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Abstract

Active learning is an iterative labeling process
that is used to obtain a small labeled subset,
despite the absence of labeled data, thereby
enabling to train a model for supervised tasks
such as text classification. While active learn-
ing has made considerable progress in recent
years due to improvements provided by pre-
trained language models, there is untapped po-
tential in the often neglected unlabeled portion
of the data, although it is available in consid-
erably larger quantities than the usually small
set of labeled data. In this work, we investigate
how self-training, a semi-supervised approach
that uses a model to obtain pseudo-labels for
unlabeled data, can be used to improve the effi-
ciency of active learning for text classification.
Building on a comprehensive reproduction of
four previous self-training approaches, some
of which are evaluated for the first time in the
context of active learning or natural language
processing, we introduce HAST, a new and ef-
fective self-training strategy, which is evaluated
on four text classification benchmarks. Our re-
sults show that it outperforms the reproduced
self-training approaches and reaches classifica-
tion results comparable to previous experiments
for three out of four datasets, using as little as
25% of the data. The code is publicly available
at https://github.com/chschroeder/self-training-
for-sample-efficient-active-learning.

1 Introduction

In supervised machine learning, a lack of labeled
data is the main obstacle to real-world applications,
since labeled data is usually non-existent, expen-
sive to obtain, and sometimes even requires domain
experts for annotations. One solution to create mod-
els despite the absence of labels, is active learning,
where in an iterative process an oracle (usually re-
alized through a human annotator) provides labels
for unlabeled instances that have been deemed to
be informative by a so-called query strategy. These

Figure 1: Active learning (a), and active learning with
interleaved self-training (b). For active learning, the
most uncertain samples are labeled by the human anno-
tator, while for self-training pseudo-labels are obtained
from the current model using the most certain samples.

labels are then used to train a model, which in turn
is used by the query strategy during the next itera-
tion. In this work, we investigate the combination
of self-training and active learning to reduce the
required amount of labeled data even further.

During recent years, transformer-based pre-
trained language models (Vaswani et al., 2017;
Devlin et al., 2019) have successfully been ap-
plied for active-learning-based text classification,
thereby considerably raising the state-of-the-art re-
sults (e.g., Margatina et al., 2021). The dominant
paradigm here is pool-based active learning (Lewis
and Gale, 1994) where the query strategy repeat-
edly selects batches of instances to be labeled next
from the pool, the entirety of unlabeled data. While
language models have successfully been adopted
for active learning (e.g., by Ein-Dor et al. (2020),
Yuan et al. (2020), and Margatina et al. (2021)), the
total labeling effort, i.e. the number of queries and
the number of instances per query, has remained
similar to setups predating transformers. With re-
gard to the size of queries, there are two prevail-
ing setups: (1) Absolute query sizes (Yang et al.,
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2009; Sharma et al., 2015; Zhang et al., 2017; Ein-
Dor et al., 2020; Yuan et al., 2020; Schröder et al.,
2022; Tonneau et al., 2022), where a fixed num-
ber of instances are queried during each iteration,
and (2) relative query sizes (Lowell et al., 2019;
Prabhu et al., 2019; Margatina et al., 2021), in
which the number of queried instances is a percent-
age of the unlabeled pool. We argue that those
query sizes of both aforementioned experiment se-
tups are needlessly large. Previous works query
up to 1000 instances (Yang et al., 2009) or up to
25% percent of the unlabeled pool (Lowell et al.,
2019), where the former is of considerable size and
the latter is clearly infeasible in practice as soon
as datasets reach average contemporary sizes or
annotation costs are high. When using language
models that have been trained on billions (Devlin
et al., 2019) or even trillions (Touvron et al., 2023)
of tokens, there is no need to label hundreds or
even thousands of instances.

