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Abstract

Streaming text generation has become a com-
mon way of increasing the responsiveness of
language model powered applications, such as
chat assistants. At the same time, extracting
semantic information from generated text is a
useful tool for applications such as automated
fact checking or retrieval augmented genera-
tion. Currently, this requires either separate
models during inference, which increases com-
putational cost, or destructive fine-tuning of
the language model. Instead, we propose an
approach called EMBER which enables stream-
ing named entity recognition in decoder-only
language models without fine-tuning them and
while incurring minimal additional computa-
tional cost at inference time. Specifically, our
experiments show that EMBER maintains high
token generation rates, with only a negligible
decrease in speed of around 1% compared to
a 43.64% slowdown measured for a baseline.
We make our code and data available online1,
including a toolkit2 for training, testing, and
deploying efficient token classification models
optimized for streaming text generation.

1 Introduction

Combining pre-trained language models (LMs)
and external information at inference time is a
widely used approach, for example as a means of
improving the factual accuracy of generated texts
in knowledge-intensive tasks (Lewis et al., 2020;
Guu et al., 2020; Gao et al., 2024). To effectively
gather relevant information, there are generally two
main strategies for extracting semantic data from
the current context, each with its own drawbacks.
The first strategy involves integrating the extraction
process into text generation. This method, as
seen in work by Schick et al. (2023) and Zhang
(2023), requires generating queries during the

1https://github.com/nicpopovic/EMBER
2https://github.com/nicpopovic/STOKE

Figure 1: EMBER enables simultaneous text generation
and entity annotation by using a language model’s inter-
nal representations as the feature space for classification.
Compared to using state-of-the-art NER models, this re-
sults in a substantially more efficient pipeline allowing
for streaming named entity recognition. Parameter and
latency comparisons stated in this figure are based on
the experiments conducted using GPT-2XL, presented in
section 6.

inference phase. Although this approach is direct,
it has the downside of altering the LM through
fine-tuning, which can lead to issues such as
catastrophic forgetting (Goodfellow et al. (2015)).
The second strategy employs an external system
for information extraction (IE). While studies such
as those by Shi et al. (2023), Ram et al. (2023),
and Dhuliawala et al. (2023) show promising
results, the required computational overhead is a
major issue hindering adoption (Chen et al., 2023a;
Zhang et al., 2023b). For many applications (chat

17830

https://github.com/nicpopovic/EMBER
https://github.com/nicpopovic/STOKE


assistants, etc.), the delivery of generated text on a
token-by-token basis as soon as they are available,
known as streaming text generation, has become
a common way of increasing responsiveness. An
optimized solution for this setting is currently
missing.

Meanwhile, research into the mechanistic inter-
pretability of LMs has shown that substantial se-
mantic information can be recovered from individ-
ual internal representations. A common diagnostic
tool are simple3 classifiers, called probing classi-
fiers (Belinkov and Glass, 2019), trained to perform
specific tasks using a subset of the internal repre-
sentations of a (frozen) LM as their feature space.
While their validity as a means for understanding
how and where information is stored in LMs is de-
bated (Cao et al., 2021; Belinkov, 2022), probing
classifiers have been shown able to map internal
representations to syntactic and semantic informa-
tion (Raganato and Tiedemann, 2018; Clark et al.,
2019; Mareček and Rosa, 2019; Htut et al., 2019;
Pimentel et al., 2020; Schouten et al., 2022). While
the majority of this research has been conducted us-
ing encoder LMs, studies have shown that similar
information is recoverable from specific internal
states of decoder-only LMs (Meng et al., 2022;
Geva et al., 2023; Hernandez et al., 2023; Ghande-
harioun et al., 2024). We therefore explore whether,
rather than as a diagnostic tool, probing classifiers
can be used for non-destructive, light-weight, and
continuous IE in decoder-only LMs at inference
time.
In this work, we develop an approach we call Em-

bedded Named Entity Recognition (EMBER) for
performing named entity recognition (NER), a cen-
tral IE subtask consisting of mention detection and
entity typing, using only a LM’s internal represen-
tations as feature space without further finetuning
thereof. As illustrated in figure 2, the process in-
volves two probing classifiers: The first performs
tokenwise type classification based on the hidden
state at a single transformer sublayer, while the
second detects spans based on the LMs attention
weights between two tokens. Finally, the outputs
of both are fused into span-level entity predictions.
We conduct a series of experiments using multiple
LMs, NER datasets, and task settings to evaluate
the performance of EMBER and the factors which

3Typically small in the amount of trainable parameters and
less complex in terms of architecture relative to the LM.

The New York Film Festival in
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TOKEN-LEVEL PREDICTIONS
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ENTITIES

Figure 2: Illustration of the proposed approach for
named entity recognition using probing classifiers.
Black squares symbolize individual transformer layers
at individual timesteps, while dotted lines symbolize
information flow throughout the transformer. Probing
classifiers are shown in red, with circles symbolizing
where representations are accessed. One classifier per-
forms token-level entity typing using hidden states at a
single layer, while second classifier detects spans based
on attention weights. Both predictions are aggregated
into span-level entity predictions.

influence it. In short, we find that while outper-
formed by finetuned state-of-the-art approaches in
terms of raw benchmark scores (∼80− 85% F1 vs.
>90% F1), our approach outperforms few-shot in-
context learning approaches (∼50% F1) (section
5.2) and is significantly more efficient in the stream-
ing text generation setting (approx. 80× faster than
baseline (section 6)).

In conclusion, we make the following con-
tributions: We propose EMBER, the first non-
destructive NER approach optimized specifically
for use with decoder-only LMs during streaming
text generation. We show that our approach can
achieve F1 scores of 80-85% while requiring min-
imal additional computational overhead. We pro-
vide insight into which architecture parameters
of decoder-only LMs determine how well our ap-
proach will work. Lastly, we showcase efficient
simultaneous text generation and NER, a novel use-
case our approach is optimized for and provide a
toolkit for training, testing, and deploying models.

2 Related Work

2.1 NER using Pretrained Language Models

As a long standing NLP task, researchers have
tackled named entity recognition (NER) using a
wide variety of approaches (Li et al., 2022), with
most state-of-the-art approaches relying on fine-
tuning pretrained encoder language models (Luo
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et al., 2020; Fu et al., 2021; Wang et al., 2021a; Ye
et al., 2022). Wang et al. (2021a) use an ensemble-
approach to show that non-fine-tuned embeddings
can also be feasible. Parameter efficient fine-tuning
(PEFT) aims to significantly reduce the amount of
parameters trained by using low-rank adaptations
(Hu et al., 2021), prompt-tuning (Shen et al., 2023)
or adapters (Nie et al., 2024). While our proposed
approach is conceptually similar to adapters, PEFT
approaches aim to emulate destructive finetuning,
while our approach is non-destructive. With respect
to generative language models, existing approaches
typically frame the task as a sequence generation
task, where the model outputs a sequence of en-
tities for a given text either through fine-tuning
(Tan et al., 2021; Yan et al., 2021; Lu et al., 2022;
Josifoski et al., 2022), or in an in-context learning
setting (Epure and Hennequin, 2022; Wang et al.,
2023b; Chen et al., 2023b; Ashok and Lipton, 2023;
Guo et al., 2023; Li et al., 2023).

