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Abstract

Large Language Models (LLMs) have shown
remarkable capabilities in various natural lan-
guage processing tasks. However, LLMs may
rely on dataset biases as shortcuts for predic-
tion, which can significantly impair their ro-
bustness and generalization capabilities. This
paper presents Shortcut Suite, a comprehen-
sive test suite designed to evaluate the im-
pact of shortcuts on LLMs’ performance, in-
corporating six shortcut types, five evaluation
metrics, and four prompting strategies. Our
extensive experiments yield several key find-
ings: 1) LLMs demonstrate varying reliance
on shortcuts for downstream tasks, signifi-
cantly impairing their performance. 2) Larger
LLMs are more likely to utilize shortcuts un-
der zero-shot and few-shot in-context learn-
ing prompts. 3) Chain-of-thought prompting
notably reduces shortcut reliance and outper-
forms other prompting strategies, while few-
shot prompts generally underperform com-
pared to zero-shot prompts. 4) LLMs often
exhibit overconfidence in their predictions, es-
pecially when dealing with datasets that con-
tain shortcuts. 5) LLMs generally have a
lower explanation quality in shortcut-laden
datasets, with errors falling into three types:
distraction, disguised comprehension, and log-
ical fallacy. Our findings offer new insights
for evaluating robustness and generalization
in LLMs and suggest potential directions for
mitigating the reliance on shortcuts. The
code is available at https://github.com/
yyhappier/ShortcutSuite.git.

1 Introduction

The field of Natural Language Processing (NLP)
is experiencing rapid advancements, driven by the
emergence of Large Language Models (LLMs)
such as GPT (OpenAI, 2023; Achiam et al., 2023),
Gemini (Team et al., 2023), and LLaMA (Tou-
vron et al., 2023) series. These models have been

†Corresponding author.

Given the premise-hypothesis pair: 
Premise: The manager near the professor recommended the bankers.
Hypothesis: The professor recommended the bankers.

Analysis:
1. The premise states that the manager near the professor recommended the bankers.
2. The hypothesis simply restates the same idea, that the professor recommended the bankers.
3. Since the two statements are syntactically identical, they have the same meaning and 
implications, and the hypothesis can be inferred as true given the premise.
4. Therefore, the hypothesis is a direct entailment of the premise.
Answer: entailment

Let's think step by step and make a 3-way decision of whether the hypothesis is true given 
the premise (entailment), false given the premise (contradiction), or whether the truth value 
cannot be determined (neutral). Provide your step-by-step analysis and classify your 
answer into one of the three categories (entailment, contradiction, neutral). 
Response Format:
Analysis: [your step-by-step analysis]
Answer: [entailment/contradiction/neutral]

LLM SOLUTION

 COT PROMPT

SOURCE TEXT

Figure 1: Shortcut Learning Behavior: The LLM mis-
takenly infers the premise entails the hypothesis if all
subsequences match, skipping deep semantic analysis.

pivotal in revolutionizing a wide array of tasks
by leveraging techniques like In-Context Learn-
ing (ICL) (Brown et al., 2020) and Chain-of-
Thought (CoT) promptings (Wei et al., 2022; Ko-
jima et al., 2022), demonstrating exceptional capa-
bilities without parameter updates. Despite these
advances, the research on the robustness and gen-
eralization ability of LLMs across different con-
texts remains limited.

Models with poor robustness and generalization
may rely on “shortcut learning,” where they de-
velop decision rules that perform well on standard
benchmarks but fail to transfer to more challeng-
ing testing conditions, such as real-world scenar-
ios (Geirhos et al., 2020). Therefore, evaluating
LLMs performance in the face of shortcut informa-
tion is crucial for understanding their robustness
and generalization capabilities.

A recent study investigates the reliance of
LLMs on shortcuts or spurious correlations within
prompts (Tang et al., 2023). However, this re-
search falls short of providing an exhaustive evalu-
ation across a broad spectrum of LLMs and varied
prompting contexts, focusing solely on ICL exper-
iments. Furthermore, it only considers relatively
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simple shortcuts such as letters or signs. Con-
sequently, its evaluation lacks comprehensiveness
and granularity.

To address this, we introduce Shortcut Suite, an
in-depth test suite designed to evaluate the perfor-
mance of different LLMs across six shortcuts, five
metrics, and four prompt settings. Extensive exper-
iments on Shortcut Suite reveal that LLMs tend to
capture spurious correlations between source text
and particular labels, indicating a prevalence of
shortcut learning. For example, as shown in Figure
1, Gemini-Pro resorts to matching subsequences
(the professor recommended the bankers) in a Nat-
ural Language Inference (NLI) task rather than
comprehending the clause structure or delving into
the sentence’s semantic content. This tendency of
LLMs to capture spurious correlations can signifi-
cantly impair their performance. In this paper, we
conduct a comprehensive evaluation of LLMs’ be-
havior concerning shortcut learning from the fol-
lowing perspectives.

First, to identify the reliance of LLMs on short-
cuts in downstream tasks, we collect six datasets
containing different shortcuts and analyze the ac-
curacy of LLMs on these datasets. We find a no-
table performance drop across various shortcuts,
especially Constituent and Negation shortcuts, in
some cases by more than 40%. Moreover, in the
Position dataset, LLMs demonstrate a propensity
for shortcut learning behavior by prioritizing the
beginning of sentences while neglecting the end,
revealing a vulnerability to additional information
within sentences. Furthermore, an analysis of the
distribution of LLMs’ predictions revealed inher-
ent biases, with the LLMs favoring certain labels
over others even in a balanced standard dataset.

