
Findings of the Association for Computational Linguistics: EACL 2024, pages 92–103
March 17-22, 2024 c©2024 Association for Computational Linguistics

NavHint: Vision and Language Navigation Agent with a Hint Generator

Yue Zhang
Michigan State University

zhan1624@msu.edu

Quan Guo
Sichuan University

guoquan@scu.edu.cn

Parisa Kordjamshidi
Michigan State University

kordjams@msu.edu

Abstract

Existing work on vision and language naviga-
tion mainly relies on navigation-related losses
to establish the connection between vision and
language modalities, neglecting aspects of help-
ing the navigation agent build a deep under-
standing of the visual environment. In our
work, we provide indirect supervision to the
navigation agent through a hint generator that
provides detailed visual descriptions. The hint
generator assists the navigation agent in de-
veloping a global understanding of the visual
environment. It directs the agent’s attention
toward related navigation details, including the
relevant sub-instruction, potential challenges in
recognition and ambiguities in grounding, and
the targeted viewpoint description. To train the
hint generator, we construct a synthetic dataset
based on landmarks in the instructions and vis-
ible and distinctive objects in the visual en-
vironment. We evaluate our method on the
R2R and R4R datasets and achieve state-of-
the-art on several metrics. The experimental
results demonstrate that generating hints not
only enhances the navigation performance but
also helps improve the interpretability of the
agent’s actions.

1 Introduction

In many real-world applications, it is a crucial skill
for an intelligent agent to perceive the visual en-
vironment and interact with humans using natural
language. The Vision and Language Navigation
(VLN) task (Anderson et al., 2018) is one of the
popular problems in this direction that has attracted
significant attention from computer vision, natural
language processing, and robotic communities (Li
et al., 2022; Fried et al., 2018; Francis et al., 2022).

With the increasing popularity of the VLN task,
many neural navigation models (Hong et al., 2020c;
Chen et al., 2021; Hao et al., 2020) have been pro-
posed. One line of research is to strengthen the con-
nection of the vision and language modalities (Ma

Turn around and go straight. Walk towards the wall and stop.Instruction

Candidate
Viewpoints view1

view2

view3

But I can see “wall” in all candidate
viewpoints.

However, there are “large window with 
wooden blinds, glass table with white

chairs, and a ceiling lamp” that are
specific to view3.

“Walk towards the wall” need to be 
executed.

(target)

Sub-Instruction

Landmark Ambiguity

Targeted Distinctive Objects

Action Selection

Hint 
Generator

Figure 1: Given the instruction and three candidate
viewpoints, the navigation agent with the assistance of
the hint generator, produces descriptions of the visual
environment with three key elements: sub-instruction,
landmark ambiguity and targeted distinctive objects.

et al., 2019; Hong et al., 2020a; Li et al., 2021).
However, the majority of these efforts learn the
connection mainly supervised by navigation perfor-
mance, such as the distance to the destination, the
orientation selection (heading and elevation), and
the similarity between the given instruction and
the trajectory. While this helps teach the agent to
navigate, it does not directly enforce learning com-
prehensive textual and visual semantics. In fact,
learning visual semantics in the environment is cru-
cial not only for successfully completing navigation
tasks but also for the effective communication with
humans. For instance, the navigation agent should
correctly locate the navigation progress based on
the current visual views. Moreover, the naviga-
tion agent needs to adopt a global perspective of
the environment to investigate whether the navi-
gable viewpoints include the relevant landmarks
or whether the instruction is ambiguous. In any
case, the agent should be able to describe its tar-
geted viewpoint. Expecting the navigation agent
to obtain the above understanding solely through
navigation-related signals is challenging, and the
intermediate guidance is necessary.

To this end, we introduce a hint generator for
the VLN agent (NavHint), aiming to generate vi-
sual descriptions that serve as indirect supervision

92



to help the navigation agent obtain a better under-
standing of the visual environment (as depicted in
Fig. 1). When the agent navigates at each step,
the hint generator concurrently produces visual de-
scriptions that are consistent with the agent’s action
decision. The hints are designed based on the ratio-
nale underlying the navigation process, including
three aspects: Sub-instruction, Landmark Ambigu-
ity and Targeted Distinctive Objects. Specifically,
at each navigation step, first, the hint generator en-
courages the agent to report its navigation progress
by specifying which part of the sub-instruction it
is executing based on the current visual environ-
ment. As depicted in Fig. 1, the sub-instruction
“walk towards the wall” needs to be executed. Sec-
ond, the hint generator directs the agent to have
a global view of the entire environment and rec-
ognize the landmarks mentioned in the instruction
from all candidate viewpoints. The agent is tasked
with identifying potential challenges by assessing
the visibility of the landmarks and comparing the
landmarks shared among viewpoints. For instance,
in the given example, the landmark "wall" is am-
biguous as it appears in multiple views. Third, in
scenarios where challenges exist, the hint genera-
tor guides the agent in describing the distinctive
visual objects that only appear in the targeted view-
point, such as "large window with wooden blinds"
in view3 in Fig 1. This aids the agent in deeply
looking into the details of its selected viewpoint
while globally comparing it to other candidates.

The hint generator is designed as a Transformer-
based decoder that leverages visual output from the
navigation agent to produce corresponding hints.
This hint generator can be plugged into any VLN
agent as a language model conditioned on the
VLN models. To train the hint generator, we pro-
pose a synthetic navigation hint dataset based on
Room2Room (R2R) (Anderson et al., 2018) dataset.
Our dataset provides hints for each step of the tra-
jectory in the R2R dataset. Each hint description
includes sub-instruction, landmark ambiguity, and
targeted distinctive objects introduced above. The
dataset serves as an extra supervision to train the
navigation agent and the hint generator jointly. Be-
sides, our constructed dataset can be utilized to
explicitly analyze the navigation agent’s grounding
ability by assessing the quality of generated hints.

