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Abstract

Large language models (LLMs) have demon-
strated strong reasoning abilities when
prompted to generate chain-of-thought (CoT)
explanations alongside answers. However,
previous research on evaluating LLMs has
solely focused on answer accuracy, neglecting
the correctness of the generated CoT. In this
paper, we delve deeper into the CoT reasoning
capabilities of LLMs in multi-hop question
answering by utilizing knowledge graphs
(KGs). We propose a novel discriminative
and generative CoT evaluation paradigm to
assess LLMs’ knowledge of reasoning and the
accuracy of the generated CoT. Through ex-
periments conducted on 5 different families of
LLMs across 2 multi-hop question-answering
datasets, we find that LLMs possess sufficient
knowledge to perform reasoning. However,
there exists a significant disparity between
answer accuracy and faithfulness of the CoT
generated by LLMs, indicating that they often
arrive at correct answers through incorrect
reasoning. 1

1 Introduction

While large language models (LLMs) have shown
great potential as general-purpose task solvers, they
tend to be unreliable reasoners (Bang et al., 2023).
Prior research suggests that LLMs demonstrate
reasoning-like behaviors as the number of param-
eters increases (Wei et al., 2022). Notably, Chain-
of-Thought (CoT) prompting, where LLMs are ex-
plicitly instructed to decompose questions into a se-
quence of logical steps before generating answers,
has achieved impressive performance in various
reasoning tasks (Wei et al., 2022; Kojima et al.,
2022). However, as LLMs function as black-box
models, the mechanism behind their reasoning pro-
cesses remains largely unknown.

∗Equal contribution
1Code and data are available at: https://github.com/

MinhVuong2000/LLMReasonCert

Factual Errors
Step 1: Justin Bieber is the child of James Brown.
Step 2: James Brown is the father of Teddy Brown.
Thus, the brother of Justin Bieber is Teddy Brown.

Question: Who is the brother of Justin Bieber?

Reasoning Coherence
Step 1: Justin Bieber is the child of Jeremy Bieber.
Step 2: Jaxon Bieber was born in Canada. 
Thus, the brother of Justin Bieber is Jaxon Bieber.

Answer Correctness
Step 1: Justin Bieber is the child of Jeremy Bieber.
Step 2: Jeremy Bieber lives in Canada.
Thus, the nationality of Justin Bieber is Canadian.

Faithful CoT
Step 1: Justin Biber is the child of Jeremy Bieber.
Step 2: Jeremy Bieber. is the father of Jaxon Bieber.
Thus, the brother of Justin Bieber is Jaxon Bieber.

Grounded by KGs.

Knowledge Graph (KGs)

Reasoning Path

Let's think it step by step.

Figure 1: Examples of different reasoning errors and a
faithful CoT grounded by knowledge graph.

Previous research measures the reasoning abil-
ity of LLMs by reporting their performance, e.g.
accuracy, on the downstream tasks that require rea-
soning (Huang and Chang, 2023). This evalua-
tion strategy cannot provide a direct assessment
of the reasoning steps. Hence, it remains unclear
whether their strong performance is the result of
true reasoning ability or simple heuristics. Recent
studies on analyzing CoT reasoning introduce per-
turbations to prompts, including the injection of
invalid reasoning paths, incorrect facts, or the ad-
dition of arbitrary symbols to the few-shot exam-
ples (Madaan et al., 2023; Wang et al., 2023a; Ye
et al., 2023). These studies show that various as-
pects of prompts, such as query relevance, style pat-
terns, and the correct ordering of reasoning steps,
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are more important than the validity of reasoning
in the in-context demonstrations. While reveal-
ing interesting insights into the reasoning process
of LLMs, prompt perturbation-based methods still
cannot directly evaluate the correctness of reason-
ing steps. Automatically verifying CoT reasoning
steps is still an open challenge due to the unstruc-
tured nature of its freeform rationales.

In this paper, we go beyond evaluating only the
final answers to directly analyzing the intermedi-
ate reasoning steps generated by CoT prompting
in multi-hop question-answering (QA) tasks. To
tackle the unstructured nature of CoT, we intro-
duce a novel evaluation framework that grounds
LLMs’ responses in knowledge graphs (KGs) and
verify whether it forms a faithful path to the given
KGs. Before evaluating more open-ended genera-
tive reasoning skills, we design discriminative tests
to assess whether LLMs can identify faithful rea-
soning paths when perturbed with factual errors,
incoherent, and misguided reasoning steps. Our
discriminative evaluation results reveal that LLMs
possess certain knowledge of valid reasoning un-
der sufficient knowledge conditions. Building on
this observation, we further propose the genera-
tive evaluation to measure the reasoning ability of
LLMs and detect fine-grained reasoning errors (see
Figure 1). In the generative evaluation, we instruct
LLMs to generate CoT in a structured format, en-
abling us to parse their responses into a structured
reasoning path and validate against KGs. Our ab-
lation study with human experts shows that our
framework achieves good accuracy in reasoning
path retrieval and evaluation.

We use the proposed evaluation framework to
understand the CoT reasoning process of five state-
of-the-art LLMs on two complex QA tasks, which
require performing multi-step reasoning to answer
the questions. Our study reveals that

• LLMs contain sufficient knowledge to con-
duct reasoning. However, they are still limited
in considering the coherence of the reasoning
and hallucinations during CoT generation.

• The correct final answer may not necessarily
follow from faithful reasoning. We observe a
significant gap between answer accuracy and
reasoning faithfulness. It highlights the neces-
sity of directly evaluating the reasoning steps
rather than solely scoring the final answers.

• The performance gap between the final an-

swer and reasoning worsens as the model size
increases. As the answer accuracy also in-
creases with the model size, it suggests that
the bigger models may have the knowledge of
the final answer without the need to perform
reasoning.

• Better prompting strategies such as self-
consistency or instructing LLMs with plan-
ning can further improve both the final answer
and reasoning faithfulness.

2 Preliminaries

Chain-of-thought (CoT) Reasoning Chain-of-
thought (CoT) (Wei et al., 2022) is a reasoning
framework that prompts LLMs to generate a step-
by-step reasoning process S = {s1, s2, . . . , sn} to
a question q, where si is a natural language sen-
tence describing a step in the reasoning process.

Faithful CoT A faithful CoT should satisfy
the following properties (Creswell and Shanahan,
2022): (i) there are no factual errors, (ii) the rea-
soning process is coherent (i.e., the conclusion of
previous step si−1 should be the prerequisite of the
current step si), (iii) the reasoning process leads
to the correct answers. Examples of violations of
these properties are shown in Figure 1.

Knowledge Graphs (KGs) Knowledge graphs
(KGs) are structured representations of knowledge
that contain abundant facts in the form of triples
G = {(eh, r, et) | eh, et ∈ E , r ∈ R}, where eh
and et are head and tail entities, and r is the relation
between them; E andR are the entity and relation
sets respectively. A path in KGs is a sequence of
triples: P = e0

r1−→ e1
r2−→ . . .

rl−→ el, connecting
the entity e0 to the entity el.

Reasoning Paths Given a question q and the an-
swer a, a valid reasoning path P ∗ = eq

r1−→ e1
r2−→

. . .
rl−→ ea is a path that connects the topic entity eq

of q to the answer entity ea of a in KGs. The rea-
soning path P ∗ expresses a valid reasoning process
for answering the question according to the KG.
Example 1. Given a question “Who is the brother
of Justin Biber?”, we can find a valid reasoning
path P ∗ in KGs as: Justin Bieber child_of−−−−−→
Jeremy Bieber father_of−−−−−−→ Jaxon Bieber. It in-
dicates: (i) Justin Bieber is the child of Jeremy
Bieber, and (ii) Jeremy Bieber is the father of Jaxon
Bieber. Thus, the brother of Justin Bieber is Jaxon
Bieber.
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Faithful CoT Grounded by KGs We verify
the faithfulness of the LLMs’ CoT reasoning by
grounding it with KGs. By treating each reasoning
step as a triple in KGs, we convert the CoT into a
reasoning path. If a reasoning path starting from the
question and ending at the answers exists in KGs,
we deem the CoT of LLMs faithful. A grounded
example is shown at the bottom of Figure 1.