Second, we perform comprehensive evaluation
metrics to assess the impact of shortcuts on LLMs.
In addition to accuracy, we introduce three novel
metrics to assess the explanatory power of LLMs:
Semantic Fidelity Score (SFS), Internal Consis-
tency Score (ICS), and Explanation Quality Score
(EQS). Our analyses using these metrics reveal
that LLMs’ explanations often contain contradic-
tions. Furthermore, we prompt LLMs to report
their confidence levels and consistently find that
they are overconfident in their predictions.

Third, we compare the performance of differ-
ent LLMs and different prompting strategies in
shortcut learning. Closed-source and some open-
source LLMs excel on standard datasets but falter

on those with shortcuts. Surprisingly, larger LLMs
are more prone to utilize shortcuts under zero-shot
and few-shot ICL prompts. We find that LLMs are
less affected by shortcuts under CoT settings than
others. Notably, LLMs often demonstrate infe-
rior performance in few-shot scenarios compared
to zero-shot scenarios.

Finally, We summarize three error types of
LLMs in shortcut learning by checking their CoT
responses: distraction, disguised comprehension,
and logical fallacy. These errors predispose LLMs
to adopt shortcuts, undermining their robustness.

2 Related Work

Shortcut Learning in PLMs. Shortcuts are de-
cision rules that perform well on Independent
and Identically Distributed (IID) test data but fail
on Out-Of-Distribution (OOD) tests, revealing a
mismatch between intended and learned solutions
(Geirhos et al., 2020). Recent studies have shown
that Pre-trained Language Models (PLMs) tend
to exploit dataset biases as shortcuts to make
predictions (Geirhos et al., 2020; Ribeiro et al.,
2020), leading to low generalization for OOD sam-
ples in various NLP tasks, such as NLI (McCoy
et al., 2020), question-answering (Jia and Liang,
2017; Sen and Saffari, 2020), reading compre-
hension (Lai et al., 2021) and coreference infer-
ence (Zhao et al., 2018). For example, NLI mod-
els tend to predict the contradiction label if the
test samples contain negation words. Several ap-
proaches have been proposed to address this prob-
lem. He et al. (2019) presented a debiasing al-
gorithm called DRiFt based on residual fitting.
Du et al. (2021) proposed a shortcut mitigation
framework LTGR to suppress the model from mak-
ing overconfident predictions for shortcut samples.
Zhao et al. (2024) introduced COMI to reduce the
models reliance on shortcuts and enhance its abil-
ity to extract underlying information integrated
with standard Empirical Risk Minimization. Yue
et al. (2024) proposed SSR to boost rationalization
by discovering and exploiting potential shortcuts.

Shortcut Learning in LLMs. Du et al. (2023)
provided a review of recent developments that ad-
dress the robustness challenge of LLMs. The
most related work was the study investigating the
reliance of LLMs on shortcuts within in-context
learning (Tang et al., 2023). Our work differs from
it in the following ways: First, their experiments
were conducted on a limited model scope (GPT2
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Shortcut Definition Premise Hypothesis

Lexical Overlap Assume that a premise entails all hypotheses
constructed from words in the premise.

The actor was encouraged by the lawyer . The actor encouraged the lawyer .

Subsequence Assume that a premise entails all of its con-
tiguous subsequences.

The authors in front of the senators con-
tacted the artists.

The senators contacted the artists.

Constituent Assume that a premise entails all complete
subtrees in its parse tree.

Unless the president saw the professor, the
student waited.

The student waited.

Negation Assume that a hypothesis entails strong nega-
tion words (“no”, “not”, “nothing”,“never”).

They are all quotations from the Old Testa-
ment Book of Aunt Ruth.

Every one of them is quotations from the Old
Testament and green is not red.

Position Assume that the label is related to spurious
position cues.

Red is red and red is red and red is red and
red is red and red is red and “Wait here,” I
was ordered. & “Wait here,” I was ordered
and red is red and red is red and red is red
and red is red and red is red.

He told me to come with him.

Style Assume that the label is related to spurious
text style cues.

And Severn said unto him, Thou and thy
friends are not welcome here, said he. (Bible
English)

Severn said the people were not welcome
there.

Table 1: Definitions and examples of the shortcuts explored in this paper.

and OPT), whereas we use richer and more rep-
resentative LLMs. Second, we focus on identi-
fying shortcuts within the source text across dif-
ferent prompt settings rather than assessing solely
against prompts. Third, while they rely on simple
triggers such as letters or signs, resembling adver-
sarial attacks, we propose more subtle and realistic
shortcuts and test whether LLMs can identify and
avoid these shortcuts.

3 Problem Definition

LLM for NLI. In the NLI task, also known as
textual entailment recognition, models evaluate a
premise-hypothesis pair and determine their se-
mantic relationship – typically labeled as entail-
ment, neutral, or contradiction. Given a prompt
P with a source text x, the LLM will generate a
probability of target y conditioning on the prompt
P . This could be written as

pLLM (y | P, x) =
T∏

t=1

p (yt | P, x, y<t) , (1)

where T is the generated token length and yt de-
notes the t-th token. For basic prompts such as
zero-shot, y takes the range of the corresponding
label. For prompting strategies such as CoT, y con-
tains the reasoning process and the final label.

Framework to Generate Shortcuts. Given a
premise q, a hypothesis h, and a universally true
statement s (s ≡ ⊤) that may contain a certain
shortcut, the logical relations are preserved upon
their conjunction. Specifically, if q and h have
the target label l, denoted as {(q, h, y)|y = l},

then q combined with s (q ∧ s) maintains the la-
bel {(q ∧ s, h, y)|y = l} since q ∧ s ≡ q ∧ ⊤ ≡ q.
Thus, the source text has two mappings for the tar-
get label l. The model can either use the semantic
relationship between the text and label (x → l) or
the injected shortcut (s → l) for inference.

