
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 17525–17537
November 12-16, 2024 ©2024 Association for Computational Linguistics

Context-Aware Adapter Tuning for Few-Shot Relation Learning in
Knowledge Graphs

Ran Liu1, Zhongzhou Liu1, Xiaoli Li2,3 and Yuan Fang1

1School of Computing and Information Systems, Singapore Management University, Singapore
2Institute for Infocomm Research, A*STAR, Singapore
3A*STAR Centre for Frontier AI Research, Singapore

{ran.liu.2020, zzliu.2020}@phdcs.smu.edu.sg, xlli@i2r.a-star.edu.sg, yfang@smu.edu.sg

Abstract

Knowledge graphs (KGs) are instrumental in
various real-world applications, yet they often
suffer from incompleteness due to missing re-
lations. To predict instances for novel relations
with limited training examples, few-shot rela-
tion learning approaches have emerged, utiliz-
ing techniques such as meta-learning. How-
ever, the assumption is that novel relations in
meta-testing and base relations in meta-training
are independently and identically distributed,
which may not hold in practice. To address the
limitation, we propose RelAdapter, a context-
aware adapter for few-shot relation learning in
KGs designed to enhance the adaptation pro-
cess in meta-learning. First, RelAdapter is
equipped with a lightweight adapter module
that facilitates relation-specific, tunable adapta-
tion of meta-knowledge in a parameter-efficient
manner. Second, RelAdapter is enriched with
contextual information about the target rela-
tion, enabling enhanced adaptation to each dis-
tinct relation. Extensive experiments on three
benchmark KGs validate the superiority of Re-
lAdapter over state-of-the-art methods.

1 Introduction

Knowledge graphs (KGs) (Bollacker et al., 2008;
Suchanek et al., 2007; Vrandečić and Krötzsch,
2014) have been widely adopted to describe real-
world facts using triplets in the form of (head en-
tity, relation, tail entity). However, curating and
maintaining all the possible ground-truth triplets
is impossible, and various approaches for knowl-
edge graph completion (Bordes et al., 2013; Yang
et al., 2014; Trouillon et al., 2016; Sun et al.,
2019) have been proposed to discover missing facts.
Many of these methods adopt a supervised learn-
ing paradigm, which require abundant training data
for each relation. In real-world settings, novel and
emerging relations, along with many relations in
the long tail, are associated with very few instances
(Xiong et al., 2018), limiting their performance.

Subsequently, few-shot relation learning (FSRL)
on KGs has emerged to handle novel relations
with only a few known instances. An estab-
lished line of work (Chen et al., 2019; Niu et al.,
2021) employs meta-learning, most notably Model-
Agnostic Meta-Learning (MAML) (Finn et al.,
2017). MAML aims to learn a prior from a se-
ries of meta-training tasks, which can be rapidly
adapted to downstream meta-testing tasks. The
meta-training tasks are specifically constructed in
a few-shot setup to mimic downstream tasks. In
the context of FSRL, each task contains only a few
training instances of a single relation, and the ob-
jective is to predict more instances for a novel task
(i.e., relation1) not seen in meta-training. For ex-
ample, MetaR (Chen et al., 2019) aims to learn a
relation-specific prior (also called meta-knowledge)
during the meta-training stage, using a series of
meta-training tasks constructed from a set of base
relations with abundant instances. Subsequently,
the meta-knowledge is leveraged for rapid adap-
tation, through a lightweight fine-tuning step, for
few-shot predictions on novel relations in meta-
testing.

Limitation of prior work. The major limitation
of FSRL methods based on meta-learning lies in
the assumption that the meta-training and meta-
testing tasks are independently and identically dis-
tributed (i.i.d.). However, different relations may
diverge significantly in their underlying distribu-
tions, thereby weakening the i.i.d. task assumption.
To investigate this hypothesis, we randomly sam-
ple a large number of relation pairs from standard
benchmark datasets, namely, WIKI, FB15K-237
and UMLS2. We perform a mean pooling across
all entities within each relation task to derive an
average embedding as the task representation. For
every pair of relations, we plot their cosine similar-

1We use the terms “task” and “relation” interchangeably.
2Refer to Sect. 5 for dataset details.

17525

(a) WIKI (b) FB15K-237 (c) UMLS

Figure 1: Pairwise cosine similarity of relations.

ity in Fig. 1. The results reveal a wide variance in
the similarities between relations, suggesting that
a uniform adaptation process may not suffice for
all relations. In particular, for out-of-distribution
relations, performance degradation is generally an-
ticipated (Radstok et al., 2021; Li et al., 2022).

Challenges and insights. Specifically, we iden-
tify two open challenges, at the model and data
levels, towards more universal downstream adapta-
tion. At the model level, the first challenge (C1) is
how to design a relation-specific adaptation mod-
ule that can be tailored to each relation, while still
leveraging the meta-knowledge learned from meta-
training. The goal is to enable a more flexible adap-
tation process that allows for a relation-specific
balance between the global prior and local task in-
put. At the data level, the second challenge (C2) is
how to augment few-shot relation instances during
meta-testing in an unsupervised manner, thereby
further enhancing adaptation to novel relations.

To address these challenges, we introduce
a context-aware adapter framework, called Re-
lAdapter, for few-shot relation learning. To over-
come the model-level challenge (C1), we draw
inspiration from parameter-efficient fine-tuning
(Houlsby et al., 2019; Hu et al., 2021; Li and Liang,
2021; Brown et al., 2020). Specifically, we pro-
pose to integrate a lightweight adapter module into
the meta-learning framework. The adapter module
enables a relation-specific, tunable adaptation of
the global prior to suit the local task in the meta-
testing stage. For the data-level challenge (C2), we
propose to inject additional contextual information
about the target relation into meta-testing. The con-
textual information is extracted based on existing
KG structures without requiring any extra anno-
tation, serving as a form of data augmentation to
enrich the few-shot relation instances. This strategy
endows the adapter with more relation-specific con-
texts, and the context-aware adapter can enhance
relation-specific adaptation.