2.2 Language Models and Probing Classifiers

Considerable research using probing classifiers to
predict linguistic properties based on a LM’s in-
ternal representations4, including those related to
entities, has been conducted (Ettinger et al., 2016;
Shi et al., 2016; Adi et al., 2017; Tenney et al.,
2019; Belinkov and Glass, 2019) with studies pri-
marily being applied to encoder or encoder-decoder
LMs. Probing classifiers are typically used as a di-
agnostic tool for understanding information storage
or flow in LMs. As such, most recent studies opt
for less complex, often linear probes in order to pre-
vent the representational capabilities of the probe
from falsifying results (Cao et al., 2021; Belinkov,
2022). Recently, decoder-only LMs appear to have
become more popular than other architectures for
many tasks, likely due to increased availability of
larger pretrained models (Brown et al., 2020; Scao
et al., 2022; Zhang et al., 2022; Chowdhery et al.,
2022; Touvron et al., 2023) and the flexibility of-
fered by the generative framing of many tasks, for
example as in-context learning. Interpretability re-
search focusing on decoder-only LMs has shown
that similar to encoder LMs, semantic informa-
tion is recoverable from specific internal states of
decoder-only LMs (Meng et al., 2022; Geva et al.,
2023; Hernandez et al., 2023; Wang et al., 2023a;

4Note that the term probing is also used for analyses con-
ducted in an in-context learning setting (see for example Epure
and Hennequin (2022)), a parameter-free technique which dif-
fers from the use probing classifiers.

Ghandeharioun et al., 2024).

2.3 Streaming Token Classification

To the best of our knowledge, our approach is the
first dedicated, non-destructive solution to stream-
ing token classification for generative language
models. Existing token classification pipelines are
not designed to process information incrementally,
but instead expect a completed text as input. This
means that classification must either be performed
after the text generation is completed, complicating
streaming output delivery, or that the generation
will be slowed down substantially, as the full text
must be re-processed at every increment.

3 Task Description

NER consists of two subtasks, namely mention de-
tection and entity typing. Given a text as a sequence
of tokens t1, ...tN , and a set of entity types E, men-
tion detection involves locating all spans ti, ...tj ,
where 1 < i, j < N , corresponding to mentions
of entities within the text. Entity typing is the task
of assigning the correct entity type e ∈ E to each
mention. For Transformer-based approaches, NER
is typically framed as a token classification task,
where each token ti is assigned a label yi based on
whether it is the first token of a mention (B), inside
a mention (I) or outside of a mention (O).

4 EMBER

In this section we introduce our approach for build-
ing a NER system based on probing internal repre-
sentations of pretrained, decoder-only LMs. Given
a model M with L layers, a hidden state hli is
the output at a single transformer sublayer, where
l ∈ [1, ..., L] is the index of the sublayer and i is the
index of the input token. The attention weights5 be-
tween two tokens are denoted as Aj,i, where j ≥ i
due to autoregressivity. Our approach entails two
key steps, namely tokenwise entity type classifica-
tion based on hli (4.1) and span detection based on
Aj,i(4.2), the results of which are then combined to
form a complete NER pipeline using a mechanism
we call label propagation (4.3).

4.1 Tokenwise Classification

Prior work has shown that individual hidden states
contain sufficent information to recover semantic

5In contrast to the hidden state probes which are restricted
to a single sublayer at a time, attention probes use the weights
for all attention heads across all layers.
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information about entities, suggesting that these
may represent a suitable feature space for our goal
of entity typing. We therefore perform tokenwise
classification by learning ftype such that:

ftype(h
l
i) = ŷi, (1)

where ŷi is a prediction in IOB2 format.

However, the autoregressive nature of decoder-
only LMs results in two inherent issues we will
address in the following. (1) Firstly, entities which
have their type modified by context following the
mention cannot be correctly classified (For exam-
ple, in the phrase “Harry Potter is a book title.”,

“Harry Potter” may be classified as a person given
only the initial two words, while the remaining con-
text makes the assignment of a type such as “work
of art” more suitable. See D for an illustration
of this example.). While, this issue is an inherent
limitation of EMBER, our experiments show that
its impact on general NER performance is limited.
(2) The second issue arises for entities spanning
multiple tokens. Consider the composite phrase

“New York Film Festival” (see also figure 2 and ap-
pendix D), which, given the annotation schema for
Ontonotes5 (Hovy et al., 2006), should be assigned
the entity type “EVENT”. Given only the partial
phrase “New York”, however, the most appropriate
entity type to assign is “GPE”. We therefore ex-
pect that a token-level classifier outlined above will
not predict all tokens in this phrase as belonging
to the class “EVENT”. More generally, classifying
on a per-token basis does not guarantee that the
same class is assigned to all tokens within a men-
tion span. In the following section, we therefore
provide a method for detecting entity spans, using
which we can then aggregate tokenwise predictions
to span-level predictions.

4.2 Span Detection

Since attention is the mechanism by which
decoder-only LMs incorporate information from
preceeding tokens, we hypothesize that Aj,i

contains different information based on whether
or not M represents ti and tj as tokens within
the same span. Below, we propose two different
approaches for identifying spans based on Aj,i:

Neighbour Classification. In neighbour classifica-
tion, illustrated in figure 3 (a), we train a classifier
to predict whether two adjacent tokens belong to

The New York Film Festival in

(a) neighbour classification

The New York Film Festival in

(b) span classification j = k

The New York Film Festival in

(c) span classification j = k − 1

Figure 3: Illustration of the different span detection
methods. Red colors indicate which attention weights
to classify as positive for the example span “New York
Film Festival”. Attention weights are only shown for a
single layer, but are generally used at all layers.

the same mention (ai,j = 1 if so, ai,j = 0 other-
wise), based on the attention weights Aj,i, where
j = i+ 1.

fadj(Aj,i) = âi,j , (2)

Span Classification. For span classification, illus-
trated in figures 3 (b)+(c), we train a classifier to
predict, based on Ak,i, whether i is the first and j
is the last token of the same mention (si,j = 1 if
so, si,j = 0 otherwise):

fspan(Ak,i) = ŝi,j , (3)

where either j = k (figure 3.b) or j = k − 1
(figure 3.c), the reason behind the latter being au-
toregressivity: Without seeing the next token, it is
not always possible to confidently predict whether
the current token is the last of a given span (“New
York” could be part of a span such as “New York
Film Festival”).

4.3 Label Propagation
Having generated predictions for the types of in-
dividual tokens and for which tokens make up a
span, the final step is to combine the two sets of
information into NER predictions. Rather than ap-
plying a voting or pooling mechanism to decide
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which entity type prediction is the correct one for
a span containing multiple tokens, we choose the
type predicted for the last token of a span, as for
this index M has access to the largest amount of
context6. We refer to this as label propagation. Our
experiments (appendix F) show that high F1 scores
can be achieved by using solely the type assigned
to the last token. Below, we propose three different
approaches for label propagation:

Adjacency-based Propagation
In adjacency-based propagation, we iterate over
all tokenwise predictions Ŷ in descending order
(referring to the sequence index). If ŷi ̸= “O′′ and
âi−1,i > 0, we assign ŷi−1 = ŷi.

Spanwise Typing
For spanwise typing, we select all spans for which
ŝi,j > 0 (for overlapping values we chose the span
with the highest ŝi,j). For the resulting spans, we
select as entity type ŷj . Where ŷj = “O′′, we chose
the second most likely type in order to guarantee
that an entity type is assigned.

Spanwise Propagation
In span-based propagation, we again iterate over
all tokenwise predictions Ŷ in descending order.
If ŷi ̸= “O′′ and {j ∈ R : ŝi,j > 0}, we select
the most likely span jmax = argmaxj∈R ŝi,j and
assign ŷk = ŷi for all k ∈ [jmax, ..., i].