4 Shortcut Suite

As NLI is well positioned to serve as a benchmark
task for research on NLP and can encapsulate the
entire spectrum of the six identified shortcuts, we
mainly anchor our framework on it. We also ex-
plore other tasks in Appendic C. Building on previ-
ous research, we create six datasets with different
shortcuts and develop five metrics to investigate
LLMs’ shortcut learning behavior and understand
their robustness generalization capabilities.

4.1 Dataset Creation

We present six types of shortcuts in Table 1, each
with an illustrative definition and an example.

Standard. The Multi-Genre Natural Language
Inference (MultiNLI) (Williams et al., 2018)
dataset serves as a benchmark for assessing mod-
els on NLI, encompassing ten genres of English.
For a focused assessment, we have curated a bal-
anced selection comprising 3000 samples from the
development subset of MultiNLI.

Lexical Overlap & Subsequence & Constituent
For these three sets, we utilize the Heuristic Analy-
sis for NLI Systems (HANS) (McCoy et al., 2020)
dataset for evaluation. HANS is designed to di-
agnose the use of fallible structural heuristics and
is annotated with two labels only (entailment and
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non-entailment). Specifically, we collect 3000 ex-
amples for each set from HANS, where the heuris-
tic is lexical overlap, subsequence, and constituent
accordingly, with labels and templates equally di-
vided.

Negation. We explore the impact of strong nega-
tion words like “no”, “not”, “nothing” and “never”
on model predictions. Inspired by (Naik et al.,
2018), we append the tautology – “and false is not
true”, “and green is not red”, “and up is not down”,
“and no square is a circle”, “and nothing comes
from nothing”, and “and history never change”,
chosen randomly with equal probability to the end
of the hypothesis sentence in the Standard dataset.

Position. To test the influence of the position of
label-associated information, we divide the Stan-
dard dataset into four equally distributed label and
genre groups. In each group, we append phrases
like “and true is true”, “and red is red” or “ and up
is up” five times at different positions. This allows
us to evaluate whether LLMs rely on irrelevant po-
sitional cues when making predictions.

Style. We consider the style of the text as a pos-
sible shortcut (Qi et al., 2021) and focus on one
prominent style: Bible style. Specifically, we
employ a simple but powerful text style transfer
model called STRAP (Krishna et al., 2020) and
apply it to transfer the premises in the Standard
dataset into Bible-style texts.

4.2 Metrics

We adopt accuracy to quantify performance on
NLI tasks and introduce new metrics to assess the
explanatory power of LLMs.

Semantic Fidelity Score (SFS) evaluates the
extent to which the generated content preserves
the essential meaning of the source text. We
employ a pre-trained BERT (fbert) (Kenton and
Toutanova, 2019) model to create embedding for
the input and the output collectively, then compute
their cosine similarity. For a prompt P and model
output c, SFS is given by

SFS = CosineSimilarity(fbert(P ), fbert(c)). (2)

Internal Consistency Score (ICS) assesses
whether there are logical contradictions within the
reasoning steps of LLMs or between the reason-
ing and the answer. To estimate the probabil-
ity of contradiction pcontra, we use an NLI model

(Laurer et al., 2024) that categorizes hypothesis-
context pairs into classes of entailment, neutral,
and contradiction. For a reasoning chain of N
steps, c = (c1, c2, . . . , cN ), where the last step is
the answer, and pcontra(ci, cj) indicates the proba-
bility that step ci contradicts step cj , we define the
function f(c) as

f(c) =





0, if ∃ (ci, cj), 1 ≤ i < j ≤ N,

s.t. pcontra(ci, cj) >
1
3 ,

1, otherwise.

(3)

The overall ICS is the mean of all calculated
f(c) values for the given explanations.

Explanation Quality Score (EQS) integrates
the SFS and ICS to reflect the overall quality of
LLMs’ output and is defined as

EQS = w1 · SFS + w2 · ICS, (4)

where weights w1 and w2 represent the signifi-
cance of each score in the overall evaluation. In
this work, w1 and w2 are equally set as 0.5.

Confidence Score (CFS) is designed to evalu-
ate LLMs’ self-assessment capabilities. We follow
(Xiong et al., 2023) to prompt LLMs to provide
their confidence level, which indicates the degree
of certainty they have about their answer and is
represented as a percentage.

4.3 Evaluated LLMs
To obtain a comprehensive understanding of how
LLMs are affected by shortcuts, we conduct ex-
periments on three widely used closed-source
LLMs: GPT-3.5-Turbo (OpenAI, 2023), GPT-4
(Achiam et al., 2023) and Gemini-Pro (Team et al.,
2023). Regarding open-source LLMs, we select
LLaMA2-Chat-series (7B, 13B, 70B) (Touvron
et al., 2023), ChatGLM3-6B (Zeng et al., 2022)
and Mistral-7B (Jiang et al., 2023) for assessment.

4.4 Prompting Strategies
Our experiments aim to assess the performance
of LLMs in different settings, including zero-
shot, few-shot ICL, zero-shot CoT, and few-shot
CoT promptings. For zero-shot CoT, we uti-
lize the prompt depicted in Figure 1. To con-
struct few-shot ICL prompts, we enhance the
best-performing zero-shot prompt by incorporat-
ing three random samples from the remaining ex-
amples in MultiNLI. Likewise, we employ a sim-
ilar sampling approach for few-shot CoT and use
GPT-4 to generate analyses for these examples.
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Model Standard Lexical Overlap Subsequence Constituent Negation Position Style