Contributions. In summary, we make the follow-

ing contributions. (1) We observe the i.i.d. lim-
itation of prior work in FSRL, and first support
it with an empirical analysis. (2) We propose
RelAdapter, a context-aware adapter framework
for FSRL. Specifically, we design a lightweight
adapter module that leverages contextual informa-
tion, enabling a relation-specific, tunable, and fine-
grained adaptation for each novel relation in meta-
testing. (3) We conduct extensive experiments on
three benchmark datasets, and demonstrate the su-
periority of our proposed RelAdapter.

2 Related Work

Supervised relation learning. Knowledge graph
embedding aims to transform entities and relations
into a low-dimensional continuous vector space
while preserving their semantic meaning. Conven-
tional knowledge graph completion models can
generally be classified into three main categories:
(1) Translation-based methods, such as TransE
(Bordes et al., 2013), TransH (Wang et al., 2014),
and TransD (Ji et al., 2015), which are additive
models that use distance-based constraint to op-
timize entity and relations embedding. (2) Se-
mantic matching-based methods, such as DistMult
(Yang et al., 2014) and ComplEx (Trouillon et al.,
2016), which are multiplicative models that exploit
the interaction between entity and relation vectors.
(3) Graph-based models, include graph neural net-
works such as GCN (Kipf and Welling, 2017) and
RGCN (Schlichtkrull et al., 2018), which considers
higher-order structures in KGs. However, these
supervised approaches rely on a large amount of
training data and are not well-suited for few-shot
relation learning.

Few-shot relation learning. To address one- or
few-shot relation learning, many models have been
proposed recently in two main categories: (1)
Metric-based models that calculates a similarity
score between support and query sets to learn the
matching metrics. GMatching (Xiong et al., 2018)
uses a one-hop neighbor encoder and a matching
network, but assumes that all neighbors contribute
equally. FSKGC (Zhang et al., 2020) extends
the setting to more shots and seeks to merge in-
formation learnt from multiple reference triplets
with a fixed attention mechanism. FAAN (Sheng
et al., 2020) introduces an relation-specific adap-
tive neighbor encoder for one-hop neighbors. (2)
Optimization-based models aim to learn an initial
meta prior that can be generalized to a new rela-

17526

tion given few-shot examples. MetaR (Chen et al.,
2019) makes predictions by transferring shared
relation-specific meta information from the sup-
port set to the queries through a mean pooling of
the support set. GANA (Niu et al., 2021) improves
on previous models by having a gated and atten-
tive neighbor aggregator to capture the most valu-
able contextual semantics of a few-shot relation.
HiRe (Wu et al., 2023) further considers triplet-
level contextual information to generate relation
meta. Meanwhile, REFORM (Wang et al., 2021)
seeks to alleviate the impact of potential errors,
which can be prevalent in KGs and further exacer-
bated under few-shot settings.

Despite these efforts, they fail to explicitly ac-
count for out-of-distribution relations. NP-FKGC
(Luo et al., 2023) offers a solution to the out-of-
distribution problem by leveraging neural processes
to model complex distributions which can fit both
training and test data. Unfortunately, it cannot be
applied directly to existing meta-learning frame-
works, and is therefore unable to benefit from meta-
learned prior. Similarly, several other recent works
(Liu et al., 2024; Meng et al., 2024; Huang et al.,
2022) for few-shot relation learning do not utilize
meta-learning frameworks, and thus do not lever-
age a set of meta-training tasks to learn a prior, as
done in our work.

Adapters. Parameter-efficient fine-tuning has
gained traction in various domains (Houlsby et al.,
2019; Li and Liang, 2021; Brown et al., 2020; Hu
et al., 2021). The adapter (Houlsby et al., 2019)
is a common parameter-efficient technique, which
adds a sub-module to pre-trained language models
to adapt them to downstream tasks. In the field
of general graph learning, AdapterGNN (Li et al.,
2024) employs adapters to bridge the gap between
transformer-based models and graph neural net-
works. On the other hand, G-Adapter (Gui et al.,
2024) leverages contextual graph structures as an
inductive bias to aid the training of the adapter.
Both approaches are designed for general graph
learning, and cannot handle the problem of FSRL
on KGs. Furthermore, our work focuses on inte-
grating adapters into meta-learning frameworks to
leverage meta-learned knowledge, which are miss-
ing in prior adapter designs for graphs.

Contextual information. Previous works have uti-
lized contextual information in knowledge graphs.
For example, Oh et al. (2018) tap on the con-
texts from multi-hop neighborhoods, and Tan et al.

(2023) apply an attention mechanism to aggregate
neighboring contexts. However, how contextual
information can be utilized for few-shot relation
learning, particularly within an adapter module, re-
mains unclear. In contrast, our work introduces a
context-aware adapter module to address the few-
shot setting.

3 Preliminaries

In this section, we introduce the problem of
few-shot relation learning (FSRL) and the meta-
learning framework for this problem.

Problem formulation. A knowledge graph G =
(V,R) comprises a set of triplets. Each triplet is
represented by the form (h, r, t) for some h, t ∈ V
and r ∈ R, where V is the set of entities and R is
the set of relations.

Consider a novel relation r /∈ R w.r.t. a knowl-
edge graph G. Further assume a support set Sr =
{(hi, r, ti) | i = 1, 2, . . . ,K} for some hi, ti ∈ V
for the novel relation r. The goal is to predict the
missing tail entities in a query set, Qr = {(hj , r, ?) |
j = 1, 2, . . . , }, w.r.t. the given hj ∈ V and r.

In the paper, for each triplet in (hj , r, ?) ∈ Qr,
a type-constrained candidate set Chj ,r is provided
and the objective is to rank the true tail entities
highest among the candidates. Together, the sup-
port and query sets form a task Tr = (Sr,Qr)
for r. The support set provides a few training in-
stances, known as K-shot relation learning, where
|Sr| = K is typically a small number.

Meta-learning framework. Given the success
of meta-learning in few-shot problems, we adopt
MetaR (Chen et al., 2019), a popular meta-learning-
based approach for FSRL, as our learning frame-
work. MetaR consists of two stages: meta-training
and meta-testing, aiming to learn a prior Φ from
the meta-training stage that can be adapted to the
meta-testing stage. On one hand, meta-training in-
volves a set of seen relations Rtr, and operates on
their task data Dtr = {Tr | r ∈ Rtr}. On the other
hand, meta-testing involves a set of novel relations
Rte such that Rtr ∩Rte = ∅, and operates on their
task data Dte = {Tr | r ∈ Rte}. Note that the
ground-truth tail entities are provided in the query
sets of the meta-training tasks Dtr, whereas the ob-
jective is to make predictions for the query sets of
the meta-testing tasks Dte.