5 Experiments: Non-Streaming NER

Before examining the novel task setting of stream-
ing named entity recognition (NER), we conduct
experiments to determine how well EMBER
performs in a variety of typical, non-streaming
NER settings. We begin by evaluating which
label propagation strategies work best (5.1). After
identifying the best configuration, we evaluate its
performance in the supervised learning setting
(5.2). Next, we analyse the measured results
with respect to the effects of model scale and
architecture parameters (5.3). Finally, we evaluate
our approach in heavily data-constrained settings
(5.4) and show the efficient extraction of named
entities during streaming text generation (6).

Models and Data. All experiments are performed
using the datasets CoNLL2003 (Tjong Kim Sang
and De Meulder, 2003a) and Ontonotes5 (Hovy

6Prior work also reports information aggregation to later
tokens (Geva et al., 2023; Wang et al., 2023a).

Approaches MD P R F1
CONLL2003

(Tokenwise typing) H 64.55% 79.10% 71.09%
Adj. propagation H 84.40% 90.47% 87.33%
Spanwise typing A 89.32% 91.75% 90.52%
Span propagation H+A 94.08% 87.13% 90.47%

ONTONOTES5
(Tokenwise typing) H 58.56% 71.55% 64.41%
Adj. propagation H 68.25% 76.11% 71.96%
Spanwise typing A 76.79% 76.26% 76.52%
Span propagation H+A 87.26% 72.77% 79.36%

Table 1: NER scores for GPT-2XL using hidden states
and attention weights in different ways. The column
“MD” indicates the feature space used for mention detec-
tion in the approach, where “H” stands for hidden state
and "A" stands for attention. All scores are micro F1
scores measured on the validation sets of CoNLL2003
and Ontonotes5.

et al., 2006) and 7 LMs from the model families
GPT-2 (Radford et al., 2019), GPT-J (Wang
and Komatsuzaki, 2021), and Pythia (Biderman
et al., 2023). Further details are provided in the
individual sections and appendix A.

5.1 Label Propagation Strategies

We train probing classifiers as introduced in 4.1
and 4.2 in the supervised setting and compare
the results of the different label propagation
approaches introduced in 4.3. Results shown
in this section are the top results obtained on
the validation splits of the datasets. We show
only the results for GPT-2XL. Results for other
models exhibit the same trends and are included in
appendix B.

Results. In table 1 we show precision, recall, and
F1 scores for the different NER approaches. For
reference, we include the results for tokenwise
classification where we measure F1 scores of
71.09% and 64.41%, further highlighting the
need for label propagation. As for the label
propagation variants outlined in 4.3, we find that
span propagation tends to lead to the highest F1
scores on Ontonotes5 (79.36%) and the second
highest (by a close margin) for CoNLL2003
90.47%. Span propagation exhibits significantly
higher precision than recall, since it requires both
classifiers to detect an entity for mention detection
(see “MD” in table 1 for a comparison of the active
mention detection mechanisms).
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Model paramadd. CoNLL2003 Ontonotes5
SOTA (FINETUNED)

ACE > 500M* 94.6% -
PL-Marker 355M - 91.9%

5-SHOT ICL (CHEN ET AL., 2023B)
GPT-2XL 0 39.55% -
GPT-J6B 0 50.10% -

EMBER (OURS)
GPT-2XL 11.5M 85.14% 79.26%
GPT-J6B 18.6M 83.68% 76.70%
Pythia6.9b 21M 83.90% 78.85%

Table 2: NER F1 scores for CoNLL2003 and
Ontonotes5 in the supervised learning setting. Results
for PL-Marker as reported by Ye et al. (2022), results for
ACE as reported by Wang et al. (2021a). paramadd. indi-
cates the number of parameters dedicated only to NER
that are required for each approach. * For ACE, since it
is an ensemble approach, the number of parameters can
vary, so we give an estimate based on the configuration
reported by the authors.

Conclusion. Based on the above results, we se-
lect spanwise propagation using the span detected
based on j = k − 1 for all following experiments.

5.2 Supervised Learning

We evaluate EMBER on the test sets of the two
benchmarks. For lack of directly comparable
approaches, we include two different types
of baselines representing the use of external
extraction mechanisms at inference time: In order
to provide an upper bound for F1 scores that can be
achieved on each dataset we select state-of-the-art
approaches based on finetuning encoder language
model architectures (Wang et al., 2021a; Ye et al.,
2022). Secondly, we include results for GPT-2XL
and GPT-J6B in an in-context learning 5-shot
setting (Chen et al., 2023b). While the heavy
data-constraints of the 5-shot setting result in
an unfair comparison on the surface, in-context
learning is the prevalent method for using decoder-
only language models without finetuning and
necessarily limits the amount of data which can be
used due to context size limitations. We show the
results for the largest model of each model family.
Further results and details are given in appendices
A and C. In appendix K include results for the
datasets WNUT2017 (Derczynski et al., 2017) and
BC5CDR (Li et al., 2016) and in appendix N we
include results for newer LMs (Llama-3.2 (Dubey
et al., 2024)).

Results. As shown in table 2, we measure
F1 scores in the range of 83.68 − 85.14% for
CoNLL2003 and 76.70− 79.26% for Ontonotes5.
In both cases, these results are below the state-of-
the-art results for encoder style models (94.6% for
CoNLL2003, 91.7% for Ontonotes5). We observe
that mention detection appears to be the main
bottleneck for EMBER, with detailed results in
appendix L. Compared to the in-context learning
baseline, however, the scores are significantly
higher (+45.59% for GPT-2XL and +33.10%
for GPT-J6B). When comparing the results
of the different LMs to their model sizes it
becomes apparent that GPT-2XL exhibits higher
F1 scores than both GPT-J6B and Pythia6.9b, even
though it has considerably fewer parameters. We
expand on this observation in the following section.

Conclusion. Our experiments show that in a non-
streaming NER setting, existing state-of-the-art ap-
proaches outperform our approach w.r.t. to anno-
tation quality. This is unsurprising, since EMBER
does not involve finetuning of the LMs representa-
tions. The results do, however, also show that our
approach is capable of performing NER with F1
scores of up to approx. 85% (outperforming, for
example, in-context learning).

5.3 Effects of Architecture & Scale
On the surface, the observation that GPT-2XL
performs better than models with approx. 4 times
the amount of parameters runs contrary to the
intuition that models with more parameters result
in better representational capabilities. When
considering the differences in architectures of
the three LMs (details of which can be found
in appendix E table 8), however, we find that
GPT-2XL has the highest number of attention
heads (1200 vs. 1024/448). Since EMBER uses
the attention weights as feature space for span
detection, the fact that the feature space has the
highest dimensionality for GPT-2XL provides a
possible explanation. We, therefore, investigate
the effects of hidden state and attention weight
dimensionality on F1 scores using 7 LMs, ranging
from 125m to 6.9b parameters in size.

