, such as disease names, virus strains,
symptoms, and policies.

2. Text cleaning and normalization: To remove
noisy and irrelevant information and improve
text quality, we performed a series of text
cleaning operations, including: a) removing
metadata such as URLs, @usernames, and
#hashtags; b) converting tweets to lowercase;
c) removing stop words, punctuation, and spe-
cial characters; d) performing lemmatization
to merge word variants.

3. Self-reported symptom matching: To pre-
cisely locate self-reported symptom expres-
sions in the cleaned tweets, we carefully con-
structed a high-coverage concept hierarchy
for COVID-19 symptoms, which contains 10
body systems, 257 core symptoms, and 1,808
synonyms. We adopted a combination of ex-
act matching and fuzzy matching methods to
match each tweet against the symptom hierar-
chy. Exact matching could identify explicitly
mentioned standard symptom terms in tweets,
while fuzzy matching significantly improved
the recognition coverage of colloquial and
non-standard symptom expressions through
synonym expansion.

Through the three-step preprocessing pipeline,
we filtered 948,478 COVID-19-related tweets con-
taining self-reported symptoms from the original
over 400 million tweets, accounting for 0.2% of
the total tweet volume. Despite the low propor-
tion, these tweets were of rich information and
high quality, providing a valuable data foundation
for conducting large-scale, real-world COVID-19
symptom analysis.

4.2 Symptom and Vaccine Entity Recognition
To further improve the recognition of symptom
and vaccine entities, we used deep learning-based
named entity recognition (NER) techniques. We
adopted the YATO framework (Wang et al., 2023b),
using the pre-trained covid-twitter-bert-v2 model
(Müller et al., 2023), and fine-tuned it on the METS-
CoV dataset (Zhou et al., 2022) for the fine-grained
NER task. The model can automatically identify
two types of entities relevant to this study from
tweets, including symptoms and vaccines.

We applied the fine-tuned NER model for com-
prehensive inference on the previously screened,
approximately one million tweets on self-reported
symptoms and extracted the symptom and vaccine
entities. Compared to traditional rule-based or
dictionary-matching methods, deep learning-based
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NER can better handle the colloquial, non-standard,
and complex nature of social media text, thereby
significantly improving the precision and recall of
entity recognition. As shown in Table 1, it achieved
a high F1-score of 0.89 on METS-CoV.

Entity Precision Recall F1-score

Symptom 0.86 0.86 0.87
Vaccine 0.88 0.93 0.90

Overall (macro) 0.87 0.90 0.89

Table 1: NER Performance on METS-CoV.

Through entity recognition on the full set of
tweets, we extracted a total number of 93,418 symp-
tom entities and 7,313 vaccine entities. It is worth
noting that the extracted entities exhibited diverse
forms, including standard symptom terms such as
“fever” and “shortness of breath”; non-standard
descriptions such as “feeling feverish” and “out
of breath”; formal vaccine names like “COVID19
Vaccine”; and colloquial expressions like “pfizer
vaccine” and “az jab”. This highlights the flexibil-
ity and diversity of semantic expressions in social
media text and confirms the necessity of adopting
deep learning-based entity recognition methods.

4.3 Entity Normalization via Large Language
Model

To enhance entity recognition, we designed a multi-
stage entity normalization framework based on the
Large Language Model (LLM) (Thirunavukarasu
et al., 2023) and Retrieval-Augmented Generation
(RAG) (Gao et al., 2023). First, we packaged each
identified symptom or vaccine entity with its sur-
rounding tweet context into a query prompt and
used it as input to retrieve relevant standardized
concepts. We utilized 260 symptom codes from the
11th revision of the International Classification of
Diseases (ICD-111) as the standardization dictio-
nary for symptoms and 47 vaccine generic names
as the standardization dictionary for vaccines.

In the retrieval stage, we employed multi-
ple domain-specific pre-trained language mod-
els, including BioLORD (Remy et al., 2024), S-
PubMedBert (Deka et al., 2022), and BioSimCSE-
BioLinkBERT (Kanakarajan et al., 2022), to re-
trieve 45 coarse-grained candidate concepts for
each query. Next, we used the BGE-Gemma-
reranker (Li et al., 2023) to re-rank the coarse-
grained candidate concepts, and selected the top 15

1ICD: https://icd.who.int/en

as the fine-grained candidate concepts.
In the generation stage, we merged the query

prompt with the 15 fine-grained candidate concepts
into a new prompt and input it into the Qwen-1.5-
32B-chat model (Bai et al., 2023), which selected
the most appropriate standardized term from the
candidate concepts. To prevent error propagation,
we introduced a special “no normalized noun” cat-
egory in the prompt design. When LLM could not
find a suitable standardized term or determined that
the entity was not a symptom or vaccine, it would
return to this category. After normalization pro-
cessing, we finally obtained 70,642 symptom enti-
ties and 221 corresponding standardized terms, as
well as 5,452 vaccine entities and 18 corresponding
standardized terms. To evaluate the normalization
performance, we randomly sampled 100 entities
and their standardized terms for manual inspection,
achieving an accuracy of 71%. Table 2 presents the
most common physical and psychological symp-
toms, including their normalized symptoms and
raw entities in social media texts. It validates that
our method effectively standardizes the informal
descriptions found in social media into clinically
used ICD codes, facilitating the extraction of useful
information for medical research.