Meta-training. During meta-training, the model
learns a prior Φ, which serves as a good initializa-
tion to extract a shared relation meta, RTr ∈ Rd,

17527

for each task Tr = (Sr,Qr) ∈ Dtr. Specifically,
the relation meta RTr is obtained through a mean
pooling of all (head, tail) pairs in the support set of
the task Tr, as follows.

RTr = Mean({RML(f(h), f(t); Φ) | Sr}), (1)

where f(·) is a pre-trained encoder that generates d-
dimensional embeddings for the entities. Moreover,
RML is the relation-meta learner, implemented as a
two-layer multi-layer perceptron (MLP).

It is worth noting that the prior Φ initializes the
relation-meta learner RML, which further generates
the relation meta RTr . Subsequently, RTr is rapidly
updated by a gradient meta GTr calculated from
the loss on the support set, i.e., R′

Tr = RTr−βGTr ,
where β is the step size. The resulting R′

Tr serves as
the relation meta adapted to the support set, which
is used to calculate the loss on the query set. Finally,
the query loss is backpropagated to update the prior
Φ and the embedding matrix emb for the entities.

More specifically, the support and query losses
are calculated as follows.

LSr =
∑

(h,r,t)∈Sr
[γ + s(emb(h), RTr ,

emb(t))− s(emb(h), RTr , emb(t
′))]+ (2)

LQr =
∑

(h,r,t)∈Qr
[γ + s(emb(h), R′

Tr ,

emb(t))− s(emb(h), R′
Tr , emb(t

′))]+ (3)

Here, s(·, ·) is a scoring function such as TransE
(Bordes et al., 2013), i.e., s(h, r, t) = ∥h+r−ti∥,
where ∥ · ∥ denotes the L2 norm. emb is an entity
embedding matrix, which is initialized by a pre-
trained model and can be further optimized during
meta-training. (h, r, t′) refers to a negative triplet
of the relation r, where t′ is randomly sampled
from the type-constrained candidate set. γ repre-
sents the margin which is a hyper-parameter. [·]+
denotes the positive part of the input value.

Meta-testing. The meta-testing stage follows the
same pipeline as meta-training, except that we can-
not compute and backpropagate the query loss to
update model parameters (Φ and emb). For each
novel task Tr ∈ Dte, like meta-training, we first
generate the relation meta RTr using the prior Φ,
then update it as R′

Tr based on the support set.
Then, for each partial triplet (hj , r, ?) in the query
set, we rank the candidate entities Chj ,r in ascend-
ing order of the scoring function s(hj , R

′
Tr , tj) for

every tj ∈ Chj ,r.

4 Methodology

In this section, we introduce the proposed approach
RelAdapter. As depicted in Fig. 2, RelAdapter has
two important components, namely, (a) adapter
network and (b) entity context. On one hand, the
adapter network aims to facilitate relation-specific
and tunable adaptation of meta-learned prior in a
parameter-efficient manner. On the other hand, the
entity context aims to enrich the adapter with con-
textual information pertinent to the target relation,
enabling more precise adaptation to each distinct
relation. The two components are integrated into a
context-aware adapter, which enhances FSRL for
the novel relations in meta-testing.

In the rest of the section, we first introduce the
context-aware adapter, followed by the details of
the meta-training and meta-testing stages.

4.1 Context-aware Adapter
We enhance the adaptation to novel relations at the
model level through an adapter module, and at the
data level through context-aware adaptation.
Adapter. The objective of the adapter is to achieve
a relation-specific adaptation for the novel relations
in meta-testing, to overcome the divergence from
the seen relations in meta-training. Specifically, we
adapt the relation meta RTr to the target relation r
through the adapter module, as follows.

RA
Tr = Adapter(RTr ; Θr)

= α · FFN(RTr ; Θr) + (1− α) ·RTr (4)

where the output from the adapter is RA
Tr , the

adapted relation meta specific to the relation r.
The adapter module consists of a lightweight feed-
forward network (FFN) and a residual layer, as
shown in Fig. 2(a), where α is a hyper-parameter
to balance the FFN and the residual, and Θr is the
r-specific parameter of the adapter. Note that the
FFN typically adopts a bottleneck structure, which
projects the input dimension d into a smaller di-
mension m, reducing the number of parameters to
achieve parameter-efficient adaptation.
Context-aware adaptation. At the data level, we
augment the embedding of each entity (head or tail)
by additional pre-trained contextual information
from their related entities, as shown in Fig. 2(b).
The contextual information enables more tailored
adaptation to each distinct novel relation.

ec = µ · Mean({f(ek) | ek ∈ Ne})
+ (1− µ) · emb(e) (5)

17528

Insects

Lay

(b) Entity Context

Bird

Beaks

Feather

Reptiles

Fish
Bodypart

Platypus

Bird

Entity Contextual
Information

Aggregation

-

(c) Meta-TestingSupport Step

Query Step

Backpropagate

Rank byEmbedding
Matrix

Tunable
Frozen

Embedding
Matrix

α

(a) Adapter

Feedforward

Non-linear

+

Feedforward

Pre-trained
Contextual Info.

Figure 2: Illustration of key concepts in RelAdapter, hinging on an entity-aware adapter (a, b) in the meta-testing
stage (c). Note that we omit the meta-training stage, which is similar to meta-testing but with backpropagation of
the query loss to update the model parameters (emb and Φ).

where e ∈ V is an entity, Ne is the set of neighbors
of e in the knowledge graph (without the novel re-
lations in meta-testing), and µ is a hyper-parameter.
For each neighbor ek of e, we utilize the pre-trained
encoder f(·) to extract its embedding. In sum-
mary, the input is the original entity embedding
emb(e) and the mean contextual embedding aggre-
gated from its neighbors Ne, and the output is the
augmented entity embedding ec. In this way, the
augmented embedding ec preserves the embedding
trained via emb, while leveraging pre-trained graph
contextual information.