In this work, we introduce a sample-efficient
active learning approach which incorporates self-
training to reduce the amount of training data re-
quired for our key task of text classification. Our
contributions are as follows: (1) We propose a
simple yet highly effective self-training approach
that complements high-quality active learning la-
bels with high-quantity pseudo-labels. (2) We
reproduce four existing self-training approaches,
enabling a fair comparison among them despite
strongly diverging settings and hyperparameter
choices in the original works. (3) In extensive
experiments, we compare the new approach to the
four reproduced methods on four text classification
benchmarks using two query strategies and a base-
line. (4) Finally, we discuss possible implications
for active learning that result from the observed
effectiveness, as well as the trade-offs between fa-
voring small versus large language models.

The new approach complements active learn-
ing with pseudo-labels obtained from the current
model. Using as few as 130 instances, we achieve
scores competitive with regard to the state of the
art on three out of four datasets.

2 Related Work

In this work, we investigate the intersection of self-
training and active learning for text classification.

Self-Training The idea of self-training (Scud-
der, 1965; Yarowsky, 1995) is to leverage un-
labeled data in supervised tasks, by obtaining

algorithmically-derived pseudo-labels that are sub-
sequently used for training a model. In natural lan-
guage processing (NLP), self-training is an estab-
lished and well-studied semi-supervised approach
(Clark et al., 2003; Mihalcea, 2004; Tomanek and
Hahn, 2009; Ye et al., 2020) that provides addi-
tional data by generating soft or hard labels from
unlabeled data. Similar to active learning, the se-
lection of suitable unlabeled instances is essential.
However, unlike active learning, there is no human
in the loop, therefore, self-training aims to obtain
pseudo-labels that are likely to be correct. Pseudo-
labels, however, are not guaranteed to be correct, a
central issue is pseudo-label regularization, which
prevents overfitting on incorrect pseudo-labels.

The recently dominant class of pre-trained trans-
former models (Vaswani et al., 2017; Devlin et al.,
2019) are well-known for their improved effective-
ness which derives, among other things, from a
high sample efficiency of the contextualized rep-
resentation, and therefore each additional pseudo-
labeled instance can be highly valuable for self-
training a pre-trained model. Consequently, it is un-
surpising that self-training has been investigated in
NLP with recent model architectures (Meng et al.,
2020; Mukherjee and Awadallah, 2020; Vu et al.,
2021; Gera et al., 2022; Chen et al., 2022; Sosea
and Caragea, 2022), however, it is still underre-
searched regarding active learning (Yu et al., 2022;
Xu et al., 2023), where the additional labeled data
could help to alleviate the data scarcity.

Active Learning and Self-Training Despite the
recent performance gains achieved by transformer
models, active learning still uses a considerable
amount of data. Recent work in transformer-based
active learning for NLP, however, focused on query
strategies (Ein-Dor et al., 2020; Margatina et al.,
2021; Zhang and Plank, 2021; Wertz et al., 2023;
Zeng and Zubiaga, 2023), which often raised the
state-of-the-art results given the same labeling bud-
get, but mostly disregarded translating these im-
provements into reduced annotation efforts.

Despite the comparably slow adoption of self-
training, a few recent works already started to inves-
tigate the use of unlabeled data in order to improve
data efficiency (Siméoni et al., 2020; Gonsior et al.,
2020; Gilhuber et al., 2022; Tsvigun et al., 2022).
In the context of active learning for text classifica-
tion, both Yu et al. (2022) and (Xu et al., 2023) use
pre-trained language models for active learning for
text classification, thereby outperforming regular
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Pseudo-Label Selection Self-Training Setting

Subs. Unc. Div. Cls. Bal. Weight. Regularization Data Domain

Approach D P E T N

UST Ë Ë (Ë) Ë Ë Ë é é é é Text Few-Shot
AcTune é Ë Ë é Ë é Ë é Ë é Text Active Learning
VERIPS Ë Ë é é é é é Ë Ë é Images Active Learning
NeST é Ë é é é é Ë é Ë Ë Text Active Learning