E ¬E E ¬E E ¬E
zero-shot

GPT-3.5-Turbo 56.7 69.5 83.8 58.6 58.3 67.5 40.2 39.8 43.3 51.5
GPT-4 85.6 96.7 100.0 95.8 73.5 96.7 80.0 54.3 67.4 70.0
Gemini-Pro 76.2 81.3 97.7 88.6 48.6 77.9 47.2 53.1 56.2 62.5
LLaMA2-Chat-7B 42.1 76.9 40.0 72.8 46.4 60.6 25.4 37.7 39.3 39.6
LLaMA2-Chat-13B 54.3 99.0 42.2 99.7 6.0 95.9 0.8 54.6 55.4 53.8
LLaMA2-Chat-70B 57.7 66.9 40.7 61.6 53.8 77.8 34.9 52.4 53.9 52.7
ChatGLM3-6B 40.0 75.4 41.7 82.4 25.5 79.4 14.6 32.8 34.7 33.5
Mistral-7B 49.4 53.9 96.2 57.9 73.9 48.8 75.9 38.1 40.5 43.0

few-shot ICL

GPT-3.5-Turbo 61.7 93.3 38.7 91.3 23.3 96.7 9.3 50.0 47.8 49.5
GPT-4 83.9 96.7 99.3 91.3 71.3 94.0 92.0 49.7 69.7 72.0
Gemini-Pro 77.9 95.3 92.9 94.0 37.0 95.8 30.4 45.6 55.3 60.5
LLaMA2-Chat-7B 40.2 66.5 75.3 53.3 59.5 55.9 33.1 37.0 39.4 38.6
LLaMA2-Chat-13B 59.1 97.5 48.5 87.3 12.4 92.4 12.1 50.3 54.0 53.3
LLaMA2-Chat-70B 57.8 100.0 3.6 99.8 3.1 99.6 1.6 45.2 53.7 50.8
ChatGLM3-6B 35.6 100.0 0.0 100.0 0.0 100.0 0.0 32.5 32.6 34.7
Mistral-7B 63.9 84.4 84.7 73.3 57.7 72.1 48.0 40.9 47.6 56.4

zero-shot CoT

GPT-3.5-Turbo 64.7 75.3 77.3 65.3 59.3 78.7 35.3 51.5 54.0 60.7
GPT-4 81.3 94.0 100.0 98.0 61.3 96.0 94.0 58.3 75.2 69.3
Gemini-Pro 72.7 68.0 94.6 65.9 56.3 74.9 58.9 65.2 58.2 60.0
LLaMA2-Chat-7B 48.0 71.2 46.0 62.7 42.1 63.4 34.1 43.8 45.5 47.5
LLaMA2-Chat-13B 56.3 59.7 74.6 52.5 56.8 53.9 41.7 49.2 52.0 48.8
LLaMA2-Chat-70B 60.3 74.4 69.7 69.6 44.7 72.0 25.3 56.6 53.7 52.3
ChatGLM3-6B 48.9 82.9 32.0 81.4 24.8 76.0 28.0 39.1 44.2 43.5
Mistral-7B 69.6 76.5 94.7 83.7 63.5 71.2 58.4 46.3 49.9 58.8

few-shot CoT

GPT-3.5-Turbo 71.7 85.3 75.3 83.3 55.3 90.0 22.0 53.7 60.7 63.0
GPT-4 83.0 95.3 100.0 94.7 66.0 95.3 88.0 67.3 74.7 70.3
Gemini-Pro 72.4 86.1 64.5 81.4 40.5 87.5 37.0 63.2 59.4 62.4
LLaMA2-Chat-7B 43.8 78.1 34.9 70.3 37.7 64.3 42.1 39.3 41.4 40.8
LLaMA2-Chat-13B 60.6 72.1 51.1 54.5 37.2 70.6 32.6 47.5 50.6 53.1
LLaMA2-Chat-70B 70.9 78.2 66.2 68.0 54.0 78.9 38.4 58.5 57.9 57.9
ChatGLM3-6B 40.0 94.6 9.7 92.9 11.4 86.8 20.0 34.8 34.7 38.7
Mistral-7B 67.6 88.3 58.6 84.0 38.2 81.9 32.3 50.4 48.5 59.4

Table 2: Accuracy (%) across all datasets under four prompt settings. E and ¬E are respectively referring to
entailment (IID) and non-entailment (OOD) sets. The intensity of blue highlights corresponds to the absolute
decrease in accuracy compared to the Standard dataset for each LLM.

5 Experimental Results

We conduct our experiments based on the Shortcut
Suite and observe that LLMs tend to exploit vari-
ous shortcuts in downstream tasks, resulting in a
notable decrease in performance. In this section,
we present a comprehensive analysis.

5.1 Overall Performance

5.1.1 Effect of Different LLMs
As shown in Table 2, closed-source and some
open-source LLMs excel on standard datasets,
with GPT-4 leading at an accuracy of 85.6%, fol-
lowed by Gemini-Pro at 77.9%, GPT-3.5-Turbo at
71.7%, LLaMA2-Chat-70B at 70.9% and Mistral-

7B at 69.6%. However, this high level of perfor-
mance does not extend to shortcut datasets. For ex-
ample, the accuracy of GPT-3.5-Turbo on the Con-
stituent (¬E) dataset drops by 52.4% in the few-
shot ICL setting. This significant drop suggests
that LLMs are easily prone to adopting shortcuts
for prediction.

Among open-source LLMs, Mistral-7B per-
forms the best with CoT prompts. It excels on
both standard and shortcut datasets, nearly sur-
passing LLaMA2-Chat-13B in all settings and
even exceeding GPT-3.5-Turbo in some scenar-
ios, demonstrating remarkable capabilities in NLI
and robustness generalization. On the other hand,
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(a) Standard. (b) Lexical Overlap (�). (c) Lexical Overlap (¬�). (d) Subsequence (�). (e) Subsequence (¬�).

(f) Constituent (�). (g) Constituent (¬�). (h) Negation. (i) Position. (j) Style.

Figure 2: Box plots of confidence scores across all datasets under zero-shot CoT prompting (each LLM is denoted
by an abbreviation). LLMs generally report confidence scores that significantly exceed their actual accuracy.

ChatGLM3-6B is most affected by shortcuts, re-
sulting in the poorest performance.