Given the context-augmented entity embeddings
ec , we can derive the context-aware relation meta,
Rc

Tr , by rewriting Eq. (1) as follows.

Rc
Tr = Mean({RML(hc, tc; Φ) | Sr}) (6)

Subsequently, we update the adapter in Eq. (4) to
take in the context-aware relation meta, such that
RA

Tr = Adapter(Rc
Tr ; Θr).

4.2 Integration with Meta-learning

Following MetaR (Chen et al., 2019), our approach
RelAdapter consists of the meta-training and meta-
testing stages.

Meta-training. Our approach focuses on relation-
specific adaption on novel relations in meta-testing,
closing their gap from the seen relations due to di-
vergence in distributions. Hence, our meta-training
stage largely follows that of MetaR, as described
in Sect. 3. The only difference is that, to have a
consistent architecture to our meta-testing stage,

we also include an adapter module in meta-training.
Due to space constraint, we detail the description
of the meta-training process in Appendix A.
Meta-testing. The process is outlined in Fig. 2(c).
The meta-training stage learns the embedding ma-
trix emb and prior Φ from the tasks on seen rela-
tions. To transfer the prior Φ to novel relations
in meta-testing, it undergoes adaptation from two
perspectives. As in traditional meta-learning, one
form of adaptation involves a rapid fine-tuning step
on the support set. However, meta-learning as-
sumes that the seen and unseen relations are drawn
from an identical distribution, but the distribution
of a novel relation might diverge significantly from
those of the seen relations. Hence, we propose an
additional form of adaptation based on the context-
aware adapter in Sect. 4.1.

In the following, we elaborate on the adaption
process and how the adapter is tuned, and outline
the overall algorithm for meta-testing.
Adaptation. On one hand, our adapter module is
used to transform the context-aware relation meta
Rc

Tr
, which is generated from the global prior Φ

via Eq. (6), into a locally adapted version, i.e.,
RA

Tr
= Adapter(Rc

Tr
; Θr). On the other hand, the

local relation meta is further adapted by a quick
gradient step on the support set, following conven-
tional MAML-based adaptation.

GA
Tr = ∇RA

Tr
LSr , (7)

R′A
Tr = RA

Tr − βGA
Tr . (8)

Adapter tuning. In the meta-testing stage, the

17529

global prior Φ and embedding emb learned from
meta-training are frozen, while only the adapter,
parameterized by Θr, is optimized in a task-wise
manner for r-specific adaptation. First, Θr is ran-
domly initialized for each unseen task Tr ∈ Dte

without leveraging any meta-learned knowledge, to
overcome the potential divergence from seen tasks
in Tr ∈ Dtr. Next, Θr is optimized on the support
set Sr, using the same support loss in Eq. (2). In
other words, gradients on the support loss is back-
propagated to update Θr within each task Tr.

Scoring. The final adapted relation meta from
Eq. (8), R′A

Tr , is used on the query set, to score
and rank the candidates for the missing tail enti-
ties. The scoring function follows that of MetaR in
Sect. 3. That is, for a given head h from the query
set Qr, for each candidate tail t ∈ Ch,r, we com-
pute s(emb(h), R′A

Tr , emb(t)) = ∥emb(h) +R′A
Tr

−
emb(t))∥, and rank the candidates in Ch,r by the
computed score.

Algorithm. We outline the algorithm of our meta-
testing procedure in Algorithm 1. Compared to
MetaR, the novel components in RelAdapter con-
stitute the injection of contextual information spe-
cific to each target relation (lines 2–3), and the in-
sertion of the adapter module (lines 5–8), which are
integrated into a context-aware adapter. Despite the
additional components, the overall time complex-
ity remains unchanged and is linear to the number
of shots. The overhead of the adapter module is
negligible due to its parameter-efficient design.

Algorithm 1 Meta-testing for RelAdapter
Require: Few-shot tasks for novel relations Dte, embedding

matrix emb, prior Φ
1: for each task Tr = (Sr, Qr) ∈ Dte do
2: Compute context-augmented entity embeddings,

{ec}, from Eq. (5);
3: Compute context-aware relation meta, Rc

Tr
, from

Eq. (6);
4: while Θr not converged do
5: Compute adapted relation meta, RA

Tr
←

Adapter(Rc
Tr
; Θr);

6: Compute support loss LSr by Eq. (2);
7: Compute GA

Tr
, the gradient of RA

Tr
by Eq. (7);

8: Update adapted relation meta, R′A
Tr
← RA

Tr
−

βGA
Tr

by Eq. (8);
9: Update Θr w.r.t. LSr ;

10: end while
11: for each (h, r, ?) ∈ Qr do
12: Rank candidates in Ch,r by the scoring function;
13: end for
14: end for

Table 1: Statistics of datasets.

Entities Triplets
Relations

Total Pre-train Train Valid Test

WIKI 4,838,244 5,859,240 639 456 133 16 34
FB15K-237 14,541 281,624 237 118 75 11 33

UMLS 135 6529 25 5 10 5 5

5 Experiments

In this section, we conduct comprehensive experi-
ments on our proposed approach RelAdapter.

5.1 Experiment Setup

Datasets. We utilize three benchmark datasets,
namely, WIKI, FB15K-237 and UMLS. Table 1
depicts the dataset details, including the pre-
train/train/validation/test splits on the relations.
The pre-trained encoder, f(·), which provides ini-
tial entity embeddings for the FSRL models, are
based on the pre-train split. Note that the four splits
are mutually exclusive to avoid information leak-
age (Zhang et al., 2020). Additional details for the
dataset can be found in Appendix B.

Metrics. We employ two popular evaluation met-
rics, mean reciprocal rank (MRR) and hit ratio at
top N (Hit@N) to compare our approach against
the baselines. Specifically, MRR reflects the abso-
lute ranking of the first relevant item in the list and
Hits@N calculates the fraction of candidate lists in
which the ground-truth entity falls within the first
N positions.

