
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 17390–17401
November 12-16, 2024 ©2024 Association for Computational Linguistics

Varying Sentence Representations via Condition-Specified Routers

Ziyong Lin1,2*, Quansen Wang1,3, Zixia Jia1�, Zilong Zheng1�
1National Key Laboratory of General Artificial Intelligence, BIGAI

2Tsinghua University 3Peking University
linziyon22@mails.tsinghua.edu.cn

{wangquansen,jiazixia,zlzheng}@bigai.ai
https://github.com/bigai-nlco/CSR

Abstract

Semantic similarity between two sentences
is inherently subjective and can vary signif-
icantly based on the specific aspects empha-
sized. Consequently, traditional sentence en-
coders must be capable of generating condi-
tioned sentence representations that account for
diverse conditions or aspects. In this paper, we
propose a novel yet efficient framework based
on transformer-style language models that fa-
cilitates advanced conditioned sentence repre-
sentation while maintaining model parameters
and computational efficiency. Empirical eval-
uations on the Conditional Semantic Textual
Similarity and Knowledge Graph Completion
tasks demonstrate the superiority of our pro-
posed framework.

1 Introduction

Sentence Textual Similarity (STS) (Agirre et al.,
2012), which predicts the semantic similarity be-
tween two sentences, has long been a prevalent
and crucial task for evaluating the quality of sen-
tence representations and the semantic understand-
ing capabilities of Natural Language Processing
(NLP) models. However, traditional STS evalua-
tion methods focus on the overall meaning of en-
tire sentences, thereby neglecting the fine-grained
semantics related to different aspects. To address
this limitation, Deshpande et al. (2023) introduced
Conditional STS (C-STS), which measures the sim-
ilarity between two sentences within the context
of given condition sentences. For instance, the two
sentences “A hotel room decorated in silver and
white has a large mirror over the headboard of the
bed.” and “A small bedroom suite in a hotel setting
with a bed, small table, and two chairs.” are consid-
ered similar given the condition “The name of the
place” since both sentences describe rooms located

*Work was done during LZ’s internship at BIGAI.
� Correspondence to Zixia Jia and Zilong Zheng.

S1

CLS

S2 C S1 CS2C

Encoder f

S1 C S2

CLS CLS CLS CLS CLS

Transformer block

Transformer block

…
…

qc

S1 C S2

NormLayer

DotProduct

NormLayer

DotProduct

AVG AVG

Similarity score

wt1, wt2, . . . , wtn

ks
t1, ks

t2, . . . , ks
tn

Similarity score Similarity score

Encoder f Encoder f

Similarity score

Transformer block

Transformer block

…
…

Transformer block

Transformer block

…
…

Encoder f Encoder f Encoder f

ks
t1, ks

t2, . . . , ks
tn

wt1, wt2, . . . , wtn

CROSS-ENCODER Bi-ENCODER Tri-ENCODER

OUR CSR

Router Router

g g

Figure 1: Illustrations of CROSS-ENCODER, BI-
ENCODER, TRI-ENCODER architectures, with our condi-
tioned sentence representation framework. g generally
is the compositional function.

in a hotel. Conversely, these sentences are consid-
ered dissimilar given the condition “The number
of chairs” as the first sentence does not mention
any chairs, whereas the second sentence explicitly
mentions two chairs.

Solving the C-STS task necessitates that the sen-
tence embedding model be capable of generating
distinct representations for the same sentence un-
der different conditions. Previous studies (Desh-
pande et al., 2023) have introduced three architec-
tures designed to incorporate the influence of condi-
tions into sentence embeddings: CROSS-ENCODER,
BI-ENCODER, and TRI-ENCODER, as depicted in
Fig. 1. As mentioned in Reimers and Gurevych
(2019), the CROSS-ENCODER architecture concate-
nates each sentence pair (additional with each con-
dition in C-STS) to calculate similarity scores be-
tween every two sentences, leading to computa-
tional inefficiency. Similarly, the BI-ENCODER in
the C-STS task concatenates each sentence with

17390

https://github.com/bigai-nlco/CSR

each condition, taking the limitation that the repre-
sentation must be generated for every unique com-
bination of sentences and conditions (Yoo et al.,
2024). In contrast, the TRI-ENCODER employs
a more computationally efficient method: it pre-
computes embeddings of sentences and conditions
independently and then uses a separate composition
function to merge the semantics of the sentence and
the condition.