3 Evaluating the CoT Reasoning of LLMs

We propose a framework to evaluate the CoT rea-
soning process of LLMs with the help of KGs.
Specifically, we propose two evaluation modules:
discriminative evaluation and generative evalua-
tion. The discriminative evaluation investigates
whether LLMs possess enough knowledge for con-
ducting faithful reasoning and the generative evalu-
ation further analyzes whether LLMs can provide
faithful reasoning process during CoT generation.
The overall framework is shown in Figure 3.

3.1 Discriminative Evaluation

The discriminative evaluation aims to analyze
whether the LLMs possess enough knowledge to
conduct faithful reasoning. i.e. whether it can
recognize certain properties of faithful reasoning,
including no factual error, coherence and leading to
correct answers. We hypothesize that if the LLMs
possess sufficient knowledge for faithful reasoning,
they should be able to distinguish valid reasoning
paths from invalid ones given the question and an-
swer. Following previous studies that evaluate the
factual knowledge inside LLMs (Luo et al., 2023b),
we feed both the valid and invalid reasoning paths
to the LLMs and ask them to predict the validity
of these paths. This allows us to assess the rea-
soning knowledge inside LLMs by analyzing their
prediction accuracy. We carefully design prompts
to describe the task and instruct LLMs to provide
the prediction. Figure 2 shows an example of the
zero-shot prompt template.

A valid reasoning path is a sequence of triples
that can be used to derive the answer of given ques-
tion. The valid reasoning paths are extracted from
the ground-truth reasoning paths2 P ∗ ∈ P∗. We
generate three types of invalid reasoning paths P ′

by breaking specific properties of a faithful CoT:

• Factual error reasoning path: we construct
2The ground-truth reasoning paths are constructed from

the SPARQL queries provided in the datasets. The detailed
construction is shown in Appendix A.

Zero-shot Discriminative Evaluation Prompt

A reasoning path is a sequence of triples that can
be used to derive the answer of given question.
Given this reasoning path, do you think this is a
valid path to derive the answer of given question?
If yes please answer "YES", otherwise please an-
swer "NO

Question:
<Question>

Answer:
<Answer>

Reasoning path:
<Reasoning Path>

Figure 2: Discriminative Evaluation Prompt.
<Question> indicates the question, <Answer> denotes
the corresponding answer, and <Reasoning Path>
denotes the input reasoning path, which is verbalized as
a structured sentence

the invalid paths with factual errors by ran-
domly corrupting entities within the valid rea-
soning path. This would result in some factual
errors in the reasoning path, which are not
valid for answering the question.

• Incoherent reasoning path: we shuffle the
triples of valid paths to construct an incoher-
ent reasoning path. Even though the facts
within the paths are accurate, the overall co-
herence of the path is compromised.

• Misguided reasoning path: we randomly
sample the paths starting from other questions
in KGs. These paths are factually correct and
coherent, but they are not related to the ques-
tions and lead to incorrect answers.

To thoroughly assess the reasoning abilities of
LLMs, in addition to the zero-shot prompt, we have
also developed few-shot, zero-shot CoT, and few-
shot CoT prompts. The details of these prompts
are shown in Appendix F.1.

Findings The results of the discriminative assess-
ment are shown in §5.1. From the results, we can
conclude that LLMs possess enough knowledge
to identify factual errors as well as reasoning path
relatedness, but have limitations in considering the
coherence of reasoning paths and CoT generation.
Therefore, we propose the generative evaluation to
further assess the faithfulness of CoT reasoning in
LLMs’ generation.
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Justin
Bieber

Jazzy Bieber

has_sister

Jaxon
Bieber

Jeremy Bieber
child_of father_of

sister_of
Erin Bieber

step_child_of mother _of

Canada

born_in

Singer

is_a

Question: Who is the brother of Justin Bieber?
Answer: Jaxon Bieber

Large Language Models (LLMs)

Ground-truth Reasoning Paths

Evaluation

YES/NO

① LLM
Discrimination

Large Language Models (LLMs)

Chain-of-thought (CoT) Reasoning

Step 1: Justin Biber is the child of Jeremy Bieber.
Step 2: Jeremy Bieber. is the father of Jaxon Bieber.
Thus, the brother of Justin Bieber is Jaxon Bieber.

① LLM CoT
Generation

Evaluation

1. 

2. 

② Triples
Retrieval

③ Reasoning Path
Construction KGs

Discriminative Evaluation Generative Evaluation

Knowledge Graphs (KGs)

Figure 3: The overall framework of evaluating the CoT reasoning of LLMs, which contains two evaluation modules:
discriminative evaluation and generative evaluation. The orange and red rectangles denote the entities mentioned in
the question and answer, respectively.

3.2 Generative Evaluation

The generative evaluation aims to assess the faith-
fulness of the CoT reasoning process generated by
LLMs. Our main idea is to ground LLMs’ CoT
into KG and verify whether it forms a valid path.
To address the challenge of evaluating unstructured
CoT, we carefully design a prompting strategy to
instruct LLMs to output the CoT in a structured for-
mat. This enables us to parse LLM’s response into
a structured reasoning path, which can then be vali-
dated against KG. The example prompts and struc-
tured CoT output are provided in Appendix F.2.

Specifically, given a generated CoT response S
of question q, we first construct a reasoning path P̂
by retrieving triples from the KGs. Then, we evalu-
ate the validity of the reasoning path by checking
whether the path coherently connects the question
and answer entities in the KGs. The details of these
steps are explained in the following subsections.

3.2.1 Reasoning Path Construction
Given a CoT response S = {s1, s2, . . . , sn}, we
first retrieve a triple3 T = (eh, r, et) for each step
si in the CoT response. The retrieved triple is the
structural representation of each reasoning step,
which can be used to construct the reasoning path
for evaluation.

Previous works usually retrieve triples by iden-

3We noticed in almost all cases in our experiments, a CoT
step corresponds to one KG triplet. The extension to multiple
triplets per CoT step is left for future work.

tifying the entities and relations mentioned in the
sentence and linking them to the KGs (Lan et al.,
2021; Wang et al., 2021). However, this process
is not scalable to KGs. Inspired by the recent fact
retrieval method (Baek et al., 2023), we represent
the reasoning step s and triples in a unified embed-
ding space and retrieve the triple T based on their
embedding similarity.

For all the triples in a KG G, we verbalize each
triplet into a sentence by concatenating the entities
and relation x = ”eh r et.”. Then, we use the
Sentence-BERT model (Reimers and Gurevych,
2019) to obtain its embedding hT = E(x). These
embeddings are constructed in advance and saved
in a vector database for efficient retrieval. Simi-
larly, the embedding of a given reasoning step s is
computed as hs = E(s). Then we retrieve the top-
K triples from KG by calculating the embedding
similarity between hs and hT as:

τi = f(hs, hTi), Ti = (eh, r, et) ∈ G, (1)

where τi denotes the similarity score of triple Ti,
and f(·, ·) is a non-parametric scoring function that
measures the similarity between two embeddings.
We adopt cosine similarity as the scoring function.

The embedding-based retrieval method may lead
to the omission of entities mentioned in the reason-
ing step. To solve this problem, we also take into
account the presence of head and tail entities in the
reasoning step in the scoring function. The final
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score for each retrieved triple is calculated as,

τ̃i =
τi + ϵh + ϵt

3
, (2)

where ϵh and ϵt represent the fuzzy-match ratio of
head and tail entities in the reasoning step, which
are range from 0 to 1, where 0 denotes no exis-
tence, 1 denotes a complete match. The overall
retrieval process is presented in the Algorithm 1 in
the Appendix B.