Baselines. RelAdapter is compared with a series
of baselines in two major categories. (1) Super-
vised relation learning. They learn one model
for all the relations in a supervised manner. We
choose four classic and popular supervised meth-
ods: TransE (Bordes et al., 2013), DistMult (Yang
et al., 2014), ComplEx (Trouillon et al., 2016)
and RGCN (Schlichtkrull et al., 2018). We follow
the same setup in GMatching (Xiong et al., 2018),
which trains on the triplets combined from the pre-
train and train splits, as well as the support sets
of the test splits. (2) Few-shot relation learning
(FSRL). They are designed for few-shot relation
prediction tasks. We choose several state-of-the-art
FSRL methods, as follows: GMatching (Xiong
et al., 2018), FSKGC (Zhang et al., 2020), GANA
(Niu et al., 2021), FAAN (Sheng et al., 2020), HiRe
(Wu et al., 2023), MetaR (Chen et al., 2019) and
the details can be found in Appendix C.

Implementation Details. For a fair comparison,

17530

Table 2: Performance comparison against baselines in the 3-shot setting. (Best: bolded, runners-up: underlined).

WIKI FB15K-237 UMLS

Models MRR Hit@10 Hit@1 MRR Hit@10 Hit@1 MRR Hit@10 Hit@1

TransE .031±.007 .043±.012 .021±.014 .294±.005 .437±.011 .204±.014 .178±.036 .310±.051 .146±.068
DistMult .047±.003 .082±.009 .031±.011 .234±.008 .364±.007 .208±.010 .231±.035 .337±.049 .214±.067
ComplEx .093±.004 .166±.011 .071±.012 .239±.007 .359±.010 .205±.013 .251±.038 .351±.041 .227±.058

RGCN .217±.012 .363±.023 .188±.031 .332±.011 .495±.013 .241±.031 .409±.059 .549±.072 .389±.089

GMatching .133±.017 .331±.013 .114±.026 .309±.019 .441±.015 .245±.019 .296±.059 .532±.040 .257±.087
FSKGC .131±.003 .267±.010 .104±.016 .355±.005 .523±.004 .217±.011 .525±.031 .682±.024 .490±.038
GANA .291±.014 .384±.012 .272±.015 .388±.004 .553±.008 .301±.017 .541±.045 .721±.076 .502±.047
FAAN .278±.018 .421±.020 .275±.024 .363±.009 .542±.007 .279±.013 .545±.034 .746±.120 .505±.068
HiRe .300±.028 .444±.012 .282±.015 .378±.013 .571±.011 .281±.015 .577±.060 .752±.066 .533±.089

MetaR .314±.013 .420±.016 .274±.028 .368±.007 .536±.005 .251±.012 .435±.075 .601±.095 .417±.103

RelAdapter .347±.006 .454±.012 .317±.013 .405±.012 .575±.014 .297±.019 .608±.067 .780±.044 .555±.062

we initialize all FSRL models with pre-trained en-
tity and relation embeddings, if needed. Other de-
tails can be found in Appendix B.

5.2 Comparison with Baselines

Table 2 reports the quantitative comparison of Re-
lAdapter against other baselines in the 3-shot set-
ting, i.e., the size of the support set is 3. (We study
the effect of the number of shots in Sect. 5.5).

Overall, our model RelAdapter outperforms
other baselines across all the three datasets, which
demonstrates the benefit of incorporating context-
aware adapter for FSRL. In particular, RelAdapter
outperforms the most competitive baseline HiRe
by 9.84% in terms of average MRR and 2.22% in
terms of average Hit@10. Furthermore, we also
draw the following observations.

First, supervised relation learning methods tend
to perform worse as compared to FSRL methods
as they are not designed to handle novel relations
in few-shot setting. Meanwhile, as RGCN consid-
ers the neighborhood aggregated information, it
consistently outperforms other supervised relation
learning models across all the three datasets.

Second, among the FSRL methods, GMatch-
ing is designed for one-shot setting, and a simple
mean pooling is applied to handle multiple shots,
resulting in unsatisfactory performance. FSKGC
generally performs better than GMatching as it
extends the one-shot setting to more shots and
explores new ways to encode neighbors with an
attention mechanism. Although both GMatching
and FSKGC consider neighborhood information,
the simple neighborhood aggregation design is not
expressive enough to capture complex relations.
On the other hand, GANA and FAAN outperform
GMatching and FSKGC as they consider the neigh-
borhood information via more expressive neigh-

Table 3: Ablation study under the 3-shot setting. A:
adapters in both meta-train and meta-test stage; C: using
contextual information; Atr: adapter in meta-training;
Ate-Trf: adapter in meta-testing by transferring from
meta-trained adapter. MetaR is considered a special
variant without any of these components.

MRR

WIKI FB15K-237 UMLS

MetaR .314±.013 .368±.007 .435±.075

W/o A .312±.004 .385±.007 .389±.036
W/o C .332±.009 .395±.007 .590±.043

W/o Atr .343±.015 .395±.012 .583±.047
Ate-Trf .341±.008 .394±.014 .586±.046

RelAdapter .347±.006 .405±.012 .608±.067

borhood aggregators, employing a gated attentive
neighborhood aggregator and a task-specific entity
adaptive neighbor encoder, respectively. On top
of the neighborhood information, HiRe considers
triplet-level contextual information to generalize to
few-shot relations, thus outperforming GANA and
FAAN in most cases.

Third, MetaR is the closest to RelAdapter in
terms of the model architecture. In particular,
the addition of context-aware adapter in the meta-
learning framework enables more precise and
relation-specific adaptation to each novel relation,
mitigating the distribution shift between differ-
ent relations. Hence, compared against MetaR,
RelAdapter achieves an average improvement of
20.1% in MRR and 15.1% in Hit@10.

5.3 Ablation Study

To investigate the impact of various modules, we
study four variants of our model, as shown in Ta-
ble 3. (1) W/o A: We remove the adapter module
entirely, while retaining the contextual information
for entities. It shows a pronounced drop in per-

17531

Table 4: Comparison of our adapter and MetaR in terms
of number of parameters.