In summary, our contributions are as follows:
1. We leverage a language model conditioned on
the VLN models to design a hint generator that
can be plugged into any VLN agent. This hint

generator helps the agent develop a comprehensive
understanding of the visual environment.
2. We construct a synthetic hint dataset to provide
the agent with visual descriptions at each naviga-
tion step. The dataset serves as an indirect super-
vision for jointly training the navigation agent and
the hint generator.
3. We show that the hint generation improves the
agent’s navigation performance on the R2R and
R4R datasets. We also provide a detailed analysis
of the agent’s grounding ability by examining the
quality of the generated hints, thereby improving
the interpretability of the agent’s decisions.

2 Related Work

Navigation Instruction Following Anderson et al.
(2018) first extended the instruction following to
the photo-realistic simulated environments. Subse-
quent studies have emerged with an emphasis on
enhancing navigation performance through multi-
modal learning (Hong et al., 2020a; Wang et al.,
2023b; Zhang and Kordjamshidi, 2022a; An et al.,
2021; Zhang et al., 2021), map representation learn-
ing (Hong et al., 2023; Chen et al., 2022a; An
et al., 2023), or graph-based explorations (Zhu
et al., 2021; Wang et al., 2021; Chen et al., 2022b).
One line of effort has been to provide auxiliary rea-
soning tasks or pre-training proxy tasks to guide
the navigation agent to learn textual and visual rep-
resentations (Zhu et al., 2020; Chen et al., 2021;
Hao et al., 2020; Qiao et al., 2022; Zhang and Ko-
rdjamshidi, 2022b). AuxRN (Zhu et al., 2020) pro-
poses four auxiliary reasoning tasks to gain knowl-
edge of the navigation map and the consequences of
actions. However, most of those methods acquire
the textual and visual semantics from a wayfind-
ing perspective during navigation, which may be
insufficient for agents to understand the visual en-
vironment comprehensively. We address this issue
with our proposed hint generator that offers visual
descriptions to guide the navigation agent in learn-
ing visual semantics.
Language-Capable VLN Agent A few studies
attempt to design language-capable VLN agents
to improve the agent’s grounding ability. Most
of the work encourages the navigation agent to
reproduce the original instruction. For example,
LANA (Wang et al., 2023a) devises an agent that
executes human-written navigation commands and
provides route descriptions. Similarly, one of the
tasks in AuxRN (Zhu et al., 2020) is to retell the

93



Figure 2: Navigation Hint Dataset. An example of a
navigation hints with the landmark ambiguity of “Miss-
ing Landmarks”. The sub-instruction is“walk into the
hallway”( ), and the landmark “hallway” ( ) in the
instruction is observed in the view1 rather than target
view3, which can potentially mislead the navigation
agent. The target distinctive objects "wooden dining
table" and "marble countertop."( ) are then provided.
"Blue walls" ( ) is non-distinctive as it appears in both
view2 and view3.

trajectory. However, these approaches have limi-
tations because the original instruction can some-
times be inaccurate and confusing, as suggested in
the VLN-Trans (Zhang and Kordjamshidi, 2023).
Forcing the agent to reproduce the same instruction
in such cases can undermine the agent’s grounding
ability. Instead of only focusing on the original in-
struction, our proposed hint generator produces vi-
sual descriptions from a global perspective, thereby
enhancing the agent’s understanding of the visual
environment and improving its grounding ability.

3 Method

In the VLN problem setting, the agent is given
a natural language instruction, denoted as W =
{w1, w2, · · · , wl}, l is the length of the sen-
tence. At each navigation step, the agent perceives
panoramic views with 36 1 discrete images. There
are n candidate viewpoints that can be navigated to,
denoted as I = {I1, I2, · · · , In}. This task aims to
generate a trajectory following the given instruc-
tion. In the following section, we first present our
constructed navigation hint dataset. Then, we intro-
duce the hint generator. The navigation hint dataset
is used to train the navigation agent and the hint
generator jointly.

3.1 Navigation Hint Dataset
The purpose of constructing the navigation hint
dataset is to provide supervision for the hint gen-
erator to generate detailed visual description. The
navigation hint dataset is automatically generated

112 headings and 3 elevations with 30-degree intervals.

Figure 3: Statistics of different categories of landmark
ambiguity.

based on instruction and trajectory pairs from the
R2R dataset (Anderson et al., 2018). For every
step of the trajectory, we provide hints that mainly
include three key elements, as described below.
Sub-instruction is the first part of the hint that
pinpoints to the relevant part of the instruction (sub-
instruction) to be processed at the current step. We
obtain the sub-instructions and their corresponding
viewpoints from the FGR2R (Hong et al., 2020b)
dataset, which provides human annotations of sub-
instructions and the aligned viewpoints.

After obtaining the sub-instruction at each step,
we insert it into our hint template, which is "The
{sub-instruction} needs to be executed.". Guid-
ing the navigation agent to detect the related sub-
instruction at each step is crucial since it effectively
assists the agent in tracking its navigation progress.
Landmark Ambiguity is the second part of the
hint that describes the commonalities across multi-
ple views that can result in ambiguity during navi-
gation. This part of hint is achieved by examining
the shared landmarks mentioned in the instruction
among the candidate viewpoints.

To automatically generate this part of the hint for
building the dataset, we first use spaCy2 to extract
noun phrases from sub-instruction and use them
as landmarks. Then, we extract visual objects in
each candidate viewpoint using MiniGPT-4 (Zhu
et al., 2023)3 with a two-step textual prompting.
We choose visual objects generated by MiniGPT-
4 instead of Matterport3D object annotations be-
cause Matterport3D objects are pretty limited, with
only 40 object categories like “doors”, “walls”,
and “floors”. These generic objects are not suf-
ficient for resolving landmark ambiguity. More-
over, the absence of attribute annotations in Mat-
terport3D poses a challenge for landmark disam-
biguation, such as the differences between “wooden
table” and “glass table”. In contrast, MiniGPT-4
can generate such detailed attribute descriptions.

