GRASS: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients

Aashiq Muhamed, Oscar Li, David Woodruff, Mona T. Diab, Virginia Smith


Anthology ID:
2024.emnlp-main.835
Volume:
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
14978–15003
Language:
URL:
https://preview.aclanthology.org/add_missing_videos/2024.emnlp-main.835/
DOI:
10.18653/v1/2024.emnlp-main.835
Bibkey:
Cite (ACL):
Aashiq Muhamed, Oscar Li, David Woodruff, Mona T. Diab, and Virginia Smith. 2024. GRASS: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 14978–15003, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
GRASS: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients (Muhamed et al., EMNLP 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/add_missing_videos/2024.emnlp-main.835.pdf