HAST (ours) Ë Ë (Ë) Ë Ë é é é Ë Ë Text Active Learning

Table 1: Comparing the four most relevant self-training approaches in terms of pseudo-label selection, self-training,
and experiment setting. Symbols: Ë: covered; (Ë): implicitly covered; é: not covered. Abbreviations in the
section pseudo-label selection: subsampling (Subs.), uncertainty (Unc.), diversity (Div.). Abbreviations in the
section self-training: class balance (Cls. Bal.) and weighting (Weight.). Abbreviations in the section regularization:
dropout (D), previous prediction (P), ensembling (E), thresholding (T), and embedding space neighborhood (N).

active learning. Their pseudo-label selection, how-
ever, relies on the prediction of previous rounds,
which renders subsampling, a common method for
handling large datasets or expensive models, im-
possible. The work of (Xu et al., 2023) is closest
to our work due to an intersection of self-training
and active learning, and text classification.

3 Active Learning and Self-Training

The goal for active learning is to minimize the
annotation effort while maximizing performance
regarding some task, such as text classification.

Problem Formulation In pool-based active learn-
ing, the training data X = {(xi)}ni=1 is partitioned
into two disjoint sets: unlabeled pool U and labeled
pool L (i.e., U ∩ L = ∅). During the active learn-
ing loop, the query strategy selects the best ranked
instances Xq ⊆ U , which are then removed from U ,
labeled by the oracle, and subsequently added to L.
We refer to a model as M , and more specifically
as Mt when it has been trained after query t. We
denote the predicted class distribution of instance
x during query t (using model Mt−1) as Pt(y|x).

3.1 Incorporating Self-Training
While active learning aims to obtain a small labeled
subset, during training it disregards the data in the
unlabeled pool. Self-training is a semi-supervised
approach that, in addition to the labeled pool’s data,
leverages (parts of) the unlabeled pool by assign-
ing machine-generated pseudo-labels. Similar to
active learning, it queries instances according to a
criterion such as amongst others, uncertainty. In
contrast to active learning, however, the selected
instances are pseudo-labeled according to some
heuristic instead of labeled by a human annotator.

While for active learning selecting the most
uncertain instances has been shown to be effec-
tive (Lewis and Gale, 1994; Roy and McCallum,
2001; Schröder et al., 2022), using the most certain
instances has been observed to be most beneficial
for self-training across several NLP tasks (e.g., Mi-
halcea (2004); Tomanek and Hahn (2009); Mukher-
jee and Awadallah (2020)). While these approaches
obviously contradict, they can complement each
other, as shown in Figure 1: vanilla active learning
selects by uncertainty, aiming to find instances that
provide the most information to the model, while
self-training selects instances by certainty, prefer-
ring instances whose pseudo-labels are likely to be
correct to increase the set of labeled data.

3.2 Pseudo-Label Regularization
Pseudo-labels are usually derived from a previous
model’s predictions. As a consequence, pseudo-
labels are not guaranteed to be correct, which intro-
duces label noise to the self-training process. In the
case of multiple subsequent self-training iterations,
this error can propagate over the iterations, result-
ing in progressively higher levels of noise (Arazo
et al., 2020; Yu et al., 2022). Therefore, a key is-
sue for self-training is pseudo-label regularization,
where methods carefully select or weight pseudo-
labels to minimize the expected noise.

3.3 Previous Approaches
Similar to active learning, at the heart of each
self-training approach is a strategy that decides
which instances are selected—but in this case to be
pseudo-labeled. In the following, we present the
four most relevant self-training approaches.

UST Uncertainty-aware self-training (UST;
Mukherjee and Awadallah (2020)) uses dropout-
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based stochastic sampling to obtain multiple
confidence estimates for each instance. Aggre-
gated scores are then obtained using the BALD
measure (Houlsby et al., 2011), based on which
instances are sampled in a class-balanced manner.

AcTune AcTune (Yu et al., 2022) aims to obtain
a diverse set of instances by preceding the sam-
pling step with weighted K-Means clustering. To
overcome the noise of per-instance label variation
during self-training iterations, it aggregates pseudo-
labels over multiple iterations.