2https://spacy.io/
3https://minigpt-4.github.io/

94



Ambiguity Category Description Hints
Target Landmarks Landmarks only appear in the target. The {landmarks} are observed.

Multiple Landmarks Landmarks are visible in multiple viewpoints including the target viewpoint. The {landmarks} are observed in multiple viewpoints.
Missing Landmarks Landmarks are visible in other viewpoints except for the target viewpoint. The{landmarks} are misleading.
Invisible Landmark Landmarks are not visible in all viewpoints The{landmarks} are not observed.

No Landmarks No landmarks in sub-instruction. (e.g. “make a right turn”, “turn left”, and “go straight”) ∅

Table 1: Landmark Ambiguity. The col#1 and col#2 show the categories of landmark ambiguity and the correspond-
ing descriptions. The col#3 shows the template for generating the hint for each category.

Specifically, for each candidate viewpoint, we feed
MiniGPT-4 with the viewpoint image, asking “De-
scribe the details of the image.” and then “List
the objects in the image”. The generated text is
in free form, and we post-process it to retrieve a
list of extracted object descriptions. After obtain-
ing textual landmark names and visual objects, we
examine the shared landmarks among the candi-
date viewpoints. The presence of shared landmarks
can pose ambiguity for the navigation agent. We
categorize the ambiguity into: Target Landmarks,
Multiple Landmarks, Missing Landmarks, Invisible
Landmarks and No Landmark. and their descrip-
tions are in Table 1. Fig. 3 shows the statistics
of ambiguity of our navigation hint dataset. Most
cases are “Invisible Landmarks” or “Multiple Land-
marks", which is consistent with the argument in
VLN-trans (Zhang and Kordjamshidi, 2023) that in-
visible and non-distinctive landmarks cause issues
for the navigation agent in following instructions.

After identifying the category of landmark am-
biguity, we construct this part of the hint using the
corresponding templates in col #3 of Table 1. Iden-
tifying landmark ambiguity requires the navigation
agent to ground the mentioned landmark names
in the instruction to the visual objects in all can-
didate viewpoints. Guiding the navigation agent
to identify such detailed ambiguities can help en-
hance its understanding of the connection between
the instruction and the entire visual environment.

Targeted Distinctive Objects is the third part of
the hint that describes the distinctive visual objects
specific to the targeted view. The agent should
be able to justify its decision by describing the
distinction of the targeted view. We follow the ap-
proach of obtaining distinctive objects in the VLN-
Trans (Zhang and Kordjamshidi, 2023) that com-
pares the visual objects in the targeted and other
candidate viewpoints. The distinctive objects are
the ones that exclusively appear in the targeted
viewpoint and do not appear in other views.

The hint template for targeted distinctive objects
is “However, {the comma-separated list of distinc-
tive object names} are in the targeted view.”. We
use 3 distinctive objects at most. If the cases belong

to the challenge of “Target Landmark”, there is no
need to provide extra distinctive objects since the
landmark is already exclusive to the targeted view-
point. Describing distinctive objects is important to
obtain a global understanding of the visual environ-
ment by highlighting the differences between the
targeted viewpoint and other candidate viewpoints.

We collect hint for each step of trajectory to
construct our navigation hint dataset. More details
are in Appendix A.1.

3.2 VLN Agent with a Hint Generator

We propose a hint generator that can be plugged
into any navigation agent easily. We use
VLN⟳BERT (Hong et al., 2020c) as the base
model to illustrate our method but noted that the
hint generator is compatible with most of the cur-
rent agents. Fig. 4 shows the model architecture.
Text Encoder We use BERT (Vaswani et al., 2017)
to obtain initial text representation of instruction,
denoted as X = [x1, x2, · · · , xl].
Vision Encoder We follow previous works to con-
catenate image and relative orientation features
as vision features for each candidate viewpoint.
Specifically, we extract the image features from
ResNet-152 (He et al., 2016) pre-trained on the
Places365 dataset (Zhou et al., 2017). The orienta-
tion features are derived from the relative head-
ing denoted as α and the elevation denoted as
β. The orientation features are represented as
[sinα; cosα; sinβ; cosβ]. The vision features are
then passed through an MLP (Multilayer Percep-
tion) of Vision Encoder to obtain vision represen-
tation for each candidate viewpoint, denoted as
[v1, v2, · · · , vn].
Navigation Agent VLN⟳BERT is a cross-modal
Transformer model. Besides text and vision repre-
sentations, a state representation is introduced in
the model to store history information recurrently,
which is denoted as S. At the t-th navigation step,
the text representation X , the visual representa-
tion Vt and state representation St are input into
cross-modal Transformer layers, as follows,

X̂, Ŝt, V̂t = Cross_Attn(X, [St;Vt]), (1)

95



Vision
Encoder

Text
Encoder

Navigation
Module

Navigation Agent

MLP

Hint Generator

GPT-2

Auto-regression

Hint
Tokens

Action

Execute “walk into the hallway”.
The landmark “hallway” is
misleading observation. The
distinctive objects are “wooden 
dining table’’ and “marble
countertop” …

Hints

Figure 4: Model Architecture. We introduce a hint generator designed to help the navigation agent acquire a deep
understanding of the visual environment. The weighted vision representations ( ), used as image prefix, and the
instruction text representation, used as instruction prefix ( ), are input into a GPT2 decoder. The decoder generates
hints during navigation at each step. The hints include the three parts of sub-instruction ( ), landmark ambiguity
( ), and target distinctive objects ( ).

where X̂ , Ŝt, and V̂t are the learnt contextual text,
state representation, and visual representations, re-
spectively. Then we apply attention layer between
state representation Ŝt contextual vision represen-
tations V̂t as follows,

St+1, at = Attn(k = V̂t, q = Ŝt, v = V̂t), (2)

where St+1 is the updated state representation that
is passed to the next steps to convey the history. at
is the attention score over the navigable views and
serves as the action probability of the current step.
Hint Generator Inspired by the idea of prefix engi-
neering (Mokady et al., 2021) that uses the image
representation as the prefix of the text for the im-
age captioning task, we employ a decoder language
model (LM) and use the contextual visual repre-
sentation of the navigation agent and the original
instruction as the prefix. However, unlike the previ-
ous work, rather than just using one image as the
prefix, we input all images of candidate viewpoints
to encourage the hint generator to learn the global
relations among views.