Results. In figure 4 we show a plot of the entity
typing F1 scores measured for the different LMs
compared to the dimensionality of the hidden states,
which are the feature space for the corresponding
probing classifier. We observe a clear, positive cor-
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Figure 4: Entity typing F1 scores (validation set) for
models with respect to hidden state dimension.
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Figure 5: Mention detection F1 scores (validation set)
for models with respect to the total number of attention
heads.

relation between the two. In figure 5 we show a
plot of the mention detection F1 scores measured
for the different LMs compared to the total number
of attention weights. Again, we observe a clear,
positive correlation between the two. When consid-
ering the absolute differences in F1 scores between
the best and worst performing LMs for each task
(CoNLL2003: ∆ET = 2.39%, ∆MD = 4.55%;
Ontonotes5: ∆ET = 1.42%, ∆MD = 7.36%), we
find that the effect of the total number of attention
weights on mention detection is higher than that of
the hidden state dimension on entity typing.

Lastly, we compare the NER F1 scores for
Pythia410m/1.4b and Pythia2.8b/6.9b, which have an
identical number of attention heads at substantially
different total model sizes (see table 3). We see
that they achieve nearly identical results, providing
further evidence supporting the hypothesis that
attention head count has a greater impact on
EMBER at this scale of LM.

Model |A| CoNLL2003 Ontonotes5
Pythia410m 384 81.67% 76.54%
Pythia1.4b 384 82.27% 76.59%

Pythia2.8b 1024 84.63% 79.09%
Pythia6.9b 1024 83.90% 78.85%

Table 3: NER micro F1 scores for CoNLL2003 and
Ontonotes5 for 4 Pythia models. |A| denotes hidden
state dimensionality.

Model 1-shot 5-shot 10-shot 50-shot 100-shot
GPT-2XL

ICL* 33.69% 39.55% - - -
EMBER 23.44% 39.59% 45.29% 54.81% 57.69%

GPT-J6B

ICL* 46.14% 50.10% - - -
EMBER 19.27% 34.88% 41.20% 52.34% 57.45%

Table 4: Few-Shot F1 scores for NER on CoNLL2003.
All scores are micro F1 scores. *Results as reported by
Chen et al. (Chen et al., 2023b).

Conclusion. We find that for this scale of LMs, the
number of attention heads is a greater indicator of
the overall performance of EMBER than the hidden
state dimensionality.

5.4 Few-Shot Learning

Having evaluated EMBER in a supervised learning
setting, we now evaluate it in a low-data setting
using CoNLL2003 (Tjong Kim Sang and De Meul-
der, 2003a).

We primarily report the results for GPT-2XL and
GPT-J6B, as these are the models for which we
have in-context learning comparisons. Data for all
other models has been collected and is included in
appendix G. We note, that the evaluation used to
obtain the in-context learning results (Chen et al.,
2023b) is not precisely identical to the one used in
our experiments and therefore view this baseline
as a limited comparison, with only significant
differences being indicative of trends. Further
details about the experiment setup are included in
appendix A.

Results. In table 4 we show the results. For the
1-shot setting we find that in-context learning
yields significantly better results for both GPT-2XL
and GPT-J6B. In the 5-shot setting, in-context
learning and EMBER perform equally well for
GPT-2XL, while for GPT-J6B in-context learning
is again superior. As in our previous experiments,
GPT-2XL generally performs better than GPT-J6B.
For k-shot settings k ∈ [10, 50, 100] we find that
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the gap between GPT-2XL and GPT-J6B decreases
for higher values of k.

Conclusion. Overall our experiments show the
following: (1) for extreme data constraints, where
k is low enough to fit all labelled data into an in-
context learning prompt, in-context learning results
in higher F1 scores than EMBER. (2) In settings
where k is too high for in-context learning, yet too
low for supervised learning, our approach presents
a viable alternative.

6 Experiments: Streaming NER

So far, all evaluation presented has involved NER
on non-generated text. EMBER, however, offers
an efficient way of performing NER during text
generation. In the following we, therefore, set
out to answer two questions: What is the impact
of using EMBER on inference speeds? Does
it produce annotations of the same quality on
generated text as it does on non-generated text?

Dataset. We begin by constructing an evaluation
dataset by randomly sampling 50 texts from the
validation split of CoNLL2003 and using each
as a prompt to generate text with GPT-2XL. We
generate 100 tokens for each prompt using greedy
decoding with a repetition penalty (Keskar et al.,
2019) of 1.2 and manually annotate the resulting
texts w.r.t. NER according to the CoNLL2003
annotation guideline. In addition to the manually
labelled evaluation dataset, we create synthetically
labeled datasets for training and validation, by
using a teacher model, XLM-RoBERTalarge (Ruder
et al., 2019), for annotation. We train another span
detection probe on the synthetically generated data
to compare its performance to a classifier trained
on non-generated data. Further details concerning
the datasets are included in appendix H and the
toolkit used for their creation, as well as a model
playground are available online. As a baseline,
we evaluate XLM-RoBERTalarge on the dataset
and compare performance on the generated and
non-generated texts separately. For the regular
CoNLL2003 benchmark, the authors report an F1
score of 92.9% for XLM-RoBERTalarge.

Results - Efficiency. In table 5 we show the
cost of performing NER after every generated
token during text generation, which highlights
the low computational overhead required for our

Method ms / token ↓ tokens / s ↑
generation only 28.12± 0.15 35.59± 0.18

+ XLM-RoBERTalarge 49.96± 0.07 20.06± 0.03
∆abs +21.84ms −15.53
∆rel +77.67% −43.64%

+ EMBER 28.39± 0.13 35.23± 0.16
∆abs +0.27ms −0.36
∆rel +0.96% −1.01%

Table 5: Impact of streaming NER during generation on
inference speed for GPT-2XL. The results show clearly
how much more efficient EMBER is compared to the
baseline approach, incurring a performance penalty on
token generation rates of only 1% (compared to more
than 40%).

Data P R F1
XLM-ROBERTALARGE

original 84.95% 86.81% 85.87%
generated 83.11% 84.51% 83.81%
∆ −1.83% −2.30% −2.06%

EMBER (GPT-2XL)
original 82.76% 79.12% 80.90%
generated 86.16% 64.98% 74.09%
∆ +3.40% −14.14% −6.81%

EMBER (GPT-2XL) TRAINED ON GENERATED

original 84.81% 73.63% 78.82%
generated 85.26% 72.05% 78.10%
∆ +0.45% −1.58% −0.72%

Table 6: NER F1 scores for 3 approaches on our eval-
uation dataset. "Original" indicates the scores for the
non-generated text or prompt. "Generated" indicates
scores for annotations on the 100 generated tokens fol-
lowing the prompt.

approach. We find that using EMBER slows down
inference by only 0.27ms per token compared to
21.84ms for the baseline, reducing the amount
of tokens generated per second by around 1%
compared to 43.64% for the baseline. When
comparing the number of additional parameters,
the two probing classifiers result in a total
of 11.5M added parameters (less than 1% of
the amount of parameters of GPT-2XL), while
XLM-RoBERTalarge is 558.9M parameters large.
Since internal representations remain the same
for previous tokens during generation, EMBER
can perform NER incrementally, only updating
predictions for newly generated tokens, which is a
novelty to the best of our knowledge.

Results - Accuracy. In table 6 we show precision,
recall and F1 scores. For XLM-RoBERTalarge,
we observe equal drops in precision, recall,
and F1 scores of around 2% on the generated
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text compared to the prompt. For EMBER
trained on non-generated text, on the other
hand, we measure a substantial drop in recall
(14.14%), while precision increases by 3.40%.
Further experiments7 reveal that this drop in
performance is caused exclusively by the span
detection probe. The results for EMBER with the
span detection probe trained on generated and
synthetically annotated data appear to alleviate
this issue, with the F1 score only dropping by
0.72% on generated text vs. the non-generated text.