WIKI FB15K-237 UMLS

MetaR 241,967,556 1,650,206 234,306
Our adapter 5,125 5,125 5,125

% of MetaR 0.002 0.311 2.187

formance and can be worse than MetaR, implying
that simply adding contexts without further adap-
tation may introduce additional noises that harm
the performance. In particular, the effect is the
most significant on the UMLS dataset, which could
be attributed to its smaller size. Specifically, the
meta-learned model is more likely to overfit to the
smaller meta-training data, and thus it becomes
more important to have the adapter to deal with the
distribution shift from meta-training. (2) W/o C:
we remove the contextual information, while re-
taining the adapter. The lower performance shows
that leveraging contexts can enhance model perfor-
mance, if adapter is also present. (3) W/o Atr: We
remove the adapter only from meta-training (see
Appendix A). The decrease in performance justifies
the need for a consistent architecture in both meta-
training and -testing. (4) Ate-Trf: we transfer the
meta-trained adapter parameters to meta-testing,
serving as the initialization for the adapter in meta-
testing. In contrast, in RelAdapter, the adapter is
randomly initialized in meta-testing. This variants
suffer from a notable drop in performance, which
is consistent with our earlier hypothesis on the di-
vergence between relations. Specifically, due to the
distribution shift in novel relations encountered in
meta-testing, using prior adapter parameters from
meta-training may be counterproductive.

5.4 Efficiency Analysis

We analyze the parameter and runtime efficiency
of our adapter module.

Parameter efficiency. We first study the parame-
ter overhead from the addition of adapter module.
As shown in Table 4, the number of parameters in
the adapter module is negligible w.r.t. MetaR. The
parameter-efficient design implies that our adapter
tuning is less likely to overfit to the few-shot ex-
amples. Also note that, compared to MetaR, the
only new parameters of RelAdapter belong to the
adapter module.

Runtime efficiency. As reported in Table 5, our
approach RelAdapter generally incurs a lower or

Table 5: Runtime (in seconds) for meta-training and
meta-testing.

Stage Model WIKI FB15K-237 UMLS

GMatching 28,941 19,678 12,061
FSKGC 28,742 20,765 13,869
GANA 35,374 28,167 15,081

Meta-train FAAN 32,036 23,675 11,302
(total) HiRe 34,257 27,736 12,213

MetaR 22,691 16,504 8,802
RelAdapter 24,085 17,529 9,656

GMatching 0.009 0.004 0.039
FSKGC 0.013 0.004 0.042
GANA 0.017 0.006 0.064

Meta-test FAAN 0.016 0.005 0.053
(per instance) HiRe 0.036 0.007 0.051

MetaR 0.012 0.005 0.043
RelAdapter 0.045 0.008 0.053

comparable total runtime for meta-training in com-
parison to various baselines. More specifically,
compared to the most efficient approach MetaR,
RelAdapter only takes slightly more time to com-
plete the training. This observation shows that the
parameter-efficient design of RelAdapter is able to
achieve significant performance improvement with
a decent runtime efficiency.

On the other hand, during meta-testing, we ob-
serve a notable increase in the average runtime per
instance due to the relation-specific adaptation in
RelAdapter. However, it remains on a similar order
of magnitude as the baselines, with only a marginal
absolute difference, especially when considering
the much longer meta-training stage.

5.5 Sensitivity Analysis

Lastly, we conduct a sensitivity analysis for various
settings and hyperparameters in Fig. 3. In particu-
lar, we vary the number of shots K while fixing the
hyperparamters, as well as several key hyperparam-
eters while fixing K = 3. In the figures, the x-axis
refers to the range of K or parameters against the
MRR metric in y-axis. The error bars represent the
spread of standard deviation for each data point.

Few-shot size K. The few-shot size K refers to
the number of triplets in the support set of each
relation. As shown in Fig. 3(a), when K increases,
we consistently observe performance improvement
as more data becomes available for training.

Adapter ratio α. As given in Eq. (4), Sect. 4.1,
RelAdapter employs a hyperparameter α which
controls the weight of the residual in the context-
aware adapter. A bigger α means less residual,
giving the adapter more transformative power to
adapt to each relation. As shown in Fig. 3(b), the

17532

2 4 6 8 10
K

0.2
0.3
0.4
0.5
0.6
0.7

MRR

(a) Few-shot size

0.0 0.2 0.4 0.6 0.8 1.00.2

0.3

0.4

0.5

0.6

0.7 MRR

(b) Adapter ratio

0.0 0.2 0.4 0.6 0.8 1.00.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7 MRR

(c) Context ratio

20 40 60 80 100
m

0.1
0.2
0.3
0.4
0.5
0.6
0.7

MRR

(d) Adapter neurons

Figure 3: Sensitivity analysis for the number of shots and hyperparameters.

performance peaks when α = 0.1 on FB15K-237
and UMLS, and α = 0.3 on WIKI. In general, [0.1,
0.3] appears as a robust range. Beyond the range,
the performance starts to decrease, indicating that
excessive adapter transformations are not benefi-
cial. In particular, UMLS is more sensitive to the
changes in α. A potential reason is that UMLS
is a relatively small dataset in a focused domain
with less distribution shifts (see Fig. 1). Hence, it
requires less adaptation across relations.
Context ratio µ. Similar to α, RelAdapter con-
trols the weight of contextual information via the
hyper-parameter µ in Eq. 5, Sect. 4.1. As illustrated
in Fig. 3(c), a smaller contextual ratio generally
helps to improve the model performance across
all datasets, while an excessively large ratio could
bring in more noises and hurt the performance. In
general, [0.1,0.3] appears to be a good range.
Adapter neurons m. We analyze how the number
of neurons m in the hidden layer of the adapter
network affects model performance. Results in
Fig. 3(d) show that the optimal m is around 25 for
FB15K-237, and 50 for WIKI and UMLS. Increas-
ing m further leads to a plateau in performance,
suggesting the effectiveness of the bottleneck struc-
ture and ensuring a parameter-efficient design.
Number of hops for contexts. We investigate
the impact of the number of hops considered in
neighborhood contexts, Ne, in Eq. (5). Due to
space limit, we present the results in Appendix E.