Formally, we denote the hint at the i-th naviga-
tion step as Ci = {ci1, ci2, · · · , cij}, where j is the
length of the hint. Different from LANA (Wang
et al., 2023a) that generates route description af-
ter navigation, our hint generator provides a more
in-depth visual description at each step. Our ap-
proach requires the agent to possess a global and
deep visual understanding, which can be learnt
through the supervision from our navigation hint
dataset explained in Section 3.1. We obtain the
LM representation of the original instruction W
and the hint C as X ′ = {x′1, x′2, · · · , x′l} and
c = {c1, c2, · · · , cj} respectively. Since the se-
mantic structure of our auto-generated dataset can

be easily captured, we use a 1.5B-parameters de-
coder LM (GPT-2 large) in the hint generator. Note
that any larger decoder language model in the GPT
series can be employed.

We use the instruction text representation X ′ as
the instruction prefix representation. We use the
weighted vision representations output from the
navigation agent as the image prefix representation.
The weighted vision representation is obtained us-
ing action probability and the contextual vision

representations as ˆ̂
Vt = at ∗ V̂t. Then we simply

employ an MLP to map ˆ̂
Vt to LM token space. We

denote such MLP as F . We obtain prefix embed-
ding that is mapped from visual representation V̂
as follows,

p1, · · · , pk = F (
ˆ̂
Vt), (3)

where k is the prefix length, and p is the image
prefix representation. We concatenate the represen-
tation of image prefix p and instruction prefix X ′,
and combine them with the text representation of
hint C. The hint generator only decodes the hint
in an auto-regressive manner at each step. During
training, the parameters of both of MLP and the
LM in the hint generator and the navigator are up-
dated. The training objective is to maximize the
likelihood of the next hint token. The following
equation shows the loss of generating the j-th token
of the hint at the i-th step.

Lhint = −
∑

i,j

log pθ(c
i
j |pi1, · · · , pik,

x′1, · · · , x′l, cij , · · · , cij−1).

(4)

Training and Inference for the VLN Agent For
the navigation, we train the navigation with a mix-
ture of Imitation Learning (IL) and Reinforcement

96



Validation Unseen Test Unseen
Method NE ↓ SR ↑ SPL↑ sDTW↑ nDTW↑ NE ↓ SR ↑ SPL ↑

1 Seq-to-Seq (Anderson et al., 2018) 7.81 0.22 − − − 7.85 0.20 0.18
2 Self-Monitor (Ma et al., 2019) 5.52 0.45 0.32 − − 5.67 0.48 0.35
3 AuxRN (Ma et al., 2019) 5.63 0.51 0.46 − − − − −
4 VLN⟳BERT (Hong et al., 2020c) 3.93 0.63 0.57 − − 4.09 0.63 0.57
5 HAMT (ViT) (Chen et al., 2021) 3.97 0.66 0.61 − − 3.93 0.65 0.60
6 LANA (Wang et al., 2023a) − 0.66 0.60 − − − 0.64 0.59
7 VLN-SIG (ViT) (Li and Bansal, 2023) 3.37 0.68 0.62 0.59 0.70 − 0.65 0.60
8 VLN-trans (Zhang and Kordjamshidi, 2023) 3.34 0.69 0.63 0.60 0.70 3.94 0.66 0.60
9 EDrop∗ (Tan et al., 2019) 5.49 0.55 0.47 0.42 0.58 5.60 0.51 0.49
10 EDrop + Hint. (NavHint) 5.44 0.55 0.47 0.44 0.60 5.47 0.53 0.49
11 VLN⟳BERT++ (Zhang and Kordjamshidi, 2023) 3.40 0.67 0.61 0.58 0.69 4.02 0.63 0.58
12 VLN⟳BERT++ + Hint. (NavHint) 3.23 0.69 0.65 0.61 0.72 4.00 0.65 0.60

Table 2: Experimental results on R2R dataset. The best results are in bold font. VLN⟳BERT++ is the improved
version of VLN⟳BERT by pre-training the cross representations using a larger dataset (see Sec 4.2). ViT: uses
Vision Transformer representations. Hint.: uses our hint generator.

Learning (RL) (Tan et al., 2019). It consists of
the cross-entropy loss of the predicted probabil-
ity distribution against the ground-truth action and
a sampled action from the predicted distribution
to learn the designed rewards. In summary, the
navigation loss is as follows,

Lnav = −
∑

t

−α∗
t log(p

α
t )− λ

∑

t

αs
t log(p

α
t ), (5)

where λ is the hyperparameter to balance the two
components, α∗

t is the teacher action for IL, and αs
t

is sample action for RL. We jointly train the naviga-
tion agent with hint generator using the following
objective,

L = Lhint + Lnav. (6)

During inference of navigation, we use greedy
search to select an action with the highest probabil-
ity at each navigation step to generate a trajectory.
To generate hint, we utilize the trained weighted
visual representation and the original instruction
text representation as prompts and employ a greedy
search approach to generate the hints.