Thus, we could obtain a set of triples T =
{T1, T2, . . . , Tn} for the CoT response S. Then,
we construct the reasoning path P̂ by connecting
the triples in T .

3.2.2 Reasoning Path Evaluation
By evaluating the validity of constructed reasoning
paths, we can assess the faithfulness of the CoT
reasoning process generated by LLMs. Specifically,
we evaluate the validity of the constructed path P̂
from three aspects:

• Factual correctness: P̂ contains factual error
if the similarity score τ̃i of any retrieved triples
are below a factual threshold σ.

• Coherence: given a factually correct path, it
is incoherent if there exists a step where its
premise is not the conclusion of the previous
step.

• Final answer correctness: given a factually
correct and coherent path, whether the final
answer is correct, i.e. matched with ground-
truths.

Validity of Reasoning Path The prerequisite and
conclusion at each reasoning step are considered
head and tail entities, respectively. If the reasoning
path P̂ can connect the question and answer entities
in the KG, we can conclude that it is a valid path.
The detailed algorithm is shown in the Algorithm 2
in the Appendix B.

Fine-grained Assessment In addition to the bi-
nary evaluation, we also report the minimum edit
distance between the constructed reasoning path
P̂ and the ground-truth path P ∗. This serves as a
fine-grained assessment of CoT reasoning capabil-
ity. We adopt a widely used sequence alignment
algorithm - Needleman Wunsch algorithm (Needle-
man and Wunsch, 1970) to obtain continuous align-
ment scores (i.e., edit distance), which indicate
how close the constructed reasoning path is to the

Dataset #Test #2hop #≥3hop
CWQ 1421 1386 35

GrailQA 1813 1528 285

Table 1: Statistic of datasets.

ground-truth reasoning paths. If multiple ground-
truth paths exist, we report the score against one
with the highest match rate. The detailed algorithm
is shown in the Algorithm 3 in the Appendix B.

4 Experiment Settings

We use the proposed evaluations to understand the
CoT reasoning process of the state-of-the-art LLMs
on complex question-answering (QA) tasks which
requires performing multi-step reasoning to answer
the questions. Through analysis, we seek to answer
the following research questions (RQs)

• RQ1: Do LLMs have the knowledge of faith-
ful reasoning? We leverage the discriminative
evaluation to test whether LLMs can iden-
tify valid reasoning paths. This evaluation
focuses on assessing LLMs’ knowledge about
the properties of faithful reasoning described
in Section 2.

• RQ2: Can LLMs express such knowledge to
generate faithful reasoning? Utilizing our
generative evaluation framework, we assess
the capacity of LLMs to produce coherent and
correct reasoning. We also investigate vari-
ous factors, such as model size and prompting
strategies, to understand their impact on rea-
soning capability.

Dataset We conduct experiments on two QA
datasets: Complex WebQuestions (CWQ) (Talmor
and Berant, 2018) and GrailQA (Gu et al., 2021)
which contain up to 4-hop questions. To evalu-
ate multi-step reasoning capability, we filter out
single-hop questions in the test set. Table 1 shows
the statistics of the filtered test set. The gener-
ated reasoning paths are validated against Freebase
(Bollacker et al., 2008) - an open knowledge graph
containing around 88M entities, 20K relations, and
126M triples. More details can be found at Ap-
pendix C.1.

Large Language Models We evaluate the rea-
soning capability of several LLMs with instruction-
following capability at different sizes, including
Mistral (7B) (Jiang et al., 2023), Qwen (7B, 14B)
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(Bai et al., 2023), Vicuna (33B) (Chiang et al.,
2023), LLaMA2-Chat (70B) (Touvron et al., 2023)
and ChatGPT (175B)4(OpenAI, 2023). The details
of model versions are available in Appendix C.2.
We set temperature as 0.7 and top p as 0.9 for gen-
eration in all models.

Prompting Strategies We experiment with mul-
tiple CoT prompting strategies, including

• Few-shot CoT Five examples with structured
CoT followed by the answer are added to the
prompt (Figure 12 in Appendix F.2).

• Few-shot CoT with planning (CoT-Plan)
We also explore the ability of LLMs to plan
and decompose the relations required to reach
the answer before verbalizing the CoT reason-
ing. In particular, we add the ground-truth
plan (Luo et al., 2023a) (i.e., a relation path
pointing to the answers) into each example.
An example prompt is given in Figure 13 in
Appendix F.2.

• Few-shot CoT with self-consistency
(CoT-SC) Beyond the conventional CoT
prompting, we also experiment with Self-
Consistency (Wang et al., 2023c), a more
sophisticated method designed to mitigate the
inconsistencies in CoT reasoning by aggregat-
ing the final answer through majority votes.
In our evaluation, we sample four outputs,
and report the maximum performance across
all the outputs.

Evaluation Framework Implementation Given
a question from the benchmark, in discriminative
evaluation, we construct the invalid paths by ran-
domly perturbing the ground-truth paths extracted
from SPARQL (Kumar et al., 2019). The imple-
mentation detail is described in Appendix A. In gen-
erative mode, we use FAISS (Johnson et al., 2019)
as the vector database, Sentence-BERT (Reimers
and Gurevych, 2019) as the employed embedding
model and partial ratio fuzzy matching5 as the en-
tity scoring function. We retrieve top-10 triples and
set the factual threshold σ of 0.7.

Evaluation Metrics For discriminative evalua-
tion, we report the accuracy of detecting valid rea-
soning paths from invalid ones. For generative

4Previous works mentioned ChatGPT having 175B param-
eters (Meyer et al., 2023). However, OpenAI still doesn’t give
any official news about ChatGPT’s model size.

5https://github.com/seatgeek/thefuzz

LLMs Size Zero-shot Zero-shot CoT Few-shot Few-shot CoT

Mistral 7B 87.59 89.88 56.91 69.98
Qwen 7B 74.76 76.13 79.64 73.23
Qwen 14B 88.59 88.86 88.81 75.87
Vicuna-1.5 33B 92.79 92.88 84.91 67.05
LLaMA2-Chat 70B 77.96 80.71 56.99 47.76
ChatGPT 175B 89.86 90.17 87.09 80.15

Table 2: Discriminative evaluation results of different
LLMs on CWQ. We use binary accuracy as the metric.
The best results of each column and row are highlighted
in bold and underlined.

evaluation, we report CoT reasoning performance
of LLMs with the following metrics: (i) final an-
swer accuracy, (ii) faithful reasoning score, and
(iii) minimum edit distance between the generated
and ground truth paths. As different LLMs vary in
instruction-following capabilities and guardrail im-
plementations, we may encounter responses with
unstructured format or abstained answers (Luo
et al., 2023b). Therefore, we classify LLMs’ re-
sponses into four groups: abstained (A), unstruc-
tured (U), faithful reasoning (FR), and unfaithful
reasoning (UR). We use the F1 score to measure
the faithfulness of CoT reasoning where preci-
sion and recall are calculated as P = FR

FR+UR and
R = FR

FR+UR+A+U . Detailed implementations are
described in Appendix C.3. Results of precision
and recall are presented in Appendices D.2 and D.3.