Furthermore, we observe a reverse scaling pat-
tern of LLaMA2-Chat in zero-shot and few-shot
ICL scenarios. As the model size increases, it
tends to rely more on spurious mapping for NLI
tasks, resulting in lower accuracy. However, in the
CoT scenario, LLaMA2-Chat-70B outperforms
smaller models on most datasets. This indicates
that larger models retain improved semantic com-
prehension and reasoning abilities but require suit-
able prompts to fully leverage their potential. This
phenomenon is also observed in the LLaMA3 se-
ries, as illustrated in Appendix C.

5.1.2 Effect of Shortcut Types

Regarding Lexical Overlap, Subsequence, and
Constituent shortcuts, LLMs consistently favor
predicting entailment (E) and thus struggle with
the non-entailment (¬E) class. This indicates that
LLMs can easily exploit these spurious correla-
tions with the label E, leading to poor perfor-
mance on ¬E instances. Lexical Overlap appears
to be the easiest task for most LLMs across dif-
ferent prompt settings, resulting in high accuracy,
while the Constituent shortcut poses the greatest
challenge. For instance, in the zero-shot setting,
Gemini-Pro experiences a significant 29.0% drop
on Constituent, from 76.2% to 47.2%, worse than
random guessing at 50%.

Negation, Position, and Style shortcuts also
prove challenging for most LLMs, as indicated by
the notable decrease in accuracy. In the Negation
dataset, the accuracy of GPT-4 decreases by 15-
35% across the four different prompt settings. In

Model premise hypothesis

start end start end

GPT-3.5-Turbo 61.3 56.0 48.0 50.7
GPT-4 77.6 79.7 76.4 71.2
Gemini-Pro 50.7 62.8 55.1 62.4
LLaMA2-Chat-7B 46.6 46.2 42.1 46.3
LLaMA2-Chat-13B 50.0 57.9 47.9 50.8
LLaMA2-Chat-70B 51.8 62.0 53.8 55.1
ChatGLM3-6B 43.5 45.5 42.1 44.1
Mistral-7B 49.7 50.6 47.1 47.3

Table 3: The Accuracy Details for Position Shortcut:
We place tautologies at the start or end of the premise
or hypothesis in the Standard dataset. The lowest accu-
racy for each LLM is underlined, frequently occurring
when the tautologies are placed at the beginning of the
source text.

the Style dataset, the accuracy of GPT-4 decreases
up to 15.6%. Moreover, the detailed results of the
Position shortcut are presented in Table 3. The
lowest accuracy rates are predominantly observed
when extra phrases are added at the beginning of
the sentence, suggesting that the LLMs may rely
more heavily on the beginning parts of sentences
for cues than the end parts, which could be a po-
tential shortcut for improvement.

5.1.3 Effect of Prompting Types
Most LLMs demonstrate significant performance
gains in all datasets when utilizing the CoT
prompt. For example, GPT-4 with a zero-shot CoT
prompt on the Constituent (¬E) dataset achieves
an accuracy improvement of 14.0% compared to
zero-shot, while LLaMA2-Chat-13B shows an im-
provement of 40.9% under the same conditions.
However, the accuracy of GPT-4 and Gemini-
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(a) Standard. (b) Lexical Overlap. (c) Subsequence. (d) Constituent. 

Figure 3: Label distribution percentages (%) for each LLMs predictions under zero-shot prompting (each LLM is
abbreviated). Distributions for the other three datasets are in Appendix A.

Pro decreases after applying the CoT prompt on
the Standard dataset and Lexical Overlap dataset.
This phenomenon reveals that LLMs are prone to
utilize shortcuts to predict, and the CoT prompt
can promote in-depth inference and reduce the
reliance on spurious correlations, thus improv-
ing performance. However, for relatively simple
datasets, advanced LLMs may already possess suf-
ficient semantic understanding and reasoning ca-
pabilities, reducing their dependence on CoT for
performance enhancement.

Additionally, it is worth noting that the effec-
tiveness of few-shot prompts is not superior to
zero-shot prompting. In several scenarios, the few-
shot ICL is less effective than the zero-shot, and
the few-shot CoT performs worse than the zero-
shot CoT. This discrepancy could be attributed to
the LLMs acquiring biases from the in-context ex-
amples. Similar phenomena have been reported
in (Kim et al., 2023; Tang et al., 2023). We
show more experimental results and analysis in
Appendix D.

5.2 In-depth Analysis
5.2.1 Explanation Quality
We evaluate the explanation quality of LLMs in
shortcut challenges using Equations 2, 3, and 4,
with results presented in Table 4.

For SFS, most LLMs score above 85%, indi-
cating that current models have achieved a rela-
tively high level of semantic fidelity. GPT-3.5-
Turbo scores the highest on the Standard dataset
with 92.1%, while Mistral-7B scores the lowest at
88.5%. Generally, models demonstrate a slight de-
cline in SFS on shortcut datasets compared to the
Standard dataset, indicating a reduced ability to re-
state inputs effectively in these contexts.

Regarding ICS, most LLMs score below 50%,
suggesting that more than half of their responses
are contradictory. Notably, LLMs exhibit lower
ICS scores on shortcut datasets compared to the

Standard dataset. For example, LLaMA2-Chat-
70B achieves a score of 41.5% on the Standard
dataset but only 13.5% on the Negation dataset.
These observations suggest that a lack of inter-
nal consistency in reasoning is a significant factor
contributing to LLMs’ reduced performance when
dealing with shortcuts.

The overall EQS, which combines SFS and ICS,
provides a comprehensive reflection of the over-
all quality of explanations from LLMs. Typically,
models that exhibit higher accuracy also demon-
strate greater explanatory capabilities.