4 Experiment

4.1 Dataset and Evaluation Metrics
Dataset We evaluate our approach on R2R (An-
derson et al., 2018) and R4R datasets (Jain et al.,
2019), which are built upon Matterport3D simula-
tor (Anderson et al., 2018). R2R includes 21, 567
instructions and 7, 198 trajectories. R4R is an ex-
tension of R2R to combine the two adjacent tail-to-
head trajectories in R2R. The visual environments
in unseen sets are excluded in the training sets.
Evaluation Metrics Three main metrics are used to
evaluate navigation wayfinding performance (An-
derson et al., 2018). (1) Navigation Error (NE) (2)
Success Rate (SR) (3) Success Rate Weighted Path

Length (SPL). Another three metrics measure the
fidelity between the predicted and the ground-truth
trajectories. (4) Coverage Weighted by Length
Score (CLS) (Jain et al., 2019) (5) normalized Dy-
namic Time Warping (nDTW) (Ilharco et al., 2019)
(6) Normalized Dynamic Time Warping weighted
by Success Rate (sDTW). More details are in Ap-
pendix A.2 and A.3.

4.2 Implementation Details

We use pre-trained VLN⟳BERT++ (Zhang and
Kordjamshidi, 2023) to initialize our navigation
model. VLN⟳BERT++ further trains the pre-
trained weights in VLN⟳BERT (Hong et al.,
2020c; Hao et al., 2020) on a large image-text-
action dataset including RXR (Ku et al., 2020),
Marky-mT5 (Wang et al., 2022), and SyFis (Zhang
and Kordjamshidi, 2023). The dimensions of both
BERT and GPT text representations are 768-d. In
the training, we conducted 300K iterations on an
NVIDIA RTX GPU (20 hours), with a batch size of
8 and a learning rate of 1e−5. λ in Eq. 5 is 0.2. We
set the maximum prefix length for each image as 10
for the hint generator and the number of generated
tokens as 80. The best model is selected according
to performance on val unseen split. Please check
our code 4 for the implementation.

4.3 Experimental Results

Table 2 shows the performance on validation un-
seen and test of the R2R dataset in a single-run
setting where the navigation agent traverses with-
out backtracking and pre-exploring. To verify
the adaptability of our approach, we evaluate it us-
ing both LSTM-based and Transformer-based nav-
igation agents. Since Transformer-based methods

4https://github.com/HLR/NavHint.git

97



Method NE↓ SR↑ SPL↑ CLS↑ sDTW↑
1 OAAM (Qi et al., 2020) 13.80 0.29 0.18 0.34 0.11
2 RelGraph (Hong et al., 2020a) 7.55 0.35 0.25 0.37 0.18
3 NvEM (An et al., 2021) 6.80 0.38 0.28 0.41 0.20
4 VLN⟳BERT (Hong et al., 2020c) 6.48 0.43 0.32 0.42 0.21
5 CITL (Liang et al., 2022) 6.42 0.44 0.35 0.39 0.23
6 VLN-Trans (Zhang and Kordjamshidi, 2023) 5.87 0.46 0.36 0.45 0.25
7 VLN⟳BERT++ (Zhang and Kordjamshidi, 2023) 6.33 0.44 0.34 0.43 0.23
8 VLN⟳BERT++ + Hint. (NavHint) 6.04 0.46 0.36 0.45 0.25

Table 3: Results on R4R validation unseen dataset.

are pre-trained on large vision-language datasets
and have a more complex model architecture, they
achieve a higher performance than LSTM-based
methods. For the LSTM-based model, we use
EDrop (Tan et al., 2019) which uses CLIP (Radford
et al., 2021) visual representations without aug-
mented data during training. For the Transformer-
based model, we use the VLN⟳BERT++ (row#11)
as the baseline.

Row#1 to row#3 in Table 2 show other LSTM-
based methods and row#4 to row#8 are the SOTA
Transformer-based methods. Row#9 shows the per-
formance of the LSTM baseline EDrop. Row#10
shows the results after equipping the EDrop with
our designed hint generator. The improved sDTW
and nDTW on the validation unseen proves that the
hint generator helps the navigation agent follow the
instructions. Moreover, our hint generator on top
of the VLN⟳BERT++ (row#12) significantly im-
proves both wayfinding metrics (SP and SPL) and
fidelity metrics (sDTW and nDTW) of the base-
line model, indicating that our hint generator not
only assists the agent in reaching the correct desti-
nation but also encourages the agent to follow the
original instructions. Improving both LSTM-based
and Transformer-based navigation agents shows
the generalization ability of the navigation agent
with our designed hint generator.

Table 3 shows the results on the unseen valida-
tion of the R4R dataset. We use VLN⟳BERT++

as our baseline model (row#7). Row#1 to row#3
are using LSTM-model, and row#4 to row#6 are
using Transformer-based models. The result of
our method (row#8) shows that we can improve
SPL, sDTW, and CLS, that is, improving both
the wayfinding and fidelity of the baseline mod-
els. These results are consistent with the improve-
ments on the R2R dataset. Though the VLN-Trans
(row#6) (SOTA) is very competitive, we addition-
ally provide hints that can be used for explicitly
analyzing the agent’s decisions instead of implicit
sub-instruction learning designed in VLN-Trans.

4.4 Ablation Study

Table 5 reports the ablation analysis. From row#1
to row#3, we individually include sub-instruction,

Model Val Seen Val Unseen
Bleu-1 Bleu-4 Bleu-1 Bleu-4

EDrop + Hint. (ours) 0.74 0.62 0.72 0.60
VLN⟳BERT+++ Hint. (ours) 0.76 0.64 0.74 0.62

Table 4: Bleu score for the generated sub-instruction on
the R2R dataset.