5 Main Results

5.1 Discriminate Evaluation

Finding 1: LLMs possess knowledge of valid
reasoning The overall discriminative evaluation
results are shown in Table 2. Based on the re-
sults, it is evident that all LLMs achieve a high
level of accuracy in distinguishing valid reason-
ing paths. This indicates that LLMs, which are
pre-trained on large-scale corpora, already possess
certain knowledge to perform reasoning tasks ef-
fectively. However, when using few-shot prompts,
there is a noticeable decrease in performance for
Mistral and LLaMA2. This could be attributed to
the sensitivity of these particular LLMs towards
the provided few-shot examples. The detailed re-
sults of each perturbation type are illustrated in
Appendix D.1, where the accuracy of incoherent
paths is lower than other types. We speculate that
LLMs cannot capture structural information in the
context (Guo et al., 2023). Moreover, the few-shot
CoT fails to improve the accuracy in identifying
valid paths. We speculate that LLMs are prone to
hallucination during CoT generation, resulting in
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LLMs Size
CWQ GrailQA

Answer↑ Reasoning↑ Gap↓ Edit Dist.↓ Answer↑ Reasoning↑ Gap↓ Edit Dist.↓
Fewshot CoT

Mistral 7B 36.45 25.18 11.27 69.86 16.35 2.12 14.23 94.03
Qwen 7B 32.52 19.38 13.14 76.78 13.35 1.63 11.72 94.69
Qwen 14B 40.39 27.38 13.01 74.49 18.83 2.13 16.70 92.90
Vicuna 33B 44.50 15.92 28.58 74.60 18.26 0.95 17.31 95.39
LLaMA2 70B 49.80 33.98 15.82 62.23 22.05 2.88 19.17 92.58
ChatGPT 175B 49.85 37.13 12.72 57.94 23.69 4.17 19.52 90.13

Fewshot CoT - Plan

Mistral 7B 37.14+0.69 25.69+0.51 11.45 70.01 17.30+0.95 3.36+1.24 13.94 94.46
Qwen 7B 35.35+2.91 21.57+2.19 13.86 74.74 13.74+0.39 2.06+0.43 11.68 94.61
Qwen 14B 40.86+0.47 27.97+0.59 12.02 73.68 19.00+0.17 2.48+0.35 15.43 92.58
Vicuna 33B 48.80+4.30 20.24+4.32 28.56 63.93 20.84+2.58 2.09+1.14 18.75 92.12
LLaMA2 70B 50.26+0.46 37.08+3.10 13.18 57.81 22.35+0.30 3.29+0.41 19.06 89.61
ChatGPT 175B 51.74+1.89 38.60+1.47 13.14 56.61 24.21+0.52 4.32+0.15 19.11 89.84

Fewshot CoT - SC

Mistral 7B 40.86+4.41 30.38+5.20 10.48 65.21 16.70+0.35 2.60+0.48 14.10 94.10
Qwen 7B 34.75+6.08 23.21+3.83 15.39 74.24 14.00+0.65 2.32+0.69 11.68 94.35
Qwen 14B 41.01+0.62 29.26+1.88 11.75 73.21 21.00+2.17 3.24+1.11 17.76 92.50
Vicuna 33B 45.43+2.18 21.32+5.40 25.36 66.17 18.92+0.66 1.88+0.93 17.04 94.23
LLaMA2 70B 50.42+0.62 37.00+3.02 13.42 58.55 22.35+0.30 3.29+0.41 19.06 91.50
ChatGPT 175B 51.74+1.89 40.73+3.60 11.01 52.57 24.97+1.28 4.86+0.69 20.11 89.22

Table 3: Generative evaluation performance of different LLMs on CWQ and GrailQA datasets. F1-scores of the
final answer and reasoning accuracy are reported in Answer Reasoning respectively. The Gap column denotes
the differences between Answer and Reasoning. The Edit Dist. denotes the edit distance metric described in
Appendix C.3. +x.xx denotes the improvement in comparison to few-shot CoT.

incorrect predictions. We can conclude that despite
having enough reasoning knowledge, LLMs still
face limitations in conducting faithful reasoning
during CoT generation.

5.2 Generative Evaluation

Table 3 shows the performance of LLMs in gener-
ative evaluation mode. Overall, ChatGPT demon-
strate superior performance in terms of both final
answer accuracy and faithfulness of the reason-
ing. Surprisingly, Mistral 7B, despite being the
smallest model, exhibits competitive performance
comparable to larger models within the <50B range.
Furthermore, enhancing prompting strategies with
planning (CoT-Plan) and self-consistency (CoT-
SC) results in substantial improvements across all
LLMs, especially for smaller models.

Finding 2: The correct final answer may not
necessarily result from faithful reasoning As
shown in Table 3, there is a notable discrepancy
between the accuracy of the final answer and the
reasoning process. The average gap is 15.76% for
CWQ, and 16.44% for GrailQA. While advanced
prompting may improve answer and reasoning ac-
curacy, this performance gap mostly stays consis-

tent. Interestingly, Vicuna achieves reasonable an-
swer accuracy but has the lowest reasoning perfor-
mance of all the models, suggesting its reasoning
ability is inferior, even when compared to small
models like Mistral and Qwen-7B. This finding
highlights the inadequacy of relying on final answer
accuracy as a proxy to gauge reasoning ability.

Finding 3: The reasoning gap worsens as the
model size increases It can be seen that the
reasoning performance increases gradually with
model size, proving the reasoning ability of bigger
models. However, the gap between answer and
reasoning performance also gradually increases
with model size and the correctness of the an-
swer. While LLaMA2-70B and ChatGPT rank first
in performance, their gaps are also the highest.
Meanwhile, the smallest-size models, including
Mistral-7B and Qwen-7B, hold the lowest gap on
CWQ and GrailQA, respectively. We speculate that
larger LLMs may grasp the question context bet-
ter or have more knowledge to provide the correct
answer directly without performing reasoning.

Finding 4: Better prompting strategy can im-
prove both the answer and reasoning accuracy
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Figure 4: The breakdown of reasoning error types in CWQ and GrailQA.

Reasoning Types Precision Recall F1

Faithful Reasoning 95.42 83.88 89.28
Unfaithful Reasoning 86.12 96.01 90.80

Table 4: Precision, Recall, and F1 score of the frame-
work on human annotated datasets.

without worsening the reasoning gap The use
of enhanced prompting strategies such as CoT-Plan
and CoT-SC lead to improvement of both the an-
swer and reasoning accuracy across most LLMs.
However, the gap between them remains consistent,
regardless of prompt strategy.

5.3 Analysis
Reasoning Errors We present a detailed break-
down of the reasoning errors in Figure 4. The
results reveal that factual errors account for the
majority of errors, indicating that LLMs tend to
generate incorrect information during reasoning.
As GrailQA is a more complex dataset, LLMs have
a higher percentage of coherence errors on GrailQA
than CWQ. Interestingly, even when the generated
CoT paths are free from factual and coherent er-
rors, LLMs may fail to produce correct answers,
evidenced by a substantial amount of answer errors.
Error case examples are shown in Appendix D.4.

Ablation Study To ensure the effectiveness of
our generative evaluation framework, we randomly
select 100 CoT responses generated by ChatGPT
in CWQ dataset and asked two human experts to
evaluate the constructed reasoning path. The de-
tail of the human evaluation study is described in
the appendix E. The results presented in Table 4
demonstrate that our method can accurately detect
both faithful and unfaithful reasoning paths. This
further confirms the efficacy of our approach in
evaluating CoT reasoning.

Parsing Error While we carefully design
prompts to instruct LLMs to generate a structured

CoT, there are still corner cases where LLMs gen-
erate unstructured and abstention responses due to
their unpredicted behaviors. As reported in Ap-
pendix D.2, the unstructured and abstention rates
are less than 20% in CWQ dataset and can be miti-
gated with CoT-Plan and CoT-SC.

6 Related Work

Reasoning with LLMs While LLMs have
proven to offer a variety of reasoning abilities, they
still tend to hallucinate facts, making them unreli-
able and imperfect (Qiao et al., 2022). Several stud-
ies have concentrated on improving their reasoning
capacity through prompting (Wang et al., 2023c;
Ye and Durrett, 2022; Wiegreffe et al., 2022).
CoT (Wei et al., 2022) is a prompting approach
that has demonstrated notable improvements in rea-
soning performance. A significant enhancement
compared to CoT, self-consistency (Wang et al.,
2023c), is a scheme where multiple CoTs are gen-
erated and the most consistent self-generated an-
swer is selected. Recently, self-consistency was
extended with Tree of Thoughts (ToT) (Yao et al.,
2023), which models the reasoning process with a
tree. ToT allows LLMs to interactively backtrack
and explore alternate chains of reasoning, avoiding
getting stuck on a single line of incorrect reason-
ing. Ye and Durrett (2022) mitigate the effect of
unreliable rationales by calibrating the prediction
probability based on the factuality of CoT. Wiegr-
effe et al. (2022) train a Seq2Seq model to filter
out unacceptable rationale. Liu et al. (2021) utilize
GPT-3 (Brown et al., 2020) with few-shot prompt-
ing to generate knowledge and prompts the down-
stream language models.