However, Deshpande et al. (2023) utilize the
Hadamard product or concatenation operations on
pre-computed sentence and condition embeddings
to derive conditioned sentence representations for
similarity calculation, observing a significant per-
formance gap compared to the BI-ENCODER ar-
chitecture. Yoo et al. (2024) enhanced the TRI-
ENCODER architecture by integrating Hypernet-
works (Ha et al., 2016) to project the original sen-
tence embeddings into a specific condition sub-
space, thereby reducing the performance disparity
with the BI-ENCODER architecture. Nevertheless,
the use of Hypernetworks introduces an external
parameter set three times larger than the backbone
model (SimCSE (Gao et al., 2021)), which is neces-
sary to achieve their improved performance. More
related work can be found in Appendix D.

In this paper, we propose a Conditioned
Sentence Representation (CSR) method based
on the TRI-ENCODER architecture, with the goal
of enhancing its performance without introducing
external parameters while maintaining computa-
tional efficiency. Unlike TRI-ENCODER models in
Deshpande et al. (2023), which focus on merging
the semantics of the sentence and condition, our
approach posits that the condition semantics ought
to play the role of influencing which tokens in the
sentence should contribute to the final condition-
specific sentence embedding. Drawing inspiration
from the router and heavy-light attention mecha-
nism in Ainslie et al. (2023), we design a condition-
relevant router that calculates scores for each token
in the sentence, selecting the most relevant tokens
that reflect the semantics emphasized by a given
condition. Then, the relevant tokens additionally
perform “heavy attention”, while the remaining to-
kens perform “light attention” by multiplying the
normalized router scores. This approach obtains
different score distributions for a sentence based
on different conditions, thereby generating varied
conditioned sentence representations.

We evaluate our method on the C-STS task and
Knowledge Graph Completion (KGC) task, demon-

strating significant improvement over previous TRI-
ENCODER frameworks (Deshpande et al., 2023;
Yoo et al., 2024) while maintaining memory and
computational efficiency.

2 Framework

Traditionally, the input for sentence embedding
models (considering transformer-style language
models in this paper) consists solely of the text it-
self (e.g., sentences, paragraphs) and is expected to
output a vectorized representation of the input sen-
tence. Conditioned sentence representation, how-
ever, dynamically modifies the sentence embedding
based on the influence of another text serving as a
condition, thereby reflecting the conditioned sen-
tence information.
Motivation Given a sentence set S = si and a
condition set C = ci, obtaining every possible con-
ditioned sentence representation requires |S| × |C|
forward encoding processes in the BI-ENCODER

architecture. In contrast, the TRI-ENCODER archi-
tecture requires only |S| + |C| forward encoding
processes, with an additional |S| × |C| lightweight
composition computation (e.g., Hadamard product).
While the TRI-ENCODER is more computationally
efficient, it suffers a performance drop due to the
lack of direct interaction between sentences and
conditions within the encoders as discussed in Sec-
tion 1. Our motivation is to improve the trade-off
between performance and computational efficiency,
effectively integrating the advantages of both ar-
chitectures to enhance the TRI-ENCODER’s perfor-
mance while maintaining efficient computation.
Method In this study, we employ a transformer-
style encoder f as the backbone of our CSR frame-
work, depicted in Figure 1. We provide a detailed
description of the process to derive the conditioned
representation for a sentence s.

Our CSR initially obtains the embedding of a
given condition c using an encoder f . Unlike prior
approaches, we do not utilize the final [CLS] em-
bedding as the representation of the condition. In-
stead, we extract the query vector qc ∈ R1×dc of
the [CLS] token in the last layer for the subsequent
router operation.

The sentence s is input into the same encoder
f . However, starting from the t-th layer of the en-
coder, a router operation is introduced. For instance,
considering the t-th layer, the query vector qc of
condition c queries each token of sentence s to

17391

obtain the router score for each token:

scoret =
qc ·KsT

t√
dk

, wt = softmax(scoret)

where Ks
t ∈ Rn×dk means the key vector of n

tokens in sentence s in the t-th encoder layer. dk =
dc is the hidden size of Ks

t and qc. Then, the multi-
head attention hidden state hs

t of sentence s in the
t-th layer is given by:

hs
t = (1+wt) ∗ h

′s
t , (1)

where h
′s
t is the original multi-head attention hid-

den state of the t-th transform block without router
mechanism, 1 ∈ Rn×1 has all values being 1. Sub-
sequently, hs

t is passed to the following modules
(i.e., residual, norm, and feed-forward layers) of
the t-th transformer block and then progresses to
the next (t+ 1)-th transformer block.