Conclusion. We show that EMBER enables vastly
more efficient NER during text generation than
existing approaches, increasing model parameters
by less than 1% and reducing inference speed by
only around 1% in our experiments. We find that
the attention-based span detection probing classi-
fiers must be trained on annotated generated data
in order to achieve adequate classification accuracy.
This suggests that there is a significant difference
in attention weights for generated text as opposed
to when non-generated text is being processed.

7 Conclusion

We present EMBER, a lightweight approach for em-
bedding NER capabilities into decoder-only LMs
without finetuning them. We find that, except in
highly data-constrained settings (such as 1-shot or
5-shot), it surpasses in-context learning in classi-
fication accuracy while being significantly more
efficient. Our approach enables efficient simulta-
neous text generation and NER, with only a 1%
reduction in token generation rate and less than 1%
increase in model size, paving the way for novel
applications such as a significantly more efficient
integration of external structured knowledge into
text generation. Lastly, we include detailed obser-
vations about the factors which influence EMBER’s
performance and provide a toolkit for training, test-
ing, and deploying models.

8 Outlook

Streaming NER can provide symbolic represen-
tations of generated text at inference time in a
highly efficient manner. When combined with ar-
tifacts like knowledge graphs, this could signif-
icantly accelerate applications such as real-time
fact verification or retrieval-augmented generation.
More broadly, exploring token classification tasks

7See appendices I and J.

in a streaming setting could benefit safety applica-
tions—for instance, by detecting harmful outputs
more rapidly—or facilitate tool integration, such
as identifying mathematical symbols to trigger a
calculator.

Our experiments demonstrate that reasonably
accurate annotations can be achieved with our pro-
posed method, although mention detection remains
a significant bottleneck. We look forward to fu-
ture research in this direction, especially regarding
applications involving streaming NER and token
classification in general.

Limitations

Our findings with respect to the presented F1 scores
are limited to the extent that NER is realistically
modeled in the datasets used. Specifically, inherent
limitations due to autoregressivity may cause more
pronounced issues in other domains or languages.
Languages other than English have not been ex-
amined in this work. We anticipate that using our
approach for languages and domains which place
context relevant to entity type classification behind
the mention more often than English, will cause the
accuracy of predictions to suffer. Absolute values
in performance measurements referring to token
generation rates will differ depending on hardware
and software used.
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A Implementation Details

Data and Models. All experiments are performed
using the datasets CoNLL2003 (Tjong Kim Sang
and De Meulder, 2003a) and Ontonotes5 (Hovy
et al., 2006) and 7 LMs from the model families
GPT-2 (Radford et al., 2019), GPT-J (Wang
and Komatsuzaki, 2021), and Pythia (Biderman
et al., 2023), implemented in Huggingface’s
Transformers (Wolf et al., 2020) for Python. NER
F1 scores are computed using Seqeval (Nakayama,
2018).

Probing Classifiers. For our probing classifiers,
we use a multilayer perceptron (MLP) with a single
hidden layer with nneurons ∈ {32, 1024, 4096}
neurons and ReLU (Agarap, 2018) as ac-
tivation function. We find that across all
experiments the best results are obtained with
nneurons = 4096. We use cross-entropy loss
and AdamW (Loshchilov and Hutter, 2019) as
optimizer, batch sizes ∈ [1024, 4096] (learning
rates ∈ [5e−4, 1e−4, 5e−5]) and train using linear
warmup (1 epoch) (Goyal et al., 2017) followed by
a linear learning rate decay. We train tokenwise
typing classifiers for 25 epochs and span detection
classifiers for 50 epochs.

Data formatting. We evaluate results at a
tokenized level, meaning that we convert both the
texts as well as the labels for CoNLL2003 and
Ontonotes5 using the appropriate tokenizers for a
given LM. When training probing classifiers, we
do not structure our batches according to source
data samples, but instead at a “per representation”
level: In our implementation we begin by sampling
internal LM representations for each token (or
attention weight) in the NER dataset and cache the
representations. During the training of the probes,
we sample from these representations, meaning
that for tokenwise classification, a batch size of
n corresponds to n hidden states, not n training
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Figure 6: Example NER output of EMBER trained on Ontonotes5 and GPT-2XL. Colors indicate different predicted
entity types. The example illustrates both a failure case due to missed span detection causing correct type predictions
to be discarded (“The Irishman”, type: “WORK OF ART”), as well as spanwise label propagation applying the
correct entity type (“EVENT”) to a multi-token span based on the type predicted for the last token (“The 57th New
York Film Festival”).

Figure 7: Example NER output of EMBER trained on Ontonotes5 and GPT-2XL. Colors indicate different predicted
entity types (blue: “PERSON”, green: “WORK OF ART”). The example illustrates an inherent limitation of our
approach due to autoregressivity, where the first mention of “Harry Potter” is misclassified as “PERSON”. The
second mention is correctly classified as “WORK OF ART” since the required context precedes the entity mention.

example texts from CoNLL2003 or Ontonotes5.

Few-Shot Learning. We construct the few-shot
task similar to the standard n-way k-shot setting
with n = 4 dictated by the amount of classes given
in the dataset. We evaluate each model for 200
episodes, the support set for each of which is sam-
pled by retrieving k data samples containing at
least one mention of each entity type. If a sample
contains multiple entity mentions, we also count
these towards k. In order to use EMBER in this
setting, we save the hidden states at a single layer8

and the attention weights between all tokens in all
support data samples. Instead of training probing
classifiers, we then perform nearest neighbour clas-
sification based on the support representations.

B Detailed Label Propagation and Span
Detection Results for all 7 LMs

The results of the different label propagation strate-
gies outlined in section 4.3 for all models are
given in table 19 for CoNLL2003 and table 20

8As our experiments show that deeper layers are more
suitable for entity typing, we select a layer two thirds deep
into the network.

for Ontonotes5. The results of the different span
detection strategies outlined in section 4.2 are given
in table 17. For adjacency classification, we see
F1 scores of up to 98.43% on CoNLL2003 and
up to 93.23% for Ontonotes5. For the two span
classification approaches, we find that predicting
fspan(Ak,i) = ŝi,j based on j = k − 1 (“next”)
outperforms the alternative, with up to 94.2% for
CoNLL2003 and 83.92% for Ontonotes5. Note
that these results are obtained on individual data
samples (individual representations paired with la-
bels, as used during training) so that the evaluation
and metrics calculation is not computed at the se-
quence level. Therefore these results are not com-
parable with mention detection scores given in the
other experiments, as those are computed using the
full EMBER pipelines and at the sequence level.

C Extended Supervised Learning
Benchmark Results

See table 7 for precision, recall, and F1 scores for
supervised learning benchmarks across all 7 LMs,
as well as the layer index l chosen for entity typing
via hyperparameter optimization.
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Model CoNLL2003 Ontonotes5
l P R F1 l P R F1

GPT-2small 8/12 86.66% 72.49% 78.94% 12/12 85.48% 62.02% 71.89%
GPT-2XL 36/48 89.01% 81.59% 85.14% 30/48 87.80% 72.24% 79.26%
GPT-J6B 12/28 89.54% 78.54% 83.68% 16/28 87.07% 68.54% 76.70%
Pythia410m 15/24 87.42% 76.63% 81.67% 14/24 86.08% 68.90% 76.54%
Pythia1.4b 18/24 88.54% 76.84% 82.27% 16/24 87.13% 68.33% 76.59%
Pythia2.8b 21/32 89.58% 80.21% 84.63% 17/32 87.66% 72.05% 79.09%
Pythia6.9b 22/32 89.37% 79.05% 83.90% 19/32 87.44% 71.80% 78.85%

Table 7: Full NER F1 scores for CoNLL2003 and Ontonotes5 using EMBER (spanwise label propagation) in the
supervised learning setting. l denotes the layer index at which the hidden states are probed for entity typing (chosen
via hyperparameter optimization).