Reasoning Evaluation Evaluation of the reason-
ing ability of LLMs has been undertaken for two
main purposes: to enhance the reasoning ability of
LLMs (Lyu et al., 2023; Li et al., 2023; Tyen et al.,
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2023; Chen et al., 2023) and to quantify the reason-
ing ability of LLMs (Wang et al., 2023b; Atanasova
et al., 2023). For instance, Huang and Chang (2023)
gauges the reasoning ability of LLMs by assess-
ing their performance on reasoning benchmarks
such as GSM8K and BIG-bench for downstream
tasks. However, this evaluation strategy is unable
to offer a direct assessment of the reasoning steps.
Tyen et al. (2023) release the BIG-Bench Mistake
dataset, which includes logical errors in CoT rea-
soning steps. Using this benchmark, Tyen et al.
(2023); Chen et al. (2023) illustrate the inability
of state-of-the-art LLMs to identify mistakes and
reasoning errors, even in unequivocal cases.

7 Conclusion

We propose an evaluation framework to understand
the CoT reasoning capability of LLMs beyond the
sole assessment of final answer accuracy. With
the help of a KG and a careful prompting strategy,
we can turn the unstructured CoT into a structured
format for automatic evaluation. Our framework
consists of two evaluation modules: (i) a discrimi-
native module that isolates the effects of different
reasoning errors to verify LLMs’ knowledge about
reasoning, and (ii) a generative module to assess
the generated CoT reasoning. While LLMs show-
case remarkable capabilities in generating correct
answers, our study emphasizes the need for more
nuanced evaluations of their reasoning processes.
Addressing the gap between the final answer and
reasoning accuracy remains a critical area for fur-
ther exploration in enhancing the true reasoning
capabilities and interpretability of LLMs.

Limitation

The limitation of our work includes:

• We consider a CoT step corresponding to one
KG triple and a single correct answer for each
question. However, LLMs may generate a sen-
tence containing more than two relations. This
can be tackled by returning top-K candidates
from Algorithm 1 and a dynamic program al-
gorithm expanded from Algorithm 2.

• We assume the availability of completed
knowledge graphs (KGs) for factual retrieval.
We leave the incorporation of the knowledge
graph completion methods to improve the
comprehension of the retrieval algorithm as
future works.

• This study mainly focuses multi-hop reason-
ing questions over knowledge graphs (KGs).
Nevertheless, there exist intricate reasoning
inquiries, such as those in mathematics or
logical reasoning, which involve unstructured
replies that are not easily resolvable through
KGs. The establishment of verification frame-
works for diverse forms of reasoning queries
plays a significant role in enhancing the reli-
ability and utility of responses generated by
LLMs. This aspect is still an open and chal-
lenging problem, requiring extensive explo-
rations within the research community.
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A Ground-truth Reasoning Path
Construction

To obtain graph and ground truth reasoning paths
for each question, we utilize SPARQL query, topic
entities, answer entities provided in datasets to con-
struct subgraphs, then find paths from topic entities
to answer entities as the ground-truth reasoning
paths. In particular,

• We replace SELECT query in each SPARQL
query into a CONSTRUCT query to return the
corresponding graph. An example CONSTRUCT
query and its returned graph from the CWQ
dataset is shown in example 2.

• In the returned graph, we use NetworkX7 li-
brary to find the paths starting at one of the
topic entities and ending at one of the answer
entities provided in original dataset. As a re-
sult, we obtain a list of ground-truth reasoning
paths used for both discriminative and genera-
tive evaluation.

Example 2. An example CONSTRUCT query and
the corresponding returned graph.

CONSTRUCT query

PREFIX ns: <http://rdf.freebase.com/ns/>
CONSTRUCT WHERE { FILTER (?x != ?c)
FILTER (!isLiteral(?x) OR lang(?x) = ” OR
langMatches(lang(?x), ’en’))
?c ns:location.country.administrative_divisions
ns:m.02g__4 .
?c ns:location.country.languages_spoken ?x .
}

Corresponding returned graph

m.03gyl location.country.administrative_divisions
m.02g__4 .
m.03gyl location.country.languages_spoken
m.02dhwl .
m.03gyl location.country.languages_spoken
m.064_8sq .

B Generative Evaluation

The details of triple retrieval, reasoning path evalu-
ation, and fine-grained path evaluation are shown
in the Algorithms 1 to 3, respectively.

C Experiment Settings

C.1 Datasets
We adopt two benchmark KGQA datasets: Com-
plex WebQuestions (CWQ)8(Talmor and Berant,
2018) and GrailQA9(Gu et al., 2021) in this work,

7https://networkx.org/
8https://www.tau-nlp.sites.tau.ac.il/compwebq
9https://huggingface.co/datasets/grail_qa

Algorithm 1: Triple Retrieval Algorithm
Input: Step s; Top-K; embedding model E;

knowledge graph G.
Output: Triple T

1 hs ← E(s)
2 [Ti, τi]

K
i=1 ← G.search(hs, k)

3 C = []
4 for i← 1 to K do
5 ϵh, ϵt ← Fuzzy-match(Ti, s)

6 τ̃i ← τi+ϵh+ϵt
3

7 C.append((τ̃i, Ti))

8 end
9 T = argmax

Ti∈C
τ̃i

especially we use the test split of CWQ, and val-
idation split of GrailQA. We only keep questions
requiring more than 2-hop reasoning. The num-
ber of questions is shown in Table 1. Both CWQ
and GrailQA can be reasoned based on Freebase
KGs10(Bollacker et al., 2008). To reduce the KG
size, we combine the subgraphs obtained from
SPARQL queries as the final KG. The detail of
subgraphs extraction is shown in Appendix A.

C.2 Large Language Models

The LLMs used in experiments are shown in Ta-
ble 5. We utilize available checkpoints from Hug-
gingFace11.

C.3 Evaluation Metrics

Faithful Reasoning Score. To enable robust and
truthful reasoning, many LLMs adopt the guardrail
techniques to abstain from providing answers when
they are uncertain (Liu et al., 2023; Luo et al.,
2023b). Also, LLMs exhibit different instruction-
following capabilities, which may result in the CoT
response in unstructured format. Thus, we need to
consider both the abstained and unstructured re-
sponses in the evaluation. We define the precision
and recall as,

Precision = #correct
#correct+#incorrect , (3)

Recall = #correct
#correct+#incorrect+#abstained+#unstructured .

(4)

The F1 score is then the harmonic average of
the precision and recall. The details of abstained

10https://github.com/microsoft/FastRDFStore
11https://huggingface.co/
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Algorithm 2: Reasoning Path Evaluation
Input: Reasoning path P̂ ; threshold σ; knowledge graph

G; ground answer entity A.
Output: Validity v.

1 factual_error← False
2 order_error ← False
3 answer_error ← answerP̂ ! = A
4 for Ti ∈ P̂ do
5 if τi < σ then
6 factual_error← True
7 else
8 continue
9 if headTi ! = tailTi−1 then

10 order_error ← True
11 end
12 end
13 end
14 coherent_error ← ¬factual_error ∧ order_error
15 answer_error ← ¬coherent_error ∧ answer_error
16 if factual_error ∨ coherent_error ∨ answer_error

then
17 v ← False
18 else
19 v ← True
20 end
21 return v

and unstructured response detection are in Appen-
dices C.4 and C.5.