Method Hints Val Unseen
Sub. L-A. TD-Obj. Obj. SR↑ SPL↑ nDTW↑

Baseline 0.665 0.607 0.685
1 ✔ 0.671 0.612 0.690
2 ✔ 0.673 0.613 0.687
3 ✔ 0.677 0.624 0.702
4 ✔ 0.676 0.621 0.698
5 ✔ ✔ 0.674 0.614 0.709
6 ✔ ✔ ✔ 0.681 0.632 0.694
7 ✔ ✔ ✔ 0.692 0.647 0.724

Table 5: Ablation study, where Baseline is VLN⟳BERT++.
Sub.:sub-instruction; L-A.:Landmark Ambiguity; TD-Obj:
Target Distinctive Objects. Obj:Top-3 objects.

landmark ambiguity, and targeted distinctive ob-
jects to the hint. All navigation performance met-
rics improve gradually compared to the baseline.
In another experiment (row#4), we attempt to de-
scribe the visual environment by identifying only
top-3 recognized objects (using MiniGPT-4) in the
targeted viewpoint without differing them from
other viewpoints. The navigation results still im-
prove, indicating that visual descriptions of the
objects benefit the overall navigation performance.
Row#5 shows that combining sub-instruction and
landmark ambiguity further improves the baseline,
particularly in the nDTW metric. In row#6, when
we combine sub-instruction, landmark ambiguity
and top-3 objects, we observe improvement in the
goal-related metrics (SR and SPL), but the model’s
ability to faithfully follow the instruction is some-
what compromised (lower nDTW). The best result
is obtained when we replace the above top-3 ob-
jects with distinctive ones (row#7), indicating our
designed hint’s effectiveness in describing the tar-
geted view from a global perspective.

4.5 Generated Hints Analysis

In this section, we assess the content of each part of
the generated hints on the R2R validation dataset
to analyze agent’s grounding ability.
Sub-instruction Analysis We use Bleu score (Pa-
pineni et al., 2002) as an evaluation metric to as-
sess whether the navigation agent can identify sub-
instruction accurately. We conduct experiments on
both LSTM-based and Transformer-based naviga-
tion agents, as shown in Table 4. The generated
sub-instruction from the Transformer-based naviga-
tion agent can obtain a relatively high Bleu score
compared to the LSTM-based agent. This result

98



31%

54%

40%

72%

0

500

1000

1500

2000

2500

target
visible

multi
visible

missing
visible

not
visible

 TRUE TOTAL

50%

61%

45%

70%

0

100

200

300

400

500

600

700

target
visible

multi
visible

missing
visible

not
visible

TRUE TOTAL

30%
36%

32%
42%

0

500

1000

1500

2000

2500

target
visible

multi
visible

missing
visible

not
visible

TRUE TOTAL

(a) EDrop+Hint. (b) VLN⟳BERT+++Hint. (c) Correct Sub.

Figure 5: Accuracy of the generated landmark ambiguity.
Sub.: Sub-instruction.

0

0.1

0.2

0.3

0.4

0.5

multiple
landmarks

missing
landmarks

invisible
landmarks

Correct Action Wrong Action

0.8

0.85

0.9

0.95

1

multiple
landmarks

missing
landmarks

invisible
landmarks

Correct Action Wrong Action

(a) Exact Matching (b) Object Matching

Figure 6: Accuracy of the generated distinctive objects for
each landmark ambiguity in the targeted viewpoint.

demonstrates that a more robust navigation agent
achieves a stronger alignment between the instruc-
tion and visual modality for identifying the relevant
part of the instruction to track the progress.
Landmark Ambiguity Analysis We assess the
accuracy of four categories of landmark ambigu-
ity in the generated hints. Specifically, We extract
the part of the landmark ambiguity from the gen-
erated hint and check its accuracy in the visual
environment. In Figure 4, the TOTAL in the y-axis
shows the total number of navigation steps that
include each ambiguity category, shown on the x-
axis. The TRUE (green) indicates the percentage
of navigation steps when the corresponding ambi-
guity truly exists. We evaluate both LSTM-based
and Transformer-based agents, and the result shows
that Transformer-based agents can achieve higher
accuracy of landmark ambiguity. We conclude that
accurate landmark ambiguity detection is positively
correlated with better navigation performance. In
Figure 4(c), we evaluate the generated hint for the
examples in which the sub-instruction is generated
correctly, as indicated by a Bleu-4 score of 1.0. In
those examples, the accuracy of identifying each
category of landmark ambiguity is also higher. This
result shows accurately locating the sub-instruction
positively impacts landmark ambiguity detection.
Targeted Distinctive Objects Analysis We report
the accuracy of identifying the targeted distinctive
objects in the generated hints when landmark am-
biguity exists, as shown in Fig. 6. The generated
hints are from the model of VLN⟳BERT++ with
our designed hint generator. We provide two types
of comparisons, exact phrase matching and object
token matching while performing both wrong and
right actions. Exact matching evaluates the detec-

Figure 7: Qualitative examples. The green and orange
arrows show the ground-truth and the predicted view-
points, respectively.

tion of distinctive object tokens and the attribute
descriptions in the whole referring phrase. Object
matching only evaluates the detection of distinctive
object tokens. The result shows that the accuracy
in generating distinctive objects is generally higher
when the action is correct than when it is wrong.
Also, the agent tends to generate distinctive objects
that align with its targeted viewpoint, as indicated
by an accuracy exceeding 90%, even when the
action is incorrect. The lower accuracy of exact
matching also aligns with the fact that generating
the whole referring expression, including the cor-
rect attributes, is more challenging.

4.6 Qualitative Examples

Fig. 7 demonstrates a few examples of the gener-
ated descriptions. The first two examples show
successful cases where the agent makes a correct
decision. The first example shows the agent can ac-
curately identify the sub-instruction and notice the
ambiguous landmark “kitchen”. Then, it correctly
pinpoints the distinctive object “stove”, which only
appears in the target viewpoint. In fact, our targeted
distinctive object design can help connect the spe-
cific object (e.g. stove, refrigerator, counter table)
to more general scene objects (e.g. kitchen). Also,
the second example shows the agent accurately
points out the “table” in the instruction that appears

99



in multiple viewpoints and refers to the “sideboard”
in the target viewpoint. The third example shows a
failure case in which the agent makes a wrong deci-
sion. The sub-instruction is correctly identified, but
the agent should turn around towards the counter
table and proceed to the sofa rather than walk to
the sofa directly. This further indicates that our
descriptor pushes the model to focus on landmarks
directly and ignore the directions and motions in
the instruction. Despite this, our model can gener-
ate a description consistent with its selection. More
examples are in the Appendix A.4.