Model Hidden dim # att heads # layers |A|
GPT-2

GPT-2small 768 12 12 144
GPT-2XL 1600 25 48 1200

GPT-J
GPT-J6B 4096 16 28 448

Pythia
Pythia410m 1024 16 24 384
Pythia1.4b 2048 16 24 384
Pythia2.8b 2560 32 32 1024
Pythia6.9b 4096 32 32 1024

Table 8: Relevant architecture parameters for models
used in experiments.

D Classification Examples

Figures 6 and 7 show examples of prompt anno-
tated with EMBER on GPT-2XL and trained on
Ontonotes5. The prompt in figure 6 was chosen to
show how predicted entity types change as more
context information is incorporated into long spans
(“The 57th New York Film Festival”), which is
previously unavailable to the model due to autore-
gressivity. The prompt in figure 7 was chosen to
highlight an inherent limitation of EMBER due to
autoregressivity which can not be fixed using the
proposed methods.

E Model Architecture Details

In table 8, we detail the relevant architecture pa-
rameters of the models used in our experiments.

F Entity Typing based on Last Token

In table 9 we show results for entity typing where,
given the correct spans, we use only the last token
of each span to predict its type. We measure F1
scores of up to 96.38% and 93.45%, which we
argue supports our choice of using a span’s last
token for label propagation.

Model conll2003 ontonotes5
GPT-2small 93.99% 92.03%
GPT-2XL 95.46% 92.73%
GPT-J6B 96.25% 93.45%
Pythia410m 94.98% 92.75%
Pythia1.4b 95.59% 93.08%
Pythia2.8b 95.93% 92.86%
Pythia6.9b 96.38% 93.02%

Table 9: Entity typing F1 scores (based on last token of
a span).
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Figure 8: Entity typing F1 scores (validation set) for
GPT-2XL with respect to the chosen layer.

Figure 8 shows a plot of entity typing F1 scores
measured using the hidden states at different
layers of GPT-2XL as feature space. We observe a
clear trend showing that representations at earlier
layers are less suitable for entity typing, which
is in line with the findings of similar previous
studies. It is also the basis for choosing layers
2/3 deep into the LM for the few-shot experiments.
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Model 1-shot 5-shot 10-shot 50-shot 100-shot
GPT-2small 23.67% 34.02% 37.24% 43.81% 48.11%
Pythia410m 22.52% 34.09% 38.79% 45.07% 46.45%
Pythia1.4b 23.23% 37.91% 42.44% 50.75% 53.72%
Pythia2.8b 23.52% 38.29% 41.72% 51.77% 54.66%
Pythia6.9b 14.11% 25.07% 32.90% 41.83% 47.93%

Table 10: Few-Shot F1 scores for NER on CoNLL2003.
All scores are micro F1 scores.

G Few-Shot NER for GPT-2small and
Pythia Models

Table 10 shows the few-shot learning results for the
remaining models not shown in table 4. We observe
that Pythia6.9b appears to be an outlier exhibiting
particularly low F1 scores. This suggests that there
are other factors at play in this particular setting
which can not be explained given the variables we
measure.

H Generated NER Datasets

We construct the datasets for section 6 as follows:

Evaluation Dataset. We begin by randomly
sampling 50 texts from CoNLL2003. Next we use
each text as a prompt for GPT-2XL to generate 100
tokens using greedy decoding with a repetition
penalty of 1.2. We manually annotate the generated
texts including their prompts (in order to ensure
that any potential differences in annotation style
do not interfere with the comparison of prompts
vs. generated texts) according to the annotation
guidelines9 used for CoNLL2003. The resulting
dataset contains 91 entity mentions in the prompts
and 297 entity mentions in the generated text.

Synthetic Training Dataset. We generate texts for
the training and validation splits of CoNLL2003
in the same way as for the evaluation dataset (ex-
cluding the 50 samples used for evaluation from
the validation split). Instead of manual annotation,
we annotate the texts using the reference model10.
We train the span detection probe only on the gen-
erated portion of each text, masking out the prompt
during feature generation. The remaining training
procedure is identical to that used in the supervised
learning setting (5.2).

9https://www.cnts.ua.ac.be/conll2003/ner/
annotation.txt

10https://huggingface.co/FacebookAI/
xlm-roberta-large-finetuned-conll03-english

Data P R F1
ENTITY TYPING

original 87.91% 87.91% 87.91%
generated 88.22% 88.22% 88.22%
∆ +0.30% +0.30% +0.30%

MD - EMBER

original 91.95% 87.91% 89.89%
generated 92.86% 70.03% 79.85%
∆ +0.90% −17.88% −10.04%

MD - EMBER TRAINED ON GENERATED

original 89.87% 78.02% 83.53%
generated 92.83% 78.45% 85.04%
∆ +2.96% +0.43% +1.51%

MD - REFERENCE

original 91.40% 93.41% 92.39%
generated 85.43% 86.87% 86.14%
∆ −5.97% −6.54% −6.25%

Table 11: Isolated entity typing and mention detection
scores measured on generated and non-generated data
during experiments outlined in 6.

Data P R F1
EMBER (GPT-2XL) - WINDOWED

original 83.72% 79.12% 81.36%
generated 85.04% 67.00% 74.95%
∆ +1.32% −12.12% −6.40%

∆MD −1.57% −15.86% −9.79%

Table 12: NER scores for windowed attention weights
(window size 10).

I Entity Typing and Mention Detection
Scores for Generated Text

In table 11 we show entity typing and mention de-
tection scores for generated text in isolation. This
data clearly shows that the drop in performance is
due to mention detection recall suffering for EM-
BER trained on non-generated text. Based on these
results we retrain only the span detection probe on
synthetically annotated generated text.

J Attention Windowing during
Generation

During our experiments in simultaneous generation
and extraction we hypothesized that another factor,
rather than different attention behaviour on gener-
ated text, could have caused a model trained on non-
generated text to perform poorly on generated text:
The generated texts are necessarily longer than the
original texts (prompt + generation). Since mention
detection is performed based only on the softmax
normalized attention weights between two tokens,
attention weights may be lower for longer contexts.
We, therefore, repeated the measurements obtained
with the model trained on non-generated data, this
time masking attention weights between tokens at a
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distance (with the exception of the attention weight
directed at token 0 as this is often high regardless
of distance) higher than 10, and find that the drop
in recall persists (albeit reduced). The measured
results are given in table 12 and prompted us to
reject this hypothesis.

K Results for WNUT2017 and BC5CDR

Model WNUT2017 BC5CDR
BINDERdistant - 81.6%
BINDERsupervised - 91.9%
CL-KL 60.45% -
EMBER - GPT-2XL 35.44% 75.07%
(mention detection) 39.80% 75.45%
(entity typing) 61.08% 98.89%

Table 13: NER scores for WNUT2017 and BC5CDR
using gpt2-xl. All scores are micro F1 scores. Results
for BINDER are cited from Zhang et al. (2023a) and
results for CL-KL are cited from Wang et al. (2021b).