Answer Accuracy The answers generated by
LLM can have a different length than the ground-
truth, so we utilize fuzzy matching to check the
correctness of answer. It checks whether the gen-
erated answer appears in the ground-truth answers,
and vice versa.

Edit Distance We further look into the fine-
grained evaluation of the reasoning path by cal-
culating the edit distance (Needleman and Wunsch,
1970): The minimum number of edits (add/remove
the reasoning steps) required to convert the CoT
path to the ground-truth path.

C.4 Abstained Answer Detection

We detect abstained answers through following spe-
cific keywords in LLMs’ responses:

Algorithm 3: Fine-grained Path Evaluation

Input: Reasoning path P̂ ; Ground-truth paths
P∗

Output: Edit distance u
1 m← 0
2 u← 0
3 for P ∗ ∈ P∗ do
4 u′ ← NeedlemanWunsch(P̂ , P ∗)
5 if u′ < u then
6 u← u′ ▷ Get minimum edit distance.
7 end
8 end
9 return u

LLM Model Implementation
Mistral 7B mistralai/Mistral-7B-Instruct-v0.1
QWen 7B Qwen/Qwen-7B-Chat
QWen 14B Qwen/Qwen-14B-Chat
Vicuna 33B lmsys/vicuna-33b-v1.3
LlaMA2 70B meta-llama/Llama-2-70b-chat
ChatGPT GPT-3.5-turbo

Table 5: Details of used LLMs.

List of Abstention keywords

not have knowledge
more information
need more
unknown
cannot
sorry
impossible
not possible
unable
unclear

C.5 Unstructured Answer Detection

As the instruction shown in prompts 12 and 13, a
structured CoT should follow the following format:

A structured answer

1. <step1>
2. <step2>
...
(T|t)he answer( to the question)? is ?
?(.∗?)?.?

Therefore, the CoT responses that do not match
the pattern are identified as unstructured.
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D Additional Results

D.1 Detailed Results of Discriminative
Evaluation

We illustrate the discriminative evaluation results
of different types of reasoning paths in Table 6. For
each error types, LLMs reach the best performance
under factual errors and misguided reasoning path.
However, the performance under incoherent paths
is lower, which could due to the limits of LLMs in
understanding structural context. Besides, the per-
formance of valid reasoning path is slightly lower
than invalid reasoning path. Because it requires
both three properties (i.e., factual errors, incoher-
ence, misguidance) satisfied at the same time.

D.2 Detailed Results of Precision
Based on the definition in eq. (3), precision ignores
the abstained and unstructured responses. The de-
tailed precision results as well as the abstained and
unstructured ratio are shown in Figures 5 to 7.

The precision of the answer gradually improves
with the size of the model. However, Mistral 7B
and Qwen 14B are competitive in terms of rea-
soning performance compared to models with ten
times more parameters. While Vicuna 33B has an
intermediate model size, its performance is low. It
is also worth noting that Qwen variants exhibit a
high rate of abstention. This leads to abstaining
from answering uncertain questions and achieving
higher precision, but at the cost of reduced recall
for correct answers and reasoning.

D.3 Detailed Results of Recall
The recall is calculated on all types of responses.
Thus, we directly report the recall in Table 7.

D.4 Case Studies
We present the detailed cases of different error
types in Table 8.

E Human Evaluation

This section aims to be two-fold. Firstly, it provides
a sanity check of the proposed prompt in instruct-
ing LLMs to generate CoT in a structured format.
Secondly, we aim to construct a small test set to
evaluate the capability of the proposed framework
in detecting the faithful CoT.

E.1 Annotation
Firstly, a sample of 100 questions is chosen ran-
domly from the CWQ dataset along with the re-

sponses generated by ChatGPT using proposed
prompts. Each question in the sample is matched
with reference answers, which include the final an-
swer provided in the datasets, as well as all the
ground-truth reasoning paths extracted during the
preprocessing phase outlined in appendix A. This
data is supplied to annotators for classification pur-
poses.

The annotators are two PhD students who are
familiar with the related works and have experi-
ence working with knowledge graphs. To prepare
them for the task, we provide them the definition
of faithful reasoning and error types. Given sam-
ple cases that consist of the question, answer, the
ground-truth reasoning paths (the desired reasoning
steps), and the model’s initial CoT response, two
human experts performed a trial run to align their
understanding and coding criteria for faithful CoT
responses by answering two following questions:

• Q1: If LLM response is an incorrect
final answer? True labeling if LLM final
answer does not hit the reference answers;
False otherwise.

• Q2: If LLM CoT is an incorrect
reasoning? True labeling if there exists any
step its relation, subject/object is in ground-
truth reasoning paths but there is no link be-
tween them or the object/subject/relation is
not in the ground-truth reasoning paths; False
otherwise.

The human annotation dataset acquired ulti-
mately comprises 100 samples, with each sample
consisting of the question, ground truth paths, LLM
answers, a column indicating the annotated incor-
rect answer (1 for True labeling of Q1, 0 other-
wise), and another column indicating the annotated
incorrect reasoning (1 for True labeling of Q2, 0
otherwise).

E.2 Framework Evaluation
Given the human annotation data provided above,
our generative evaluation framework is assessed
to ensure its quality prior to its application in all
experiments. Initially, the responses from the LLM
are inputted into the generative evaluation mode
to obtain predictions for Q1 (predicted incorrect
answer) and Q2 (predicted incorrect reasoning).
Consequently, these two outcomes are compared
with the annotated dataset to assess the precision,
recall, and f1_score for the final score. The metrics
are shown in table 4.
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LLMs Size
Valid Reasoning Path Factual Errors Reasoning Path

Zero-shot Zero-shot-Cot Few-shot Few-shot CoT Zero-shot Zero-shot-Cot Few-shot Few-shot CoT

Mistral 7B 79.01 72.32 98.78 74.54 98.68 99.46 74.72 90.67
Qwen 7B 94.92 91.84 85.05 58.60 94.71 94.45 95.25 92.10
Qwen 14B 62.41 61.97 75.74 21.69 100.00 99.96 99.78 99.31
Vicuna 33B 83.54 79.32 91.80 19.02 99.37 99.77 98.96 98.40
LLaMA2 70B 18.79 27.84 92.50 57.52 99.54 99.50 59.44 72.48
ChatGPT 175B 70.27 74.57 86.56 71.45 99.72 99.72 99.70 95.86

LLMs Size
Incoherent Reasoning Path Misguided Reasoning Path

Zero-shot Zero-shot-Cot Few-shot Few-shot CoT Zero-shot Zero-shot-Cot Few-shot Few-shot CoT

Mistral 7B 90.11 92.10 39.92 53.08 82.55 95.62 14.20 61.61
Qwen 7B 61.37 61.82 73.06 66.37 48.02 56.40 65.18 75.85
Qwen 14B 93.56 94.91 88.56 85.49 98.38 98.61 91.14 97.00
Vicuna 33B 90.21 93.62 65.65 56.56 98.04 98.82 83.21 94.23
LLaMA2 70B 95.92 97.43 44.41 18.27 97.58 98.05 31.60 42.78
ChatGPT 175B 93.36 90.57 76.76 59.01 96.07 95.82 85.34 94.28

Table 6: Discriminative evaluation results of different LLMs on CWQ dataset. We use the binary accuracy as metric.
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Figure 5: The precision of LLMs using few-shot CoT prompt.
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Figure 6: The precision of LLMs using few-shot CoT - Plan prompt.
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Figure 7: The precision of LLMs using few-shot CoT - SC prompt.