6 Conclusion

In this paper, we proposed RelAdapter, a context-
aware adapter for few-shot relation learning
(FSRL). We investigated the limitation of FSRL
methods in prevailing meta-learning frameworks,
which rely on the i.i.d. assumption. This assump-
tion may not hold for novel relations with distri-
bution shifts from the seen relations. Based on

this insight, we introduced a context-aware adapter
module, enabling relation-specific, tunable and
fine-grained adaptation for each distinct relation.
Extensive experiments were conducted on three
benchmark datasets, demonstrating the superior
performance of RelAdapter.

Limitations

In RelAdapter, one potential limitation is that the
context-aware adapter module is currently only in-
tegrated into the MetaR framework. Despite the
significant improvement in performance, it would
be ideal to explore the integration of RelAdapter
with other meta-learning frameworks in general.

Acknowledgement

This research was supported by the Singapore
Ministry of Education (MOE) Academic Research
Fund (AcRF) Tier 1 grant (22-SIS-SMU-054) and
National Research Foundation, Singapore under its
AI Singapore Programme (AISG2-RP-2021-027).
Any opinions, findings and conclusions or recom-
mendations expressed in this material are those
of the author(s) and do not reflect the views of
the Ministry of Education or National Research
Foundation, Singapore. Ran Liu is also supported
by the A*Star Graduate Scholarship offered by the
Agency for Science, Technology and Research, Sin-
gapore for his PhD study.

References
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In SIGMOD, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NeurIPS, pages 2787–2795.

17533

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen,
and Huajun Chen. 2019. Meta relational learning
for few-shot link prediction in knowledge graphs. In
EMNLP, pages 4208–4217.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, pages 1126–1135.

Anchun Gui, Jinqiang Ye, and Han Xiao. 2024.
G-Adapter: Towards structure-aware parameter-
efficient transfer learning for graph transformer net-
works. In AAAI, pages 12226–12234.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
ICML, pages 2790–2799.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. LoRA: Low-rank adaptation of
large language models. In ICLR.

Qian Huang, Hongyu Ren, and Jure Leskovec. 2022.
Few-shot relational reasoning via connection sub-
graph pretraining. In NeurIPS, pages 6397–6409.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. In ACL/IJCNLP, pages
687–696.

Diederik P Kingma et al. 2015. Adam: A method for
stochastic optimization. In ICLR.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu
Zhu. 2022. Ood-gnn: Out-of-distribution general-
ized graph neural network. TKDE, 35(7):7328–7340.

Shengrui Li, Xueting Han, and Jing Bai. 2024.
AdapterGNN: Efficient delta tuning improves gener-
alization ability in graph neural networks. In AAAI,
pages 13600–13608.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL/IJCNLP, pages 4582–4597.

Haochen Liu, Song Wang, Chen Chen, and Jundong
Li. 2024. Few-shot knowledge graph relational rea-
soning via subgraph adaptation. In NAACL, pages
3346–3356.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2023. Normalizing flow-based neural
process for few-shot knowledge graph completion.
In SIGIR, pages 900–910.

Lingyuan Meng, Ke Liang, Bin Xiao, Sihang Zhou,
Yue Liu, Meng Liu, Xihong Yang, Xinwang Liu, and
Jinyan Li. 2024. SARF: Aliasing relation–assisted
self-supervised learning for few-shot relation reason-
ing. TNNLS.

Guanglin Niu, Yang Li, Chengguang Tang, Ruiying
Geng, Jian Dai, Qiao Liu, Hao Wang, Jian Sun, Fei
Huang, and Luo Si. 2021. Relational learning with
gated and attentive neighbor aggregator for few-shot
knowledge graph completion. In SIGIR, pages 213–
222.

Byungkook Oh, Seungmin Seo, and Kyong-Ho Lee.
2018. Knowledge graph completion by context-
aware convolutional learning with multi-hop neigh-
borhoods. In CIKM, pages 257–266.

Wessel Radstok, Mel Chekol, Mirko Schaefer, et al.
2021. Are knowledge graph embedding models bi-
ased, or is it the data that they are trained on? In
Wikidata Workshop, ISWC.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In ESWC, pages 593–607.

Jiawei Sheng, Shu Guo, Zhenyu Chen, Juwei Yue, Li-
hong Wang, Tingwen Liu, and Hongbo Xu. 2020.
Adaptive attentional network for few-shot knowledge
graph completion. In EMNLP, pages 1681–1691.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In WWW, pages 697–706.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge graph embedding
by relational rotation in complex space. In ICLR.

Zhaoxuan Tan, Zilong Chen, Shangbin Feng, Qingyue
Zhang, Qinghua Zheng, Jundong Li, and Minnan
Luo. 2023. KRACL: Contrastive learning with graph
context modeling for sparse knowledge graph com-
pletion. In WWW, pages 2548–2559.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In CVSC, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML,
pages 2071–2080.

17534

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Song Wang, Xiao Huang, Chen Chen, Liang Wu, and
Jundong Li. 2021. REFORM: Error-aware few-shot
knowledge graph completion. In CIKM, pages 1979–
1988.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI, pages 1112–1119.

Han Wu, Jie Yin, Bala Rajaratnam, and Jianyuan Guo.
2023. Hierarchical relational learning for few-shot
knowledge graph completion. In ICLR.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo,
and William Yang Wang. 2018. One-shot relational
learning for knowledge graphs. In EMNLP, pages
1980–1990.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2014. Embedding entities and relations
for learning and inference in knowledge bases. In
ICLR.

Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang,
Zhenhui Li, and Nitesh V Chawla. 2020. Few-shot
knowledge graph completion. In AAAI, pages 3041–
3048.

Appendices

A Meta-training stage

In the meta-train stage as illustrated in Fig. 4, we
update the model with the query loss LQr in the
same way as MetaR. In summary, we formulate
the trainable parameters of the meta-train stage as
Φ, Θ, emb , where Φ is the set of trainable param-
eters in relation-meta learner RML, Θ is the set of
trainable parameters of the adapter module and
emb is the embedding learner. The output of the
meta-training stage includes the set of meta-trained
entity embedding emb as well as the relation-meta
learner RML, which will be further used to adapt to
downstream tasks in the meta-testing stage. The
purpose of introducing the adapter network into the
meta-training stage is to maintain consistency with
the architecture of the meta-testing stage, which
can improve performance.