From the t-th layer to the final T -th layer of
encoder f , each layer’s hidden state is affected by
the condition-specified router. Finally, following
the approach of Deshpande et al. (2023), we use
an average pooling layer to obtain the conditioned
sentence representation rsc from the hidden states
output by the last layer of the encoder.

To ensure computational efficiency, we only in-
corporate routers into the final few layers, i.e.,
t → T . Empirical evidence indicates that integrat-
ing a router exclusively in the t = T − 1 layer
has demonstrated the significant superiority of our
framework. Refer to Section 3.3 for more details.
We emphasize the advantages of our framework:
� Our framework does not introduce any addi-

tional parameters. All vectors qc and Ks uti-
lized in the router mechanism are derived di-
rectly from the original backbone encoder f .

� The router score calculation is lightweight. And
we directly enhance the representation of those
selected condition-relevant tokens (with higher
router scores) by multiplying the normalized
router scores, promising simple, efficient, yet
effective framework.

Training Given a training sample (s1, s2, c, y
∗),

where y∗ represents the ground truth similarity
score between sentence s1 and sentence s2 under
the condition c, we adopt the Mean Squared Error
(MSE) objective (Wang and Bovik, 2009) to train
our framework: L = ||ϕ(rs1c , rs2c)− y∗||22, where ϕ
denotes the cosine similarity function. The Cache
mechanism can be found in Appendix B.

Model Spearman Pearson # Params
Tri-encoder Architecture

Baseline✦ 28.9±0.7 27.8±1.2 125M
Hyper-CL✦ 33.8±0.1 33.1±0.3 +453M
Our CSR✦ 34.1±0.2 34.0±0.6 +0M

Baseline◗ 35.3±1.0 35.6±0.9 355M
Hyper-CL◗ 39.6±0.2 40.0±0.3 +1076M
Our CSR◗ 42.0±0.8 42.7±0.8 +0M

Hidden Router◗ 39.9±0.2 39.4±0.1 +0M
Heavy Router◗ 40.5±0.2 39.9±0.2 +2M

Bi-encoder Architecture
Baseline✦ 43.4±0.2 43.5±0.2 124M
Our CSR✦ 43.7±0.2 43.6±0.1 +0M

Baseline◗ 47.5±0.1 47.6±0.1 354M
Our CSR◗ 47.9±0.2 47.8±0.2 +0M

Table 1: Results of our framework in C-STS task. The
best results are BOLD. Rows with ✦ indicates results
with DiffCSEbase as backbone encoder; rows with ◗ are
results with SimCSElarge as backbone encoder. Results
of Baseline and Hyper-CL are from Deshpande et al.
(2023) and Yoo et al. (2024) respectively. Heavy Router
and Hidden Router are two variants of Our CSR.

3 Experimental Results

3.1 Conditional Sentence Textual Similarity
Settings We evaluate our CSR framework on
the Conditional Sentence Textual Similarity (C-
STS) task (Deshpande et al., 2023) with different
backbones (SimCSE (Gao et al., 2022) and Dif-
fCSE (Chuang et al., 2022)). The base architec-
tures, dataset splits, hyper-parameters, and eval-
uation metrics (Spearman and Pearson correla-
tions) are consistent with Deshpande et al. (2023)
(Baseline). We select the specific hyper-parameter
t and the best model checkpoint based on valida-
tion set performance. Although the CSR framework
is designed for TRI-ENCODER architecture, it can
be extended to BI-ENCODER architecture by us-
ing the attention weight of the condition’s [CLS]
upon sentence tokens as the router score w. And
the sentence hidden states are computed according
to Eq. (1). We also demonstrate the effectiveness
of our router mechanism in BI-ENCODER. All re-
sults are averaged on three runs. We do not con-
sider CROSS-ENCODER due to its computational
inefficiency and subpar performance (43.2% in
Deshpande et al. (2023) and 43.8% in Anonymous
(2024)) compared to BI-ENCODER.
Results The experimental results of our CSR
framework on the C-STS task are shown in Ta-
ble 1. Compared to C-STS baseline (Deshpande
et al., 2023), our CSR achieves significant improve-
ments, namely a 6.7% and 7.1% improvements on

17392

0 1 2 3 4 5 6
34

36

38

40

42

44
Bi-encoder Tri-encoder(online)

(a) Model performance

8

9

10

11

0 1 2 3 4 5 6
0

1

2

3

Ti
m

e(
/s

)

Bi-encoder Tri-encoder(online) Tri-encoder(offline)

(b) Total inference time
(2834 examples)

Figure 4: Performances and Inference times of varying
number of router layers. The x-coordinate equals T − t,
representing the number of transformer layers with the
router, where t = 0 corresponds to the base model.