5.2.2 Confidence Score
Figure 2 displays the confidence levels of LLMs,
revealing two key findings. First, LLMs tend to be
overconfident, with their confidence scores rarely
falling below 60% and often significantly exceed-
ing their actual accuracy. Second, the discrep-
ancy between confidence and accuracy is notably
greater in datasets containing shortcuts compared
to the Standard dataset. This suggests that LLMs
not only adopt shortcuts but also exhibit height-
ened confidence in these spurious mappings with-
out fully understanding the true relationship be-
tween the source text and the corresponding label.

5.2.3 Prediction Distribution
Figure 3 shows the label distribution in each
LLM’s prediction. Despite a balanced distribu-
tion in the ground truth, we can easily observe that
in the Standard dataset, GPT-3.5-Turbo, LLaMA2-
Chat-7B, and Mistral-7B tend to disproportion-
ately predict neutral over the other two categories.
Conversely, LLaMA2-Chat-13B and ChatGLM3-
6B show a bias towards entailment. This pattern
may stem from multiple factors, including poten-
tial overfitting to the NLI task or tasks with a sim-
ilar categorical structure.

For datasets featuring Lexical Overlap, Subse-
quence, and Constituent shortcuts, LLMs predom-
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Model Standard Lexical Overlap Subsequence Constituent Negation Position Style

E ¬E E ¬E E ¬E
SFS | ICS

GPT-3.5-Turbo 92.1 | 29.0 91.0 | 35.3 92.0 | 5.3 91.0 | 30.5 91.5 | 25.7 89.5 | 36.6 90.8 | 26.1 93.3 | 21.7 92.5 | 25.7 92.3 | 22.7
GPT-4 91.1 | 34.7 91.1 | 35.3 91.3 | 11.3 90.8 | 23.3 90.0 | 23.3 91.8 | 42.7 89.2 | 18.0 88.7 | 57.0 91.8 | 43.7 90.2 | 28.3
Gemini-Pro 89.2 | 43.0 88.6 | 39.0 88.4 | 29.9 87.9 | 30.5 88.8 | 25.7 87.3 | 36.6 90.0 | 26.1 90.8 | 46.4 89.2 | 40.0 89.1 | 47.7
LLaMA2-Chat-7B 88.7 | 20.3 90.6 | 29.5 90.1 | 4.1 90.2 | 24.2 90.4 | 15.8 90.8 | 23.0 90.4 | 16.7 89.8 | 11.1 90.1 | 15.2 88.6 | 19.8
LLaMA2-Chat-13B 90.2 | 41.5 91.4 | 31.2 91.1 | 11.0 91.3 | 26.5 90.0 | 23.5 92.3 | 36.4 90.8 | 25.5 88.4 | 13.5 92.3 | 18.0 89.9 | 25.0
LLaMA2-Chat-70B 90.4 | 33.9 90.6 | 42.1 91.1 | 6.9 90.1 | 36.7 90.5 | 24.0 90.3 | 41.9 90.4 | 34.0 90.3 | 25.4 91.3| 30.9 90.0 | 30.4
ChatGLM3-6B 90.3 | 22.9 87.7 | 24.5 88.1 | 9.5 88.0 | 22.4 88.0 | 21.2 87.8 | 20.1 87.7 | 24.0 91.2 | 24.2 90.5 | 23.3 90.4 | 23.5
Mistral-7B 88.5 | 45.5 85.1 | 63.9 89.0 | 29.4 84.2 | 67.7 88.3 | 54.9 83.2 | 69.2 87.9 | 53.0 91.2 | 44.4 87.2 | 49.6 89.5 | 44.2

EQS

GPT-3.5-Turbo 60.6 63.2 48.7 60.8 58.6 63.1 58.5 57.5 59.1 57.5
GPT-4 62.9 63.2 51.3 57.1 56.7 67.3 53.6 72.9 67.8 59.3
Gemini-Pro 66.1 63.8 59.2 59.2 57.3 62.0 58.1 68.6 64.6 68.4
LLaMA2-Chat-7B 54.5 60.1 47.1 57.2 53.1 56.9 53.6 50.5 52.7 54.2
LLaMA2-Chat-13B 65.9 61.3 51.1 58.9 56.8 64.4 58.2 51.0 55.2 57.5
LLaMA2-Chat-70B 62.2 66.4 49.0 126.8 57.3 66.1 62.2 57.9 61.1 60.2
ChatGLM3-6B 56.6 56.1 48.8 55.2 54.6 54.0 55.9 57.7 56.9 57.0
Mistral-7B 67.0 74.5 59.2 76.0 71.6 76.2 70.5 67.8 68.4 66.9

Table 4: SFS (%), ICS (%), and EQS (%) across all datasets under zero-shot CoT prompting. The worst score for
each LLM is underlined. LLMs typically show the lowest explanation quality in datasets comprising shortcuts.

inantly predict entailment, indicating a susceptibil-
ity to these shortcuts. For the Negation shortcut,
a rise in contradiction predictions by GPT-4 and
LLaMA2-Chat-13B suggests a reliance on a spu-
rious correlation between negation words and the
contradiction label.

5.2.4 Error Analysis
We identify three types of errors in shortcut learn-
ing by analyzing the CoT responses of LLMs. The
first issue is distraction, where LLMs are easily
distracted by irrelevant information. As shown in
Figure 4, they may focus on repetitive tautologies,
leading to the neglect of useful information in the
original text. Additionally, they often prioritize
words at the start of a sentence while neglecting
those at the end, as shown in Table 3. This reflects
a tendency in LLMs to concentrate on local infor-
mation while ignoring the comprehensive context.

Second, LLMs suffer from disguised compre-
hension. Specifically, they struggle to grasp the
subtleties of individual words, sentence structures,
and complex biblical language styles, shifting
one’s concept to another. This leads to disguised
comprehension where LLMs might inadvertently
“borrow” concepts, causing them to rely on short-
cuts to make incorrect inferences. The detailed
case can be found in Figure 6.