B Datasets

We utilize three benchmark datasets, namely, WIKI,
FB15K-237 and UMLS. On each dataset, the re-
lations are divided into four subsets: pre-training,
training, validation and test, as shown in Table 1.
For the smaller dataset UMLS, all relations with
less than 50 triplets are removed.

For supervised models not designed for FSRL
(TransE, DistMult and ComplEx from OpenKE3,
and RGCN4), we follow the same settings in
GMatching (Xiong et al., 2018) by using all triplets
in the pre-train and train splits, as well as the
support sets from the valid/test splits to train the
models. For other FSRL models (GMatching5,
FSKGC6, MetaR7, GANA8, FAAN9, HiRE10), we
follow the same FSRL splits as RelAdapter. All
results are averaged among 5 runs.

Note that, as FB15K contain many inverse
triplets which can cause leakage during training,
it has been omitted and replaced with its subset
FB15K-237 (Toutanova and Chen, 2015) which
has all the inverse triplets removed. In addition, the
popular WN18 and WN18RR datasets have also
been omitted, as they contain insufficient relations
and therefore are not suitable to be used in our
experiments.

C Baselines

Few-shot relation learning (FSRL) are designed for
few-shot relation prediction tasks, where the testing
relations are previously unseen in pre-training or
training. We choose several state-of-the-art FSRL
methods, as follows: GMatching (Xiong et al.,
2018) uses a neighbor encoder and a matching
network, assuming that all neighbors contribute
equally. FSKGC (Zhang et al., 2020) encodes
neighbors with a fixed attention mechanism, and
applies a recurrent autoencoder to aggregate the
few-shot instances in the support set. GANA (Niu
et al., 2021) improves on FSKGC by having a gated
and attentive neighbor aggregator to capture valu-
able contextual semantics of each few-shot relation.
FAAN (Sheng et al., 2020) introduces an adap-
tive neighbor encoder for different relation tasks.
HiRe (Wu et al., 2023) brings in a hierarchical rela-
tional learning framework which considers triplet-
level contextual information in contrastive learn-
ing. MetaR (Chen et al., 2019) utilizes a MAML-
based framework, which aims to learn a good ini-
tialization for the unseen relations, followed by an
optimization-based adaptation.

3https://github.com/thunlp/OpenKE
4https://github.com/JinheonBaek/RGCN
5https://github.com/xwhan/One-shot-Relational-Learning
6https://github.com/chuxuzhang/AAAI2020_FSRL
7https://github.com/AnselCmy/MetaR
8https://github.com/ngl567/GANA-FewShotKGC
9https://github.com/JiaweiSheng/FAAN

10https://github.com/alexhw15/HiRe

17535

-

Support Step

Back-propagate
Embedding

Matrix

Initial Pre-trained
Embedding

Tunable

Embedding
Matrix

Query Step

Figure 4: Illustration of the meta-training stage.

Table 6: Tuned hyperparameter settings based on validation data.

Hyperparameters Range of values Wiki FB15K-237 UMLS

TransE norm 1,2 1 2 1

DistMult norm 1,2 1 1 1

ComplEx norm 1,2 1 1 1

RGCN dropout 0.1,0.2,0.5 0.2 0.2 0.1

Gmatching aggregate mean, max, sum max mean max

MetaR beta 1,3,5,10 5 3 5

FSRL aggregate mean, max, sum max max max

GANA beta 1,3,5,10 5 5 5

FAAN dropout_input 0.1,0.3,0.5,0.8 0.5 0.3 0.5

HIRE beta 1,3,5,10 5 5 10

RelAdapter α, µ 0.05 ∼ 1.0 α = 0.5, µ = 0.05 α = 0.1, µ = 0.1 α = 0.1, µ = 0.3

D Implementation details

For WIKI and FB15K-237, we directly use the
pre-trained embeddings provided in (Xiong et al.,
2018; Wang et al., 2021). For UMLS, we obtain the
pre-trained embedding using the popular TransE-
pytorch implementation by Mklimasz11. Through-
out all the experiments, the embedding dimension
is set to 100 for FB15K-237 and UMLS, and 50
for WIKI. Where applicable, the maximum number
of neighbors of one given entity is set to 50. All
results reported are on the candidate set after re-
moving relations with less than 10 candidates. For
each model, some settings are tuned using the vali-
dation set, while the others follow their respective
original papers. More details on the hyperparame-
ter settings can be found in Table 6.

11https://github.com/mklimasz/TransE-PyTorch

We train RelAdapter for 100,000 epochs, and se-
lect the most optimal model based on the validation
relations every 1,000 epochs with early stopping
for a patience setting of 30. The mini-batch gra-
dient descent is applied with batch size set as 64
for FB15K-237 and UMLS, and 128 for WIKI.
The number of hidden neurons is set as 50 for all
datasets. We use Adam (Kingma et al., 2015) with
the initial learning rate of 0.001 to update param-
eters. The intensity of gradient update is fixed at
5. The number of positive and negative triplets in
each query set is 3 in FB15K-237 and UMLS, and
10 in WIKI. All experiments are conducted on an
RTX3090 GPU server in Linux.

E Number of hops in Ne

As observed in Table 7, increasing the number of
hops considered in neighborhood contexts Ne for

17536

Table 7: Impact of the number of hops in neighborhood
contexts Ne in the 3-shot setting.

Dataset No. of hops MRR Hit@10

Wiki

1-hop 0.347±.006 0.454±.012
2-hop 0.353±.009 0.457±.010
3-hop 0.321±.005 0.415±.009

FB15K-237

1-hop 0.405±.012 0.575±.014
2-hop 0.402±.010 0.568±.016
3-hop 0.379±.014 0.531±.014

UMLS

1-hop 0.608±.067 0.780±.044
2-hop 0.543±.051 0.697±.049
3-hop 0.454±.048 0.612±.046

data augmentation generally lead to performance
degradation. For instance, on the UMLS dataset,
the performance at the 3-hop setting is reduced
by 25.3% in MRR compared to the original 1-hop
setting in RelAdapter. This could be due to the
additional noise introduced when considering a
broader neighborhood, which can adversely affect
model performance, especially for smaller datasets
like UMLS, as they are more vulnerable to noise
during model training.

17537