MRR Hit@1 Hit@3

SimKGC (Bi-encoder) 66.6 58.7 71.7

SimKGC (Tri-encoder) 33.5 22.6 38.2

Hyper-CL (Tri-encoder) 61.6 50.6 69.0

Our CSR (Tri-encoder) 66.1 58.1 71.1

Table 2: Results of our framework in KGC task.

the Spearman and Pearson correlation coefficients
respectively. Even though the Hyper-CL (Yoo et al.,
2024) tripled the number of parameters, our CSR
without any additional parameters still surpassed it.
It is worth mentioning that integrating our router
mechanism with BI-ENCODER architecture also
demonstrates the advantage compared to Desh-
pande et al. (2023). We conducted significance tests
(p < 0.05) based on the T-test by re-running our
CSR and the baseline ten times. The results yielded
a p-value of 0.0007 and 0.0139 corresponding to
Spearman and Pearson respectively, indicating our
CSR is significantly superior to the baseline. Some
case studies can be found in Appendix A.

3.2 Knowledge Graph Completion

Settings To prove the generalization of our CSR,
we evaluate it on another task, Knowledge Graph
Completion (KGC). Based on the Simple Con-
trastive Knowledge Graph Completion (SimKGC)
mechanism (Wang et al., 2022a), which transforms
the original KGC task into the formulation of com-
paring the similarity of head-relation embedding
with tail embedding. Since our CSR could provide
text embeddings, we consider the head node as a
sentence and the relation as the condition, aiming
for the model to output a relation-specific sentence
embedding to compare with the tail embedding. We
follow the experiment settings and evaluation met-
rics (including the Mean Reciprocal Rank (MRR),
Hit@1, and Hit@3) of the original SimKGC (Wang

Weight Strategy Spearman Pearson

Baseline 35.3 35.6

Our CSR 42.0 42.7

Random Weight 34.7 34.3

Only Weight 39.28 38.3

Table 3: Model performance under different weighting
strategies

et al., 2022a) paper and Hyper-CL (Yoo et al.,
2024).
Results As Table 2 indicates, our framework
achieves consistent improvement in both compu-
tational and parameter efficiency for the SimKGC
task, as the MRR improves by 4.5 and the Hit@1 in-
creases by 7.5 compared to Hyper-CL. It is exciting
that our CSR based on TRI-ENCODER architec-
ture achieves nearly comparable performance with
BI-ENCODER architecture.

3.3 Analysis

Variants of Our Framework We show the per-
formance of two variants of CSR in Table 1. Heavy
Router represents we use additional parameters
to calculate the router scores. Specifically, we
randomly initialized Wq ∈ Rdc×dc and Wk ∈
Rdc×dc for calculating the condition queries and the
token keys of sentences. Suppose that the hidden
states of a condition’s [CLS] token and a sentence
token si are hc and hi respectively, then the con-
dition query and token key are Wqh

T
c and Wkh

T
i

respectively. Wq and Wk were updated by back-
propagation according to the current loss function.
Hidden Router represents we use the hidden states
of the condition and sentence to calculate router
scores rather than the condition’s query and sen-
tence tokens’ keys. The Hidden Router variant per-
formed poorly, suggesting that hidden states may
not effectively serve as queries for selecting rele-
vant tokens. The Heavy Router, which uses addi-
tional parameters, also underperformed compared
to the standard router, likely due to the dataset’s
insufficient size or inadequate training.
Impact of Weighting Strategy To explore the
efficacy of our weighting method, we also inves-
tigate two distinct settings. The Random Weight
bypasses the weights suggested by the router and
instead opts for a random initialization process.
The Only Weight means that we replace 1 +wt

to wt in Eq. (1). As shown in Table 3, the Random
Weight harms the baseline performance, indicat-