The third issue is logical fallacy. LLMs tend
to reduce intricate reasoning to overly simplis-
tic terms, generalizing from specific instances to
broader conclusions via the use of shortcuts. This
oversimplification in their reasoning process can

INPUT
Premise: Red is red and red is red and red is red and red is red and red is 
red and Look, there's a legend here.
Hypothesis: See, there is a well known hero here.

OUTPUT
Analysis:
1. The premise is a series of repetitions of the statement "red is red". 
2. The hypothesis is "there is a well known hero here". 
3. There is no logical connection between the premise and the hypothesis. 
The premise does not provide any evidence or information that would 
support the hypothesis. 
Answer: neutral

Figure 4: An illustrative example of distraction in
LLMs: in the Position dataset, the LLM is observed
to be distracted by repetitive tautologies, leading them
to ignore useful information.

lead to erroneous results, as illustrated in Figure 7.

5.3 Extended Evaluation

To gain further insight into the shortcut challenges
in LLMs, we conduct experiments on other NLP
tasks. The first is the Sentiment Analysis (SA)
task. Specifically, we use the validation set of
the Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013) as our Standard dataset. We then in-
troduce the Negation shortcut using the method
described in Section 4.1 to the Standard dataset.
The second is the Paraphrase Identification (PI)
task. We experiment with the Quora Question
Pairs (QQP) 1 dataset as Standard dataset and the
Paraphrase Adversaries from Word Scrambling
(PAWS) (Zhang et al., 2019) dataset to represent

1The dataset is available at https://www.kaggle.com/
c/quora-question-pairs.
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Model SA PI

StandardNegationStandardOverlap

GPT-3.5-Turbo 91.7 87.0 81.2 74.3
GPT-4 93.0 90.2 73.7 64.2
Gemini-Pro 92.7 87.8 75.9 47.4
LLaMA2-Chat-7B 84.1 76.1 61.6 49.5
LLaMA2-Chat-13B 87.4 83.3 73.8 50.0
LLaMA2-Chat-70B 87.8 87.1 71.7 52.0
ChatGLM3-6B 90.4 85.4 64.9 49.6
Mistral-7B 80.5 79.1 52.6 49.6

Table 5: Accuracy (%) of the SA and PI tasks under
zero-shot prompting. LLMs consistently demonstrate
reduced performance on shortcut datasets compared to
the Standard, as indicated by the blue highlights.

Lexical Overlap shortcut. The results, presented
in Table 5, demonstrate a consistent decline in
performance across both the SA and PI tasks on
datasets comprising shortcuts compared to Stan-
dard datasets. Furthermore, as shown in Figure
8, there is a noticeable increase in negative predic-
tions on the Negation dataset and an increase in du-
plicate predictions on the Lexical Overlap dataset.
This pattern suggests that LLMs tend to capture
spurious correlations between negation words and
the negative label, as well as between word over-
lap and the duplicate label. In conclusion, we
find that LLMs are prone to relying on the Nega-
tion shortcut in the SA task and the Lexical Over-
lap shortcut in the PI task, suggesting that short-
cut learning is a prevalent phenomenon in LLMs
across a wide spectrum of tasks.

Besides the LLMs mentioned above, we con-
duct experiments on the latest LLMs, such as
LLaMA3-series, and analyze the results as de-
tailed in Appendix C.

6 Conclusion

In this study, we proposed Shortcut Suite, a test
suite designed to evaluate the performance of
LLMs in shortcut learning across several NLP
tasks. Shortcut Suite encompasses six types of
shortcuts: Lexical Overlap, Subsequence, Con-
stituent, Negation, Position, and Style, and eval-
uates performance using five metrics: ACC, SFS,
ICS, EQS, and CFS, across four prompt settings:
zero-shot, few-shot ICL, zero-shot CoT, and few-
shot CoT. Our extensive experiments on diverse
LLMs demonstrated that LLMs frequently rely on
shortcuts in downstream tasks. We explored the
impact of different models, types of shortcuts, and
prompting strategies. Our analysis then extended

to explanation quality, label distribution, confi-
dence score and error analysis.

Our findings offer new perspectives on LLMs’
robustness and present new challenges for reduc-
ing their shortcut reliance, paving the way for fu-
ture advancements in this field.

7 Limitations

In this paper, we primarily focus on evaluating the
effect of shortcut learning in LLMs on the NLI
task, with additional exploration into tasks like SA
and PI. However, we acknowledge that other NLP
tasks, such as question-answering and coreference
inference, could offer further insights and should
be investigated in future research.

While this study provides a comprehensive un-
derstanding of shortcut learning in LLMs, it does
not propose specific methods to mitigate this phe-
nomenon effectively. Nonetheless, we identify
shortcut learning behavior in LLMs and catego-
rize potential error types associated with short-
cut learning, offering a foundation for future re-
search. Based on our findings, we suggest sev-
eral potential approaches for addressing shortcut
learning in LLMs. One approach is fine-tuning
on unbiased datasets, as training models on di-
verse and representative datasets may help allevi-
ate shortcut learning. Moreover, employing ad-
vanced prompting techniques is essential. Our ex-
periments indicate that few-shot prompting is in-
sufficient for mitigating shortcut learning behav-
iors in LLMs, thus enhancing reasoning capabili-
ties through methods such as CoT prompting may
prove effective. Additionally, implementing re-
trieval augmentation by incorporating relevant ex-
ternal documents can ground LLMs, thereby re-
ducing knowledge gaps and instances of hallucina-
tion. We advocate for further research to develop
effective strategies aimed at addressing shortcut
learning in LLMs.
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A Appendix: Label Distribution

(a) Negation. (b) Position. (c) Style.