4.4 Univariate Semantic Shift Analysis
After obtaining normalized entities for symptoms
and vaccines, we further explored their semantic
evolution patterns across different stages of the
COVID-19 pandemic.

We divided the tweet data into monthly time
slices and extracted word co-occurrence statistics
for each time slice using the method proposed in
Sections 3.1 and 3.2. Then, following the dynamic
update strategy described in Section 3.3, we itera-
tively updated the word embeddings on each time
slice. We obtained three word vector embeddings:
Feb 2020-Sep 2020, Sep 2020-June 2021, and June
2021-Apr 2022. Based on the number of new
COVID-19 cases reported by the WHO2 and the re-
lated pandemic timeline3, we can roughly correlate
these with the three key stages of pandemic devel-
opment. The first stage corresponds to the initial
outbreak of the epidemic, during which the public
gradually begins to pay attention to and discuss the
epidemic; the second stage corresponds to the first
rapid spread, during which people start to imple-

2https://data.who.int/dashboards/covid19/cases
3https://www.cdc.gov/museum/timeline/covid19.

html
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Type Normalized Entity (ICD-11) Count (freq%) Raw Entity in Social Media

Physical

Nausea or Vomitting 69670 (6.80%) nausea head, upset stomach, vomit, covid stomach, vom, nause,. . .
Fever 67108 (6.55%) fever, feverish, cough fever, high temp, heat . . .
Cough 55326 (5.40%) choking cough, sore throat coughing, chesty cough pain, bad cough, . . .
Disturbances of Smell and taste 53891 (5.26%) lost tast smell, tasteless, couldnt smell, loss taste, loss smell, . . .
Dizziness and giddness 49178 (4.80%) dizzy head, dizzyer, brain feels like gone, lightheaded,feeling giddy, . . .

Psychological

Anxiety 2,121 (0.20%) freaking out, nervous wreck, on edge, jittery, stressing out,. . .
Depressed mood 2,013 (0.19%) feeling down, bummed out, low spirits, in a funk, blue, . . .
Irritability 1,822 (0.17%) cranky, snappy, grouchy, on a short fuse, annoyed, . . .
Psychomotor agitation 1,672 (0.16%) can’t sit still, fidgety, restless, hyper, pacing, . . .
Aggressive behavior 1,423 (0.13%) lashing out, losing it, going off, snapping, getting in fights, . . .

Table 2: Example of the correspondence between social media symptom entities based on large language model
normalization and standardized symptom entities.

ment control measures; the third stage corresponds
to the full-blown outbreak of the epidemic, accom-
panied by the emergence of two variant viruses.
More details are in Appendix 5. In classic semantic
shift problems, anchor words typically align mul-
tiple time series into the same embedding space.
However, we used Procrustes analysis to align the
first two word vectors to the last one, thus obtaining
relatively consistent embeddings.

Procrustes analysis is a linear algebra method
used to rotate and translate one matrix onto another
while preserving the original structure as much as
possible (Grave et al., 2019). Specifically, given
two matrices A and B, Procrustes analysis seeks a
matrix R such that AR closely approximates B by
minimizing the Frobenius norm |AR−B|F . As it
only involves rotation and translation, it does not
alter the length or relative positions of word vectors,
thus preserving the intrinsic semantic structure of
the word vectors. This method ensures that word
embeddings from different time slices are aligned
in the same semantic space, which helps maintain
the global consistency of word vectors and reduces
the impact of semantic shift.

We selected psychological symptoms that under-
went relatively large changes during the pandemic
for univariate semantic shift analysis. As shown
in Figure 2 (a), which introduces temporal dynam-
ics into the univariate semantic shift, and Figure
2 (b), which projects all semantic shifts onto a
plane, we found that with the passage of time, some
symptoms such as anxiety, depression, and irritabil-
ity were more scattered in the early stages of the
pandemic and gradually clustered as the pandemic
progressed (Wu et al., 2023b); some symptoms
such as psychomotor agitation and aggressive be-
havior were initially more clustered and gradually
dispersed in the later stages; and some symptoms
such as thought withdrawal, thought disorder, delu-

sions, and visual hallucinations remained relatively
dispersed throughout (Li et al., 2022).