LLMs Size CWQ GrailQA

Answer Reasoning Answer Reasoning

Fewshot CoT

Mistral 7B 35.67 24.64 15.93 2.07
Qwen 7B 28.36 16.9 11.48 1.4
Qwen 14B 36.37 24.65 16.55 1.87
Vicuna 33B 42.3 15.13 17.17 0.89

LLaMA2 70B 49.29 33.63 21.6 2.82
ChatGPT 175B 48.17 35.88 21.55 3.8

Fewshot CoT - Plan

Mistral 7B 36.18 25.02 16.67 3.24
Qwen 7B 34.13 20.78 12.16 1.82
Qwen 14B 36.35 24.88 16.14 2.11
Vicuna 33B 47.6 19.74 19.33 1.94

LLaMA2 70B 49.94 36.84 21.76 3.2
ChatGPT 175B 51.11 38.13 23.4 4.18

Fewshot CoT - SC

Mistral 7B 40.57 30.17 16.52 2.57
Qwen 7B 37.2 22.37 12.45 2.07
Qwen 14B 38.68 27.6 18.88 2.91
Vicuna 33B 46.29 21.14 18.65 1.86

LLaMA2 70B 50.16 36.81 21.76 3.2
ChatGPT 175B 50.71 39.92 23.78 4.63

Table 7: The recall of LLMs on CWQ and GrailQA
datasets.

F Prompts

F.1 Discriminative Evaluation Prompts
We present the zero-shot, zero-shot CoT, few-shot,
and few-shot CoT prompts in Figures 8 to 11.

F.2 Generative Evaluation Prompts
We present the few-shot, few-shot plan prompts in
Figures 12 and 13.
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Correct Answer & Correct Reasoning

Question:
People from the country that contains Corfu speak what language?

Groundtruth:
[["Corfu","location.country.administrative_divisions","Greece"],
["Greece","location.country.languages_spoken","Greek Language"]]

LLM CoT Answer:
1. Corfu is an island located in Greece.
2. Greece is a country that contains Corfu.
3. The primary language spoken in Greece is Greek.
So the answer is (Greek).

Reasoning path from our framework:
1. [["Corfu","location.country.administrative_divisions","Greece"]
2. "Greece","location.country.languages_spoken","Greek Language"]]

Correct Answer & Incorrect Reasoning

Question:
What is the currency in the country where the Brazilian cruzado is also used?

Groundtruth:
[["Brazilian cruzado","location.country.currency_formerly_used","Brazil"],
["Brazil","location.country.currency_used","Brazilian real"]]

LLM CoT Answer:
1. The Brazilian cruzado was the currency of Brazil from 1986 to 1989.
2. Brazil is the country where the Brazilian cruzado was used.
So the answer is (Brazilian real).

Reasoning path from our framework:
1. ["Brazilian cruzado","location.country.currency_formerly_used","Brazil"]
2. ["Brazilian cruzado","location.country.currency_formerly_used","Brazil"]

Incorrect Answer & Correct Reasoning

Question:
Where was the main artist featured in the Rihanna: Live in Concert Tour raised?

Groundtruth:
[["Rihanna: Live in Concert Tour","music.artist.concert_tours","Rihanna"],
["Rihanna","people.person.place_of_birth","Saint Michael Parish"]]

LLM CoT Answer:
1. The main artist featured in the Rihanna: Live in Concert Tour is Rihanna.
2. Rihanna was raised in Barbados.
So the answer is (Barbados).

Reasoning path from our framework:
1. ["Rihanna: Live in Concert Tour","music.artist.concert_tours","Rihanna"]
2. ["Rihanna","people.person.nationality","Barbados"]

Incorrect Answer & Incorrect Reasoning

Question:
Where did the author who published "The Story of My Life" die?

Groundtruth:
[["The story of my life","book.author.book_editions_published","Helen Keller"],
["Helen Keller","people.deceased_person.place_of_death","Easton"]]

LLM CoT Answer:
1. "The Story of My Life" is a book written by Helen Keller.
2. Helen Keller died in Connecticut, USA.
So the answer is (Connecticut, USA).

Reasoning path from our framework:
1. ["The story of my life","book.author.book_editions_published","Helen Keller"],
2. ["Helen Keller","people.deceased_person.place_of_death","Easton"],p=0.57

Table 8: Examples of answer and reasoning accuracy of generative evaluation framework.
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Zero-shot Discriminative Evaluation Prompt

A reasoning path is a sequence of triples that can be used to derive the answer of given question. A
valid reasoning path should follow these rules:

1. No factual errors: Each triple in the reasoning path should adhere to real-world factual
knowledge.
2. Coherence: The tail entity of the previous triple should be the head entity of the next triple.
3. Correctness: The reasoning path should lead to the correct answer at the last tail entity.

Given this reasoning path, do you think this is a valid path to derive the answer of given question?
If yes please answer "YES", otherwise please answer "NO".

Question:
<Question>

Answer:
<Answer>

Reasoning path:
<Reasoning Path>

Figure 8: The zero-shot prompt used for discriminative evaluation

Zero-shot CoT Discriminative Evaluation Prompt

A reasoning path is a sequence of triples that can be used to derive the answer of given question. A
valid reasoning path should follow these rules:

1. No factual errors: Each triple in the reasoning path should adhere to real-world factual
knowledge.
2. Coherence: The tail entity of the previous triple should be the head entity of the next triple.
3. Correctness: The reasoning path should lead to the correct answer at the last tail entity.

Given this reasoning path, do you think this is a valid path to answer the question? If yes please
answer "YES", otherwise please answer "NO". Let’s think it step by step.

Question:
<Question>

Answer:
<Answer>

Reasoning path:
<Reasoning Path>

Figure 9: The zero-shot CoT prompt used for discriminative evaluation.
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Few-shot Discriminative Evaluation Prompt

A reasoning path is a sequence of triples that can be used to derive the answer of given question. A valid reasoning path
should follow these rules:

1. No factual errors: Each triple in the reasoning path should adhere to real-world factual knowledge.
2. Coherence: The tail entity of the previous triple should be the head entity of the next triple.
3. Correctness: The reasoning path should lead to the correct answer at the last tail entity.

Given this reasoning path, do you think this is a valid path to answer the question? If yes please answer "YES", otherwise
please answer "NO". Here are some examples:

## Input:
Question:
What type of government is used in the country with Northern District?

Answer:
Parliamentary system

Reasoning Paths:
Step 1: Northern District -> location.administrative_division.first_level_division_of -> Israel
Step 2: Israel -> government.form_of_government.countries -> Parliamentary system

## Output:
YES

## Input:
Question:
Where is the home stadium of the team who won the 1946 World Series championship?

Answer:
Busch Stadium

Reasoning Paths:
Step 1: 1946 World Series -> sports.sports_team.championships -> St. Louis Cardinals
Step 2: St. Louis Cardinals -> sports.sports_team.arena_stadium -> Roger Dean Stadium

## Output:
NO

## Input:
Question:
In which American Southern City did the ""Downs"" composer die?

Answer:
New Orleans

Reasoning Paths:
Step 1: Alex Chilton -> people.deceased_person.place_of_death -> New Orleans
Step 2: Downs -> music.composer.compositions -> Alex Chilton

## Output:
NO

## Input:
Question:
Where was the main artist featured in the Rihanna: Live in Concert Tour raised?

Answer:
Saint Michael Parish

Reasoning Paths:
Step 1: Rihanna: Live in Concert Tour -> music.concert_tour.artist -> Rihanna
Step 2: Rihanna -> music.track_contribution.role -> Vocals

## Output: NO

## Input:
Question:
<Question>

Answer:
<Answer>

Reasoning path:
<Reasoning Path>

## Output:

Figure 10: The few-shot prompt used for discriminative evaluation.
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Few-shot CoT Discriminative Evaluation Prompt

A reasoning path is a sequence of triples that can be used to derive the answer of given question. A valid reasoning path should follow these rules:

1. No factual errors: Each triple in the reasoning path should adhere to real-world factual knowledge.
2. Coherence: The tail entity of the previous triple should be the head entity of the next triple.
3. Correctness: The reasoning path should lead to the correct answer at the last tail entity.