5 Conclusion

In this paper, we equip the navigation agent with a
hint generator to generate visual descriptions dur-
ing navigation, which helps the agent’s understand-
ing of the visual environment. To train the hint
generator, we create a navigation hint dataset that
provides comprehensive supervision for training
the agent. During navigation, the agent generates
natural language descriptions about its visual en-
vironment at each step, including comparing vari-
ous views and explaining ambiguities in recogniz-
ing the target destination. Empirical results show
that detailed visual description generation improves
both navigation performance and the interpretabil-
ity of actions taken by the navigation agent.

6 Limitations

We mainly summarize the following limitations.
First, although we employ the GPT2 language de-
coder, more recent and powerful GPT-series lan-
guage decoders are now available and could be
utilized. Exploring these advanced language de-
coders could potentially enhance the performance
of our approach. Second, we do not include more
advanced vision representations, such as ViT rep-
resentation, to train the navigation agent. We can
surpass other methods using ResNet, but it would
be interesting to experiment with those different vi-
sual representations to generate better hints. Third,
utilizing object visual descriptions from MiniGPT-
4 may entail hallucination issues, which is a general
challenge of VLMs. However, in our specific us-
age of MiniGPT4, we barely face this issue in the
experiments.

7 Acknowledgement

This project is supported by the National Science
Foundation (NSF) CAREER award 2028626 and

partially supported by the Office of Naval Research
(ONR) grant N00014-20-1-2005 and grant N00014-
23-1-2417. Any opinions, findings, and conclu-
sions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the views of the National Science Founda-
tion nor the Office of Naval Research. We thank
all reviewers for their thoughtful comments and
suggestions.

References
Dong An, Yuankai Qi, Yan Huang, Qi Wu, Liang Wang,

and Tieniu Tan. 2021. Neighbor-view enhanced
model for vision and language navigation. In Pro-
ceedings of the 29th ACM International Conference
on Multimedia, pages 5101–5109.

Dong An, Hanqing Wang, Wenguan Wang, Zun Wang,
Yan Huang, Keji He, and Liang Wang. 2023. Etpnav:
Evolving topological planning for vision-language
navigation in continuous environments. arXiv
preprint arXiv:2304.03047.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3674–
3683.

Peihao Chen, Dongyu Ji, Kunyang Lin, Runhao Zeng,
Thomas Li, Mingkui Tan, and Chuang Gan. 2022a.
Weakly-supervised multi-granularity map learning
for vision-and-language navigation. Advances in
Neural Information Processing Systems, 35:38149–
38161.

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid,
and Ivan Laptev. 2021. History aware multimodal
transformer for vision-and-language navigation. Ad-
vances in neural information processing systems,
34:5834–5847.

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi,
Cordelia Schmid, and Ivan Laptev. 2022b. Think
global, act local: Dual-scale graph transformer for
vision-and-language navigation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16537–16547.

Jonathan Francis, Nariaki Kitamura, Felix Labelle, Xi-
aopeng Lu, Ingrid Navarro, and Jean Oh. 2022. Core
challenges in embodied vision-language planning.
Journal of Artificial Intelligence Research, 74:459–
515.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,

100



and Trevor Darrell. 2018. Speaker-follower mod-
els for vision-and-language navigation. Advances in
Neural Information Processing Systems, 31.

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin,
and Jianfeng Gao. 2020. Towards learning a generic
agent for vision-and-language navigation via pre-
training. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 13137–13146.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Yicong Hong, Cristian Rodriguez, Yuankai Qi, Qi Wu,
and Stephen Gould. 2020a. Language and visual
entity relationship graph for agent navigation. Ad-
vances in Neural Information Processing Systems,
33:7685–7696.

Yicong Hong, Cristian Rodriguez-Opazo, Qi Wu, and
Stephen Gould. 2020b. Sub-instruction aware
vision-and-language navigation. arXiv preprint
arXiv:2004.02707.

Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-
Opazo, and Stephen Gould. 2020c. A recurrent
vision-and-language bert for navigation. arXiv
preprint arXiv:2011.13922.

Yicong Hong, Yang Zhou, Ruiyi Zhang, Franck Der-
noncourt, Trung Bui, Stephen Gould, and Hao Tan.
2023. Learning navigational visual representations
with semantic map supervision. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 3055–3067.

Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie,
and Jason Baldridge. 2019. General evaluation for in-
struction conditioned navigation using dynamic time
warping. arXiv preprint arXiv:1907.05446.

Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. 2019.
Stay on the path: Instruction fidelity in vision-and-
language navigation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 1862–1872.

Alexander Ku, Peter Anderson, Roma Patel, Eugene
Ie, and Jason Baldridge. 2020. Room-across-room:
Multilingual vision-and-language navigation with
dense spatiotemporal grounding. arXiv preprint
arXiv:2010.07954.

Jialu Li and Mohit Bansal. 2023. Improving vision-and-
language navigation by generating future-view image
semantics. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10803–10812.

Jialu Li, Hao Tan, and Mohit Bansal. 2021. Improv-
ing cross-modal alignment in vision language nav-
igation via syntactic information. arXiv preprint
arXiv:2104.09580.

Jialu Li, Hao Tan, and Mohit Bansal. 2022. Envedit:
Environment editing for vision-and-language naviga-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
15407–15417.

Xiwen Liang, Fengda Zhu, Yi Zhu, Bingqian Lin,
Bing Wang, and Xiaodan Liang. 2022. Contrastive
instruction-trajectory learning for vision-language
navigation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 1592–
1600.

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan Al-
Regib, Zsolt Kira, Richard Socher, and Caiming
Xiong. 2019. Self-monitoring navigation agent
via auxiliary progress estimation. arXiv preprint
arXiv:1901.03035.