17393

Model Pearsonr Spearmanr
Baseline 3.1 3.4
Our CSR 5.5 5.5

Llama2-7B 0.4 1.9
Llama3-8B 0.6 2.9

Text-embedding-3 (large) 6.0 5.6

Table 4: Results without fine-tuning on various methods.

ing that it can not catch condition-relevant token
information. Under the Only Weight setting, the
performances still have some improvement com-
pared to the baseline but are under our best results.
The reason is likely that the condition query tends
to pick the most relevant tokens (which are sparse)
related to the condition topic, but the semantics of
some tokens as context are still important for the
whole sentence representation. Therefore, while
prioritizing the most salient terms, we must not
overlook the remaining contextual tokens.

Impact of Various Router Layers We con-
ducted experiments by progressively incorporat-
ing the router mechanism starting from the final
layer (i.e., t = T), analyzing the influence of hyper-
parameter t (shown in Fig. 4 (a)) with the backbone
SimCSElarge. We can find that only integrating our
router in the t = T − 1 layer has demonstrated the
superiority of our framework. As the number of lay-
ers with the router mechanism increased, the perfor-
mance gains plateaued and even slightly declined.
This suggests that just incorporating a few layers
of condition-guided information in the sentence
self-attention process is effective for controlling
sentence representation. The subsequent decline
might be attributed to the overabundance of control
signals, which could obscure certain less prominent
yet crucial words in the sentence.

It is noteworthy that the addition of routers only
slightly increases the model’s inference time. It
can be seen that adding routers in the last 3 layers
achieves the best performance, where the inference
time is still far less than BI-ENCODER baseline. Our
model has the potential efficiency when more con-
ditioned sentence representations should be com-
puted. The reason for the relatively small difference
in inference time between BI-ENCODER and TRI-
ENCODER settings is that there are few repeated
conditions and sentences in the C-STS dataset. As
a result, the time advantage of the tri-encoder in
an online setting (caching while computing) is not
as pronounced. If there are |C| conditions and |S|
sentences, and conditioned sentence representation

have to be computed for every pair, the time advan-
tage would become more noticeable due to multiple
times of reusing cache. For additional clarification,
we also calculate the inference time in an offline
setting, where both condition and sentence repre-
sentations are precomputed and cached. The results
are shown in Fig. 4 (b). It is obvious that the infer-
ence time of the Tri-encoder in the offline setting
is largely less than the Bi-encoder. Our framework
also promises computational efficiency compared
to the Tri-encoder baseline (T − t = 0).

Analysis without Finetuning As shown in Ta-
ble 4, the inclusion of a single router layer in our
CSR led to a modest improvement in performance
without further training. This suggests that the
router mechanism possesses the inherent ability to
select the relevant tokens in the sentences with re-
spect to the condition semantics. We also conducted
experiments leveraging Llama2-7B, Llama3-8B
and Text-embedding-3-large1. For Llama2-7B, we
first concatenate sentences and conditions. Then,
we pass the concatenated text through the model
and use the last layer representation of the last to-
ken as the representation of the entire sentence due
to the next-token-prediction nature of the decoder-
only model. Finally, we compute the cosine sim-
ilarity of the two sentences for the final predic-
tion. The result is shown in Table 4. The perfor-
mance of the Llama2-7B and Llama3-8B models
falls short of expectations, indicating that these
LLMs lack the ability to directly generate satis-
factory conditioned sentence representations. Our
proposed method achieves similar performance as
Text-embedding-3-large on the zero-shot setting
with a much smaller model size. More discussion
about LLMs for continued sentence representation
can be found in Appendix C.

4 Conclusion

This paper introduces a novel Conditioned Sen-
tence Representation method with a router mech-
anism to achieve substantial performance gains
of TRI-ENCODER architecture in C-STS task and
KGC task without introducing any additional pa-
rameters. Furthermore, it maintains computational
efficiency, highlighting simplicity, efficiency, and
effectiveness.