Figure 5: Label distribution as percentages (%) for LLMs’ prediction under zero-shot prompting (each LLM is
denoted by an abbreviation).

B Appendix: Error Analysis

Figure 6,7 show the disguised comprehension er-
ror example and the logical fallacy error example
respectively.

INPUT
Premise: The doctors that believed the managers introduced the bankers.
Hypothesis: The managers introduced the bankers.

OUTPUT
Analysis:
1.The premise is "The doctors that believed the managers introduced the 
bankers." This means that some doctors believed that the managers 
introduced the bankers.
2. The hypothesis is "The managers introduced the bankers." This means 
that the managers did introduce the bankers.
3. If the premise is true, then some doctors believed that the managers 
introduced the bankers. This means that it is possible that the managers did 
introduce the bankers. Therefore, the hypothesis is true given the premise. 
Answer: neutral

Figure 6: An illustrative example of disguised compre-
hension in LLMs: the positions of “that” and “believed”
are mistakenly swapped, leading to the incorrect as-
sumption that they convey the same meaning.

INPUT
Premise: The judge knew the lawyer thanked the actor.
Hypothesis: The judge knew the lawyer.
  
OUTPUT
Analysis:
1. We can identify the following facts from the premise:
- The judge knew the lawyer thanked the actor.
- We can infer that the judge knew the lawyer.
2. The hypothesis is "The judge knew the lawyer."
3. The premise implies that the judge knew the lawyer.
4. Therefore, the hypothesis is true given the premise
Answer: entailment

Figure 7: An illustrative example of logical fallacy
in LLMs: an oversimplification in the Subsequence
dataset is found in the analysis process. In the source
text, knowing of an action (the lawyer thanking the ac-
tor) doesn’t necessarily equate to knowing the person
(the lawyer) in a broader sense.

C Appendix: Extended Evaluation of
Shortcut Learning

Model. In addition to the LLMs we discussed
above, we’d like to extend our investigation
to the LLaMA3-series. Notably, LLaMA3
demonstrates superior performance over LLaMA2.
Specifically, LLaMA3-8B-Instruct outperforms
both LLaMA2-Chat-7B and LLaMA2-Chat-13B
on most datasets. Furthermore, LLaMA3-70B-
Instruct surpasses GPT-3.5-Turbo and approaches
the performance of Gemini-Pro. Despite these ad-
vances, we observe a consistent decline in perfor-
mance on shortcut datasets compared to standard
datasets. This trend suggests that LLaMA3-8B,
similar to its predecessor, may rely on shortcuts
for predictions. Additionally, the reverse scaling
pattern persists in shortcut datasets such as Subse-
quence (¬E) and Constituent (¬E). These sup-
plementary experiments highlight the propensity
of most LLMs to rely on shortcuts across a wide
spectrum of tasks, underscoring the need for more
robust and generalizable mechanisms.

D Appendix: More Discussion on
Few-shot Prompting

As discussed above, few-shot ICL is less effective
than zero-shot prompting, and few-shot CoT per-
forms worse than zero-shot CoT in several scenar-
ios. This phenomenon may be due to biases intro-
duced by the in-context examples used in few-shot
prompting. Similar issues have been reported in
other studies. For instance,Kim et al. (2023) ob-
served that demonstrations can introduce biases,
leading to reduced performance in language mod-
els. Tang et al. (2023) also noted that LLMs might
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(a) Standard (SA). (b) Negation (SA).

(c) Standard (PI). (a) Lexical Overlap (PI).

Figure 8: Label distribution as percentages (%) for LLMs’ prediction under zero-shot prompting on SA task. Each
LLM is denoted by an abbreviation.

Model Standard Lexical Overlap Subsequence Constituent Negation Position Style

E ¬E E ¬E E ¬E
zero-shot

LLaMA3-8B-Instruct 62.2 84.3 89.2 88.3 48.3 79.0 40.1 51.6 53.2 55.0
LLaMA3-70B-Instruct 74.5 94.3 96.8 99.7 39.9 83.9 11.1 59.7 63.7 64.0

zero-shot CoT

LLaMA3-8B-Instruct 65.3 63.5 96.1 46.9 75.7 65.3 68.6 52.4 57.0 55.9
LLaMA3-70B-Instruct 79.0 79.2 99.1 93.9 58.2 48.5 71.6 62.1 65.4 51.7

Table 6: Accuracy (%) across all datasets of LLaMA3-series.

Prompting Standard Lexical Overlap Subsequence Constituent Negation Position Style

E ¬E E ¬E E ¬E
zero-shot 56.7 69.5 83.8 58.6 58.3 67.5 40.2 39.8 43.3 51.5
few-shot (MNLI) 61.7 93.3 38.7 91.3 23.3 96.7 9.3 50.0 47.8 49.5
few-shot (shortcut) 61.7 86.3 90.3 81.7 56.3 82.3 35.0 46.0 54.6 55.7

Table 7: Accuracy (%) across all datasets of GPT-3.5-Turbo.

exploit shortcuts in in-context learning, resulting
in sub-optimal performance. Moreover, some pa-
pers focus specifically on this issue. For instance,
Min et al. (2022) found that factors like the label
space, the distribution of the input text, and the
overall format of the sequence are critical determi-
nants of task performance. To further explore this
issue, we conducted additional experiments using
random samples from the remaining examples in
each shortcut-laden dataset, beyond those from the
MultiNLI dataset initially used in above experi-
ments. The detailed results are shown in Table 7.
We observe that LLMs’ performance on shortcut-

laden datasets using more similar examples is bet-
ter than using standard examples, but still worse
than zero-shot, indicating that the influence of
shortcuts from pre-trained data is more significant
than the benefits of in-context examples. LLMs
struggle to summarize the important aspects from
in-context examples to overcome their inherent bi-
ases and are even influenced by the biases from the
in-context examples.
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