Given this reasoning path, do you think this is a valid path to answer the question? If yes please answer "YES", otherwise please answer "NO". Here are some examples:

## Input:
Question:
What type of government is used in the country with Northern District?

Answer:
Parliamentary system

Reasoning Paths:
Step 1: Northern District -> location.administrative_division.first_level_division_of -> Israel
Step 2: Israel -> government.form_of_government.countries -> Parliamentary system

## Output:
This reasoning path indicates that:
1. "Northern District" is a location within some country.
2. The reasoning path mentions "Northern District -> location.administrative_division.first_level_division_of -> Israel," indicating that the Northern District is part of Israel.
3. It further states "Israel -> government.form_of_government.countries," suggesting that Israel’s form of government is being discussed.
4. The last part of the reasoning path indicates that Israel has a "Parliamentary system."
Based on the provided reasoning paths, it can be concluded that the type of government used in the country with the Northern District (Israel) is a Parliamentary system. Therefore,
the path adheres to the definition of valid reasoning path. The answer is "YES"

## Input:
Question:
Where is the home stadium of the team who won the 1946 World Series championship?

Answer:
Busch Stadium

Reasoning Paths:
Step 1: 1946 World Series -> sports.sports_team.championships -> St. Louis Cardinals
Step 2: St. Louis Cardinals -> sports.sports_team.arena_stadium -> Roger Dean Stadium

## Output:
This reasoning path indicates that:
1. St. Louis Cardinals as the team that won the 1946 World Series
2. Roger Dean Stadium is the stadium associated with the St. Louis Cardinals.
However, the home stadium of St. Louis Cardinals is Busch Stadium, not Roger Dean Stadium. Therefore, this path contains factual errors. The answer is "NO".

## Input:
Question:
In which American Southern City did the ""Downs"" composer die?

Answer:
New Orleans

Reasoning Paths:
Step 1: Alex Chilton -> people.deceased_person.place_of_death -> New Orleans
Step 2: Downs -> music.composer.compositions -> Alex Chilton

## Output:
This reasoning path indicates that:
1. Alex Chilton was dead in New Orleans
2. The composition of Downs is Alex Chilton

Even through the first step of reasoning path leads to the correct answer, which is New Orleans, the reasoning path is not coherent. To answer the question, we need to first the
composition of Downs which is Alex Chilton, then we find the death place of Alex Chilton which is New Orleans. Therefore, the answer is "NO".

## Input:
Question:
Where was the main artist featured in the Rihanna: Live in Concert Tour raised?

Answer:
Saint Michael Parish

Reasoning Paths:
Step 1: Rihanna: Live in Concert Tour -> music.concert_tour.artist -> Rihanna
Step 2: Rihanna -> music.track_contribution.role -> Vocals

## Output: This reasoning path indicates that:
1. The artist of Rihanna: Live in Concert Tour is Rihanna
2. Rihanna is a vocal artist

Even through there are no factual erros and the reasoning path is coherent, the reasoning path does not lead to the correct answer. The question asks for the birth place of the main
artist, not the role of the artist. Therefore, the answer is "NO".

## Input:
Question:
<Question>

Answer:
<Answer>

Reasoning path:
<Reasoning Path>

## Output:

Figure 11: The few-shot CoT prompt used for discriminative evaluation.
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Few-shot CoT prompt for Generative Evaluation

1. <step1>
2. <step2>
...
So the answer is (<answer>).
Make sure that the answer uses the above format and answers the question step by step.

Q: when Lou Seal is the mascot for the team that last won the World Series?
A: Let’s work this out in a step by step way to be sure we have the right answer.
1. Lou Seal is the mascot for the San Francisco Giants.
2. The San Francisco Giants are associated with the sports championship event, the 2014 World Series.
So the answer is (2014 World Series).

Q: What nation has an army or more than 713480 people and borders the country of Bolivia?
A: Let’s work this out in a step by step way to be sure we have the right answer.
1. Bolivia is a landlocked country located in South America.
2. Bolivia shares its borders with several countries, including Argentina, Brazil, Chile, Paraguay, and
Peru.
So the answer is (Brazil).

Q: What movie was displayed at the 2012 Refugee Film Festival and had Angelia Jolie direct-
ing it?
A: Let’s work this out in a step by step way to be sure we have the right answer.
1. Angelia Jolie whose first major film as a director which named “In the Land of Blood and Honey”.
2. “In the Land of Blood and Honey” was shown at the 2012 Refugee Film Festival.
So the answer is (In the Land of Blood and Honey).

Q: How many Mary Mary sisters?
A: Let’s work this out in a step by step way to be sure we have the right answer.
1. Mary Mary is a group which has a member named Tina Campbell
2. Mary Mary is a group which has a member named Erica Campbell
So the answer is (Erica Campbell, Tina Campbell).

Q: Which languages are used in the location that the breed Egyptian Mau started in?
A: Let’s work this out in a step by step way to be sure we have the right answer.
1. The Egyptian Mau is a breed of domestic cat that is believed to have originated in Egypt.
2. In Egypt, the primary language spoken is Arabic, besides Domari or Nobiin.
So the answer is (Arabic, Domari, Nobiin).

Q: {Question}
A: Let’s work this out in a step by step way to be sure we have the right answer.

Figure 12: The few-shot CoT prompt used for generative evaluation.
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Few-shot CoT - Plan prompt used for Generative Evaluation

Relation path is a sequence relation that describes each step of the reasoning process.
You first give a relation path as a HINT, then reason the answer step-by-step based on it.
HINT:
1. <step1>
2. <step2>
...
So the answer is (<answer>).
Make sure that the answer uses the above format and answers the question step by step.

Q: when Lou Seal is the mascot for the team that last won the World Series?
A: Let’s work this out in a step by step way to be sure we have the right answer.
HINT: sports.sports_team.team_mascot -> sports.sports_team.championships
1. Lou Seal is the mascot for the San Francisco Giants.
2. The San Francisco Giants are associated with the sports championship event, the 2014 World
Series.
So the answer is (2014 World Series).

Q: What nation has an army or more than 713480 people and borders the country of Bo-
livia?
A: Let’s work this out in a step by step way to be sure we have the right answer.
HINT: geography.river.basin_countries -> location.location.partially_contains
1. Bolivia is a landlocked country located in South America.
2. Bolivia shares its borders with several countries, including Argentina, Brazil, Chile, Paraguay,
and Peru.
So the answer is (Brazil).

Q: What movie was displayed at the 2012 Refugee Film Festival and had Angelia Jolie
directing it?
A: Let’s work this out in a step by step way to be sure we have the right answer.
HINT: film.director.film -> film.film_regional_release_date.film_regional_debut_venue
1. Angelia Jolie whose first major film as a director which named “In the Land of Blood and
Honey”.
2. “In the Land of Blood and Honey” was shown at the 2012 Refugee Film Festival.
So the answer is (In the Land of Blood and Honey).

Q: How many Mary Mary sisters?
A: Let’s work this out in a step by step way to be sure we have the right answer.
HINT: music.group_membership.member -> music.group_membership.member
1. Mary Mary is a group which has a member named Tina Campbell
2. Mary Mary is a group which has a member named Erica Campbell
So the answer is (Erica Campbell, Tina Campbell).

Q: Which languages are used in the location that the breed Egyptian Mau started in?
A: Let’s work this out in a step by step way to be sure we have the right answer.
HINT: biology.breed_origin.breeds_originating_here -> location.country.languages_spoken
1. The Egyptian Mau is a breed of domestic cat that is believed to have originated in Egypt.
2. In Egypt, the primary language spoken is Arabic, besides Domari or Nobiin.
So the answer is (Arabic, Domari, Nobiin).

Q: {Question}
A: Let’s work this out in a step by step way to be sure we have the right answer.

Figure 13: The few-shot CoT - Plan prompt used for generative evaluation.
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