4.5 Synergistic Effect Analysis

To explore the semantic interactions between symp-
toms and between symptoms and vaccines, we con-
structed an evolving network of key symptoms and
vaccines based on the dynamically updated word
embeddings. We used the normalized entities as
nodes and calculated their mutual cosine similarity.
As shown in Figure 3, their inter-relationships were
depicted at each time slice.

We analyzed the dynamic evolution patterns and
compared them with real-world symptom patterns
reported in relevant papers (Whitaker et al., 2022;
Vihta et al., 2023; Looi, 2023). The results showed
that the main symptom combinations were closely
related to the pandemic stages. The early stage
was dominated by respiratory symptoms such as
fever and cough, while taste and smell disorders be-
came increasingly prominent in subsequent stages.
During the Delta strain period, the proportion of
gastrointestinal symptoms such as diarrhea, nausea,
and vomiting increased significantly. We further
calculated the semantic similarity changes between
the vaccine node and various symptom nodes, and
found a significant decrease in the association be-
tween vaccine administration and multiple key
symptoms. This suggests a potential protective
effect of the vaccine on these symptoms.

5 Conclusion and Future work

This study proposes an innovative unsupervised
dynamic word embedding method to capture the
longitudinal evolution of word semantics in social
media texts. We apply this method to symptom
and vaccine semantic analysis using large-scale
COVID-19 Twitter data, achieving promising re-
sults. Our method can effectively identify the dy-
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(a) (b)

Figure 2: Psychological symptom semantic shift trajectories across different periods. Lines and dots of different
colors represent the semantic shift trajectories of various symptoms. Our framework automatically identifies three
significant stages of semantic shift, which correspond to the three phases of the pandemic as compared to the number
of new COVID-19 cases reported by the WHO. (a) shows the semantic relationships of these symptoms at different
stages of the pandemic. (b) visually presents the distribution of symptoms in semantic space across different periods,
illustrated using gradients of text and color. Each point in the projection graph represents the semantic position of a
symptom at a specific period. By analyzing the trajectories, we observe a converging trend as the global spread of
the pandemic progresses, indicating increasing semantic association.
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Figure 3: Dynamic longitudinal analysis of COVID-19 symptom-vaccine semantic associations. (a) and (b) show
the semantic correlations during the early outbreak (Feb 2020-Sep 2020) and the global pandemic (Jun 2021-Apr
2022), respectively. By analyzing the changes in the semantic associations of symptoms-symptoms and symptoms-
vaccine across different periods, we examined the potential combination patterns of symptoms and the sensitivity of
symptoms to vaccine protection.

namic patterns of symptoms and vaccine semantics
at different stages of the epidemic. By introduc-

ing temporal dynamics and iterative update strate-
gies, this method overcomes the limitations of tra-
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ditional static word embeddings, achieving longitu-
dinal tracking of semantic content in social media
texts. Additionally, we analyze the semantic inter-
actions between different symptoms and between
symptoms and vaccines, revealing their synergistic
effects over time.

In the future, we plan to expand the applica-
tion of this method in the field of vertical semantic
analysis. On one hand, we will explore more ad-
vanced time series modeling techniques to more
accurately capture the evolving patterns of word
semantics over time. On the other hand, we will
integrate semantic shift analysis with technologies
such as social network analysis and sentiment anal-
ysis to investigate the rich semantic relationships
and patterns embedded in social media texts, such
as identifying precursor signals of sudden events
and revealing the driving factors behind the evolu-
tion of public opinion.

Ethics

Our study uses publicly accessible data collected
via Twitter’s official API, adhering to the strin-
gent requirements. The research utilized tweets
obtained following Twitter’s Privacy Policy, which
informs users that their social media content, in-
cluding profiles and tweets, is public and freely
accessible to third parties To protect privacy, we
removed usernames and only analyzed their tweets.

Limitations

There are several limitations in our work: 1) Assess-
ing the accuracy and effectiveness of semantic shift
detection methods is inherently challenging due
to the lack of normalized evaluation metrics and
annotated datasets. The validation of our method
relies on case studies and empirical analysis, which
may not generalize well enough across different
domains or applications; 2) The initial word embed-
dings are pre-trained using traditional static word
embedding methods. The quality and biases inher-
ent in these initial embeddings could influence the
subsequent dynamic updates and potentially the
detection of semantic shifts.
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Appendix

Timeline of COVID-19
Figure 4 shows the weekly numbers of self-
reported COVID-19 tweets and the total new
COVID-19 cases in the four main countries of Twit-
ter users (United States, United Kingdom, Canada,
and the Philippines) as reported by the WHO.
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Figure 4: COVID-19 timeline.
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