1https://platform.openai.com/docs/guides/
embeddings/embedding-models

17394

https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models

Limitations

While our CSR method has yielded promising re-
sults on the C-STS task, there are several lim-
itations to consider. First, more experiments on
other tasks: many other tasks face the same re-
quirement of conditioned sentence representations,
such as the Aspect-Based Sentiment Analysis
(ABSA) (Pavlopoulos, 2014) task which identifies
and extracts the sentence sentiment of specific as-
pects. We slightly modify our framework to adapt
to these tasks in future work. Second, as discussed
in Appendix C, LLMs face challenges in the condi-
tional sentence representation task, suggesting that
our CSR method could also enhance the LLMs’
ability to generate conditioned sentence representa-
tion. We take this exploration as future work.

Acknowledgements

The authors thank the reviewers for their insight-
ful suggestions on improving the manuscript. This
work presented herein is supported by the National
Natural Science Foundation of China (62376031).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A
pilot on semantic textual similarity.* sem 2012: The
first joint conference on lexical and computational se-
mantics—. In Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012),
Montréal, QC, Canada, pages 7–8.

Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago On-
tanon, Siddhartha Brahma, Yury Zemlyanskiy, David
Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, et al.
2023. Colt5: Faster long-range transformers with
conditional computation. In The 2023 Conference on
Empirical Methods in Natural Language Processing.

Anonymous. 2024. SEAVER: Attention reallocation
for mitigating distractions in language models for
conditional semantic textual similarity measurement.
In Submitted to ACL Rolling Review - April 2024.
Under review.

Sihao Chen, Hongming Zhang, Tong Chen, Ben Zhou,
Wenhao Yu, Dian Yu, Baolin Peng, Hongwei Wang,
Dan Roth, and Dong Yu. 2023. Sub-sentence en-
coder: Contrastive learning of propositional semantic
representations. Preprint, arXiv:2311.04335.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljacic, Shang-
Wen Li, Scott Yih, Yoon Kim, and James Glass. 2022.
DiffCSE: Difference-based contrastive learning for
sentence embeddings. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4207–4218, Seattle,
United States. Association for Computational Lin-
guistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Ameet Deshpande, Carlos Jimenez, Howard Chen,
Vishvak Murahari, Victoria Graf, Tanmay Rajpuro-
hit, Ashwin Kalyan, Danqi Chen, and Karthik
Narasimhan. 2023. C-STS: Conditional semantic
textual similarity. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5669–5690, Singapore. Associa-
tion for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
pages 6894–6910. Association for Computational
Linguistics (ACL).

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022.
Simcse: Simple contrastive learning of sentence em-
beddings. Preprint, arXiv:2104.08821.

David Ha, Andrew M Dai, and Quoc V Le. 2016. Hyper-
networks. In International Conference on Learning
Representations.

OpenAI. 2022. Introducing chatgpt.

Ioannis Pavlopoulos. 2014. Aspect based sentiment
analysis. Athens University of Economics and Busi-
ness.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Jingxuan Tu, Keer Xu, Liulu Yue, Bingyang Ye, Kyeong-
min Rim, and James Pustejovsky. 2024. Lin-
guistically conditioned semantic textual similarity.
Preprint, arXiv:2406.03673.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022a. Simkgc: Simple contrastive knowledge
graph completion with pre-trained language models.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4281–4294.

17395

https://openreview.net/forum?id=TNekcamOfv
https://openreview.net/forum?id=TNekcamOfv
https://openreview.net/forum?id=TNekcamOfv
https://arxiv.org/abs/2311.04335
https://arxiv.org/abs/2311.04335
https://arxiv.org/abs/2311.04335
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2023.emnlp-main.345
https://doi.org/10.18653/v1/2023.emnlp-main.345
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821
https:// openai.com/blog/chatgpt
https://arxiv.org/abs/2406.03673
https://arxiv.org/abs/2406.03673

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al.
2022b. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. In 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2022.

Zhou Wang and Alan C Bovik. 2009. Mean squared
error: Love it or leave it? a new look at signal fi-
delity measures. IEEE signal processing magazine,
26(1):98–117.

Young Hyun Yoo, Jii Cha, Changhyeon Kim, and
Taeuk Kim. 2024. Hyper-cl: Conditioning sen-
tence representations with hypernetworks. Preprint,
arXiv:2403.09490.

A Case Study for Effectiveness of Router
in Token Selection

We investigated the effectiveness of the router by
visualizing the scores it assigns to each token. As
shown in Fig. 5 , without the router, the sentence
encoder can only guess which tokens to focus on,
often leading to selections that may not align with
the condition. In contrast, the [CLS] of the con-
dition carries guiding information, allowing it to
select tokens that are more relevant to the specific
condition (Fig. 6).