In Table 13 we show the results measured
using EMBER with GPT-2XL for the datasets
WNUT2017 and BC5CDR. As with CoNLL2003
and Ontonotes5, we find that mention detection is
the major bottleneck for our approach.

L Entity Typing and Mention Detection
Scores

Dataset Entity Typing Mention Detection
CoNLL2003 95.46% 94.20%
Ontonotes5 92.73% 83.92%
WNUT2017 61.08% 39.80%
BC5CDR 98.89% 75.45%

Table 14: Entity typing and mention detection scores for
EMBER using gpt2-xl. All scores are micro F1 scores.

In Table 14 we show the entity typing and men-
tion detection scores for EMBER with GPT-2XL for
4 datasets.

M Streaming Token Classification
Implementation and Toolkit

Viewed purely from an implementation perspective,
any token classification task can be performed in
the same way as EMBER (naturally, the constraint
of autoregressivity will exclude some tasks as sen-
sible candidates). We therefore developed a toolkit
for training, testing, and deploying custom stream-
ing token classification models and workflows.

Teacher
Model

LM

Data Generation

Probe Training Probe Selection

LM

Testing & Deployment

Model Playground
HF Transformers Integration

Figure 9: Overview of the workflow and tools imple-
mented in the toolkit.

M.1 Toolkit Design & Implementation

The toolkit, an overview of which is shown in
figure 9, includes: (1) a data generation pipeline,
which follows a knowledge distillation approach
for generating texts using language models and
annotating them using teacher models, (2) a train-
ing and hyperparameter optimization pipeline, (3)
code for the integration of trained classifiers into
the Huggingface transformers ecosystem, and (4) a
streamlit-based model playground for testing and
debugging of classifiers. We make all code, as well
as a set of pre-trained classifiers available online at
https://github.com/nicpopovic/stoke.

In this section we outline the different compo-
nents of the toolkit (fig. 9). In order to avoid
confusion, we clarify the model types involved
in the workflow: The language model (LM) is
the decoder-only pre-trained language model, for
which the user wants to incorporate streaming to-
ken classification. It remains unchanged through-
out the entire process. The teacher model is an
auxiliary model which has been trained to perform
the type of token classification the user wants to
integrate into the LM. The probing classifiers are
multilayer perceptrons with a single hidden layer
each and are trained to perform the token classifi-
cation task on the internal representations of the
LM.

M.1.1 Data Generation

In particular for span detection, training probes on
text generated by the LM provides better results
than using non-generated text for training. Thus,
the first step of the data pipeline is the generation of
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texts using the LM and a set of prompts. We note
that while arbitrary prompts can be used in this
step, the generated text is a product of the prompts.
Choosing prompts as close as possibly to the target
domain will, therefore, likely yield better results
than random prompts. In our experiments, we there-
fore use datasets which have been constructed for a
given task as our prompts, for example we use the
texts provided in CoNLL2003 (Tjong Kim Sang
and De Meulder, 2003b) as prompts for the NER
task. Having generated a text corpus, the next step
is to annotate it with respect to the target task using
a teacher model. For the initial set of tasks, we use
the FLAIR framework (Akbik et al., 2019), which
includes pretrained models for NER, POS-tagging,
chunking, and verb disambiguation. Further tasks
can be easily integrated using the pipelines sup-
plied in Huggingface’s Transformers (Wolf et al.,
2020). Finally, the produced dataset is split into
subsets, for training, validation, and testing. The
above workflow has been implemented to be run
from a single command for language models avail-
able in the Transformers library.

M.1.2 Model Training
The model training pipeline, also run with a single
command, iterates over the training dataset gener-
ated in the previous step, feeds each training exam-
ple into the LM in a forward pass and trains probing
classifiers to predict the labels based on the LMs in-
ternal representations. Since the probing classifiers
are typically small (up to 4096 hidden units in our
experiments), the pipeline is designed to train mul-
tiple probing classifiers simultaneously with each
forward pass of the LM. We therefore implement a
simple grid-search based hyperparameter optimiza-
tion strategy. We note that the implementation of
our toolkit with respect to batching during training
differs from the procedure used in the experiments
conducted for this paper due to efficiency reasons.
It is currently not known to what extent this effects
the results. For more details, we refer to the imple-
mentation details in appendix A and the code we
provide for both our experiments and the toolkit.

M.1.3 Model Evaluation & Selection
Depending on the hyperparameter ranges selected
during model training, hundreds of probing clas-
sifiers may have been trained. The evaluation
pipeline selects two classifiers using the following
strategy: For the token classification probe we se-
lect the one with the highest F1 score on the devel-

opment set (measured during training), as typically
more token classifiers (ftoken) have been trained
than span classifiers. Then, using a dataset held out
for testing, the span classifier (fspan) which results
in the highest F1 score when used in conjunction
with the selected token classifier is chosen for the
final configuration. Again, this evaluation step is
called by the user with a single command and out-
puts a configuration file which can then be used in
testing and deployment.

M.1.4 Testing & Deployment
For testing and deployment, the toolkit includes
the code necessary to easily integrate the trained
models into existing applications based on the
Transformers (Wolf et al., 2020) Python library.
At the time of writing, the Transformers library
only passes generated tokens to streamers11, while
our method requires hidden states and attention
weights. We provide a fork12 of the library with the
minimal necessary changes and documentation for
how to apply them to other versions of the library.

For the purpose of qualitative testing of the
trained classifiers, we provide a model playground
in the form of a web application implemented
in Python using Streamlit (https://github.com/
streamlit/streamlit). A screenshot of this
model playground is shown in figure 10. The inter-
face lets the user choose from the different models,
tasks, and combinations of probing classifiers pro-
duced in the pipeline. It includes a sidebar for
choosing various generation and classification pa-
rameters, as well as the main prompt and output
views. After choosing the desired parameters, a
user enters a prompt and clicks the “generate” but-
ton. Text is generated using the selected model
and parameters and is annotated using the chosen
classifier settings. The classified token sequence
is streamed to the front-end, where the user can
view both the final classification, as well as the
tokenwise type classification.

M.2 Illustration of Streaming Token
Classification

Finally, in order to illustrate the process of stream-
ing token classification, we include an example of
outputs generated by the individual components of
a streaming token classification pipeline at each

11https://github.com/huggingface/transformers/
blob/f6261d7d81edd036fc53bfede65fe91f01a661aa/
src/transformers/generation/utils.py#L2458

12https://github.com/nicpopovic/transformers
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generation step in table 18.

N Applicability to Newer Models

In order to examine how well EMBER works when
applied to more current LMs, we evaluated two
more recent models, specifically Llama3.21b and
Llama3.23b (Dubey et al., 2024). The results,
shown in tables 15 and 16, indicate that perfor-
mance is on par with the results seen for GPT-
2XL. Both models have fewer attention heads com-
pared to GPT-2XL (512 for Llama3.21b and 672 for
Llama3.23b), indicating that other factors than the
number of attention heads can also benefit NER
capabilities.

Model CoNLL2003
P R F1

GPT-2XL 89.01% 81.59% 85.14%
Llama3.21b 89.39% 82.32% 85.71%
Llama3.23b 90.21% 82.23% 86.04%

Table 15: Evaluation of EMBER applied to Llama3.2
for CoNLL2003. All scores are micro F1 scores.