Ron Mokady, Amir Hertz, and Amit H Bermano. 2021.
Clipcap: Clip prefix for image captioning. arXiv
preprint arXiv:2111.09734.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Yuankai Qi, Zizheng Pan, Shengping Zhang, Anton
van den Hengel, and Qi Wu. 2020. Object-and-action
aware model for visual language navigation. In Com-
puter Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part X 16, pages 303–317. Springer.

Yanyuan Qiao, Yuankai Qi, Yicong Hong, Zheng Yu,
Peng Wang, and Qi Wu. 2022. Hop: history-and-
order aware pre-training for vision-and-language nav-
igation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
15418–15427.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Hao Tan, Licheng Yu, and Mohit Bansal. 2019. Learn-
ing to navigate unseen environments: Back trans-
lation with environmental dropout. arXiv preprint
arXiv:1904.04195.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

101



Hanqing Wang, Wenguan Wang, Wei Liang, Caiming
Xiong, and Jianbing Shen. 2021. Structured scene
memory for vision-language navigation. In Proceed-
ings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, pages 8455–8464.

Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh
Birodkar, Aleksandra Faust, Izzeddin Gur, Natasha
Jaques, Austin Waters, Jason Baldridge, and Peter
Anderson. 2022. Less is more: Generating grounded
navigation instructions from landmarks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 15428–15438.

Xiaohan Wang, Wenguan Wang, Jiayi Shao, and
Yi Yang. 2023a. Lana: A language-capable navigator
for instruction following and generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 19048–19058.

Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu,
Mohit Bansal, Stephen Gould, Hao Tan, and
Yu Qiao. 2023b. Scaling data generation in vision-
and-language navigation. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 12009–12020.

Yue Zhang, Quan Guo, and Parisa Kordjamshidi. 2021.
Towards navigation by reasoning over spatial config-
urations. arXiv preprint arXiv:2105.06839.

Yue Zhang and Parisa Kordjamshidi. 2022a. Explicit
object relation alignment for vision and language
navigation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
Student Research Workshop, pages 322–331.

Yue Zhang and Parisa Kordjamshidi. 2022b. Lo-
vis: Learning orientation and visual signals for
vision and language navigation. arXiv preprint
arXiv:2209.12723.

Yue Zhang and Parisa Kordjamshidi. 2023. Vln-trans:
Translator for the vision and language navigation
agent. arXiv preprint arXiv:2302.09230.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude
Oliva, and Antonio Torralba. 2017. Places: A 10
million image database for scene recognition. IEEE
transactions on pattern analysis and machine intelli-
gence, 40(6):1452–1464.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiaojun
Chang, and Xiaodan Liang. 2021. Soon: Scenario
oriented object navigation with graph-based explo-
ration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
12689–12699.

Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan
Liang. 2020. Vision-language navigation with self-
supervised auxiliary reasoning tasks. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10012–10022.

102



A Appendix

A.1 Statistics of the VLN Hint Dataset

We built VLN explanation dataset upon R2R
dataset. We split our explanation dataset into train,
validation seen, and validation unseen sets accord-
ing to R2R. We create explanation for each navi-
gation step of trajectory given the corresponding
instruction. For train set, there are 4, 675 trajecto-
ries, and we create 69, 969 explanation in 61 visual
scenes. For validation seen set, there are 340 tra-
jectories, and we create 5, 175 explanations in 61
visual scenes. For validation unseen set, there are
783 trajectories, and we create 11, 664 explanations
in 11 visual scenes.

A.2 Dataset

We evaluate our approach on R2R (Anderson et al.,
2018) and R4R datasets (Jain et al., 2019), which
are built upon Matterport3D simulator (Anderson
et al., 2018). R2R includes 21, 567 instructions
and 7198 trajectories. The dataset has been
partitioned into four sets: train (61 scenes, 14, 039
instructions), validation seen (61 scenes, 1, 021
instructions), validation unseen (11 scenes, 2, 349
instructions), and test unseen sets (18 scenes,
4, 173 instructions). R4R is an extension of R2R to
combine the two adjacent tail-to-head trajectories
in R2R. It contains three sets: train (61 scenes,
233, 613 instructions), validation seen (61 scenes,
1, 035 instructions), validation unseen (11 scenes,
45, 162 instructions). The scenes in unseen sets are
not trained.

A.3 Evaluation Metrics

Three main metrics are used to evaluate navigation
wayfinding performance (Anderson et al., 2018):
(1) Navigation Error (NE): the mean of the short-
est path distance between the agent’s final position
and the goal destination. (2) Success Rate (SR):
the percentage of the predicted final position be-
ing within 3 meters from the goal destination. (3)
Success Rate Weighted Path Length (SPL): normal-
izes success rate by trajectory length. Another three
metrics are used to measure the fidelity between the
predicted and the ground-truth trajectory. (4) Cov-
erage Weighted by Length Score (CLS) (Jain et al.,
2019) (6) nDTW (Ilharco et al., 2019): Normal-
ized Dynamic Time Warping: penalizes deviations
from the ground-truth trajectories. (6) Normalized
Dynamic Time Warping weighted by Success Rate

Figure 8: More qualitative examples. The green and
orange arrows show the ground-truth and the predicted
viewpoints, respectively.

(sDTW) (Ilharco et al., 2019): penalizes deviations
from the ground-truth trajectories and also consid-
ers the success rate.

A.4 More Qualitative Examples
We present additional qualitative examples in this
section. The first three are successful cases where
the navigation agent makes correct actions, and the
hint generator accurately generates sub-instruction,
landmark ambiguity and distinctive objects in the
instruction. The last two examples are failure cases.
Despite incorrect actions, the agent still generates
accurate distinctive objects within its selected view-
point. The failures might come from inaccuracies
in landmark extraction, which subsequently affect
ambiguity checking.

103