We also examined whether different conditions
could select their own useful tokens within the
same sentence. As shown in Fig. 7 , different con-
ditions do indeed focus on different tokens, further
demonstrating the effectiveness of the router.

B Cache

Traditional TRI-ENCODER architectures cache con-
dition embeddings and sentence embeddings once
computed, subsequently reusing them whenever
conditioned representations related to them need to
be computed. Yoo et al. (2024) cache the entire hy-
pernetwork corresponding to a condition, maintain-
ing computational efficiency but resulting in sub-
stantial memory usage. To balance memory usage
and computation trade-offs, we cache the condition
query and sentence token key vectors in the t-th
layer. Compared to traditional TRI-ENCODER ar-
chitectures, our approach maintains a similar cache
size and incurs only additional forward computa-
tions for the T − t layers. For efficiency, t can be
set to T − 1, requiring only lightweight additional
calculations and ensuring almost the same perfor-
mance. Empirically, we find that a very small value

for T − t (i.e., less than 3, see Section 3.3 for more
details) is sufficient.

C Discussion of transformer-style
Encoder and Large Language Models
(LLMs)

Deshpande et al. (2023) has conducted few-shot in-
context learning utilizing various LLMs like Flan-
T5 (Chung et al., 2024), Tk-Instruct (Wang et al.,
2022b), ChatGPT-3.5 (OpenAI, 2022), and GPT-
4 (Achiam et al., 2023), finding that it is challeng-
ing for LLMs by prompting them to verify the
conditional sentence similarity. Except for GPT-
4, all the LLMs perform less than 30% Spearman
correlation score no matter the detailed instruction
or more demonstrations. The best performance of
GPT-4 is 43.6% Spearman in 4-shot. See more de-
tails from Deshpande et al. (2023). Besides, we try
to fine-tune the Llama2-7B2 through the prompting
strategy, only achieving 24.5% Spearman correla-
tion score. Furthermore, these methods can not out-
put a proper conditioned sentence representation
that we mainly focus on. How well do the sentence
representations that LLMs provide? In view of this
problem, we utilized Text-embedding-3-large on
the C-STS task. The results are shown in Table 4.
Our proposed method achieves similar results as
ext-embedding-3-large on zero-shot setting with a
much smaller model size. We also tried to fine-tune
a Llama2-7B model with the proposed framework
to acquire Conditioned Sentence Representation,
but the performance is unsatisfactory. Upon experi-
menting we believe that the attention mechanism
of the decoder-only model like Llama2-7B failed
to incorporate half of the total tokens, so the sen-
tence representation acquired does not best reflect
the meaning of the entire sentence conditioned on
another piece of text. We take exploring more ap-
propriate fine-tuning methods for LLMs to obtain
better conditioned sentence representation as future
work.

D Related Work

Recent studies have focused on various sentence
representation methods to address semantically
complex tasks, such as the C-STS task, which re-
quires considering the effect of conditions on sen-
tence representation. Tu et al. (2024) employs a
QA-based approach by converting conditions into
questions and using LLMs to generate answers

2https://huggingface.co/meta-llama/Llama-2-7b

17396

https://arxiv.org/abs/2403.09490
https://arxiv.org/abs/2403.09490

that extract sentence semantics related to the con-
dition. However, this approach does not explicitly
model vectorized sentence representations. Chen
et al. (2023) addresses the sub-sentence represen-
tation problem by constructing datasets containing
sub-sentence pieces and subsequently performing
pretraining to develop a sub-sentence encoder. The
most relevant work to ours is Hyper-CL (Yoo et al.,
2024), which focuses on conditioned sentence rep-
resentation by constructing a condition-specific hy-
pernetwork with substantial parameters. Addition-
ally, for the C-STS task, SEAVER (Anonymous,
2024) proposes a cross-encoder approach, leverag-
ing a self-reweighting technique to augment sen-
tence representations with the cross-attention of
condition text.

17397

Figure 5: Visualization of sentence CLS token attention to different tokens without using the router (since the
sentence cannot see the condition in the tri-encoder architecture, the condition part has a weight of 0).

17398

Figure 6: Visualization of how the CLS token from the condition attends to different sentence tokens when using the
router mechanism.

17399

17400

Figure 7: Visualization of CLS attention on different tokens of the same sentence
under various conditions using the router mechanism.

17401