Model Ontonotes5
P R F1

GPT-2XL 87.80% 72.24% 79.26%
Llama3.21b 87.27% 71.46% 78.58%
Llama3.23b 87.68% 71.96% 79.05%

Table 16: Evaluation of EMBER applied to Llama3.2
for Ontonotes5. All scores are micro F1 scores.

span detection
Model last next adjacency

CONLL2003
GPT-2small 85.49% 89.65% 96.62%
GPT-2XL 91.07% 94.20% 97.64%
GPT-J6B 90.11% 91.59% 98.00%
Pythia410m 88.50% 91.04% 97.69%
Pythia1.4b 88.89% 91.37% 97.84%
Pythia2.8b 90.83% 93.02% 98.25%
Pythia6.9b 90.94% 92.99% 98.43%

ONTONOTES5
GPT-2small 75.14% 76.56% 89.11%
GPT-2XL 81.46% 83.92% 91.56%
GPT-J6B 79.28% 81.27% 91.90%
Pythia410m 77.07% 80.71% 92.12%
Pythia1.4b 78.26% 80.73% 92.48%
Pythia2.8b 79.63% 82.93% 93.21%
Pythia6.9b 79.99% 83.48% 93.23%

Table 17: Span detection: Micro F1 scores (validation
set) for mention detection classifiers trained on attention
weights between either last or next token and the first
token of a span. Adjacency: Micro F1 scores (validation
set) for classifiers using attention weights to classify
whether two adjacent tokens belong to the same entity.
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Figure 10: Screenshot of the model playground.

Table 18: Example outputs at each step of the streaming token classification. The language model outputs the most
likely next token, the token type classifier outputs a type prediction for the most recent token of the context (ti,
underlined), and the span detection classifier outputs all detected spans between the last token of the context and
any previous token. Finally, the tokenwise predictions and the detected spans are aggregated into final predictions.

Input Output
i Context Next token ftoken fspan Predictions
0 ‘Paul’ ‘ Atreides’ ‘Paul’ -> PERSON - -
1 ‘Paul’, ‘ Atreides’ ‘ is’ ‘ Atreides’ -> PERSON (0,0) -> 0.7 (PERSON, (0,0), ‘Paul’)
2 ‘Paul’, ‘ Atreides’, ‘ is’ ‘ the’ ‘ is’ -> O (0,1) -> 0.9 (PERSON, (0,1), ‘Paul Atreides’)
3 ‘Paul’, ‘ Atreides’, ‘ is’, ‘ the’ ‘ protagonist’ ‘ the’ -> O - (PERSON, (0,1), ‘Paul Atreides’)
4 ‘Paul’, ‘ Atreides’, ‘ is’, ‘ the’, ‘ protagonist’ ‘ of’ ‘ protagonist’ -> O - (PERSON, (0,1), ‘Paul Atreides’)
5 ‘Paul’, ‘ Atreides’, ‘ is’, ‘ the’, ‘ protagonist’, ‘ of’ ‘ "’ ‘ of’ -> O (4,5) -> 0.6 (PERSON, (0,1), ‘Paul Atreides’)
6 ‘Paul’, ‘ Atreides’, ‘ is’, ‘ the’, ‘ protagonist’, ‘ of’, ‘ "’ ‘ Dune’ ‘ "’ -> O - (PERSON, (0,1), ‘Paul Atreides’)
7 ‘Paul’, ‘ Atreides’, ‘ is’, ‘ the’, ‘ protagonist’, ‘ of’, ‘ "’, ‘Dune’ ‘ "’ ‘ Dune’ -> WORK_OF_ART - (PERSON, (0,1), ‘Paul Atreides’)
8 ‘Paul’, ‘ Atreides’, ‘ is’, ‘ the’, ‘ protagonist’, ‘ of’, ‘ "’, ‘Dune’, ‘"’ ‘ and’ ‘ "’ -> O (7,7) -> 0.8 (PERSON, (0,1), ‘Paul Atreides’), (WORK_OF_ART, (7,7), ‘Dune’)
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Model P R F1
CONLL2003

Tokenwise typing
GPT-2small 62.50% 77.90% 69.36%
GPT-2XL 64.55% 79.10% 71.09%
GPT-J6B 65.88% 80.24% 72.36%
Pythia410m 56.90% 74.87% 64.66%
Pythia1.4b 63.12% 78.04% 69.79%
Pythia2.8b 63.26% 78.14% 69.91%
Pythia6.9b 64.46% 79.13% 71.05%

Adj. propagation
GPT-2small 82.25% 87.68% 84.88%
GPT-2XL 84.40% 90.47% 87.33%
GPT-J6B 86.70% 92.02% 89.28%
Pythia410m 82.86% 88.84% 85.75%
Pythia1.4b 84.24% 90.39% 87.21%
Pythia2.8b 86.54% 91.84% 89.11%
Pythia6.9b 87.50% 92.58% 89.97%

Spanwise typing
GPT-2small 85.07% 88.34% 86.67%
GPT-2XL 89.32% 91.75% 90.52%
GPT-J6B 88.82% 91.60% 90.19%
Pythia410m 84.44% 87.04% 85.72%
Pythia1.4b 87.37% 90.22% 88.77%
Pythia2.8b 88.37% 90.17% 89.26%
Pythia6.9b 89.13% 91.35% 90.23%

Span propagation
GPT-2small 92.41% 79.49% 85.46%
GPT-2XL 94.08% 87.13% 90.47%
GPT-J6B 94.49% 83.76% 88.80%
Pythia410m 92.72% 81.61% 86.81%
Pythia1.4b 93.84% 82.78% 87.96%
Pythia2.8b 94.30% 85.41% 89.63%
Pythia6.9b 94.90% 86.05% 90.26%

Table 19: NER scores using hidden states and attention
weights in different ways. All scores are micro F1 scores
measured on the validation set of CoNLL2003.

Model P R F1
ONTONOTES5

Tokenwise typing
GPT-2small 55.69% 69.78% 61.94%
GPT-2XL 58.56% 71.55% 64.41%
GPT-J6B 59.52% 72.54% 65.39%
Pythia410m 54.65% 67.96% 60.58%
Pythia1.4b 55.98% 69.84% 62.15%
Pythia2.8b 55.93% 69.92% 62.15%
Pythia6.9b 57.68% 71.12% 63.70%

Adj. propagation
GPT-2small 64.39% 72.92% 68.39%
GPT-2XL 68.25% 76.11% 71.96%
GPT-J6B 69.64% 77.85% 73.52%
Pythia410m 68.74% 76.78% 72.54%
Pythia1.4b 70.21% 77.42% 73.64%
Pythia2.8b 70.79% 78.10% 74.27%
Pythia6.9b 70.27% 77.84% 73.86%

Spanwise typing
GPT-2small 71.57% 76.07% 73.75%
GPT-2XL 76.79% 76.26% 76.52%
GPT-J6B 75.22% 75.28% 75.25%
Pythia410m 73.11% 73.64% 73.37%
Pythia1.4b 74.00% 73.69% 73.84%
Pythia2.8b 74.79% 74.54% 74.67%
Pythia6.9b 75.27% 78.84% 77.01%

Span propagation
GPT-2small 85.21% 62.31% 71.98%
GPT-2XL 87.26% 72.77% 79.36%
GPT-J6B 86.82% 69.88% 77.43%
Pythia410m 85.29% 68.60% 76.04%
Pythia1.4b 85.76% 68.46% 76.14%
Pythia2.8b 86.67% 71.22% 78.19%
Pythia6.9b 86.81% 72.14% 78.80%

Table 20: NER scores using hidden states and attention
weights in different ways. All scores are micro F1 scores
measured on the validation set Ontonotes5.
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