VERIPS The verified pseudo-label selection
(VERIPS; (Gilhuber et al., 2022)) starts by select-
ing instances whose prediction confidence exceeds
a fixed threshold. Pseudo-labels are then filtered
by a verification step, retaining only the labels for
which the current model’s predictions match those
of a model trained without pseudo-labels.

NeST Neighborhood-regularized self-training
(NeST; (Xu et al., 2023)) leverages the embedding
space to obtain pseudo-labels that closely match the
predicted distribution of their k-nearest neighbors.
The individual scores are averaged over multi-
ple active learning iterations for additional stability.

In Table 1, we compare the distinguishing features
of all presented approaches, including the approach
proposed in Section 4. A striking common feature
is that all sample selection mechanisms rely on
uncertainty, which has been shown to be very effec-
tive both for active learning and self-training (Yu
et al., 2022; Xu et al., 2023). The main difference
is the pseudo-label selection and regularization.

3.4 Limitations of Previous Approaches

Apart from methodological similarities and differ-
ences, we also identified several conceptual short-
comings shared by several approaches, which limit
the conclusiveness of existing evaluations.

Unrealistic Evaluation Settings The experi-
ments of UST use validation sets matching the size
of the training data, and those of AcTune select
the best model based on validation sets of sizes
500 and 1000. Validation sets of these sizes are
unrealistic for an active learning scenario, where
even training sets of these sizes would exceed the
amount of data that we deem to be necessary when
evaluating on common text classification bench-
marks. Moreover, the classification performance is

also supported by an extensive hyperparameter op-
timization (Yu et al., 2022; Xu et al., 2023), which
would not be possible without these validation sets.

Computational Efficiency Since transformer
models are known to be computationally expen-
sive, UST and VERIPS incorporate a subsampling
mechanism before pseudo-label selection, thereby
enabling the use of self-training even with compu-
tationally expensive models and large datasets. The
pseudo-label selection of both AcTune and NeST,
however, relies on predictions from previous self-
training iterations. If the current subsample differs
from previous ones, these previous predictions will
not be available, rendering subsampling impractical
for those methods and considerably constraining
their computational efficiency.

Confidence Thresholds VERIPS, AcTune, and
NeST apply a strict confidence threshold as part
of their pseudo-label regularization, which has
been shown to have considerable impact on the
performance (Gilhuber et al., 2022; Yu et al.,
2022). VERIPS and NeST keep it fixed at a high
value, while AcTune performs a hyperparameter
search for each dataset. The former relies on the
availability of high confidence instances, and the
latter is infeasible in real-world active learning
scenarios, where no validation data exists.

The limitations illustrated above cast doubt on the
generalizability of these findings. Furthermore, dif-
ferences in task (text and image classification) and
setting (few-shot and active learning), complicate
cross-study comparisons. Therefore, active learn-
ing and self-training require further investigation,
which we address through a reproduction study.

4 Hard-Label Regularized Self-Training

Based on a methodological analysis (Sections 3.3
and 3.4) and a reproduction study (Section 5), we
present hard-label neighborhood-regularized self-
training (HAST, pronounced “haste”), a novel self-
training method that aims to complement active
learning with large quantities of pseudo-labels.

The idea of our proposed approach is to rely
on the generalization capabilities provided by con-
trastive (representation) learning and on the reg-
ularization provided by nearest neighbor relation-
ships in the resulting embedding space. In con-
trastive learning, training is performed with n-
tuples of instances, in the following assumed to
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be pairs. A pair can be formed between any two in-
stances, and consequently each additional pseudo-
labeled instance increases the number of possible
pairings. Obviously, when combining this with self-
training, this can considerably enhance the effec-
tive number of instances—at the risk of introducing
noise due to incorrect pseudo-labels.

4.1 Contrastive Representation Learning

Commonly used representations that are obtained
from a language model’s layers, such as the [cls]
token (Devlin et al., 2019), rely on the principle
that semantically similar inputs will result in simi-
lar embedding vectors—but apart from testing for
semantic similarity, distance metrics between vec-
tors are often meaningless. Representation learn-
ing (Bengio et al., 2013) on the other hand, aims
to learn a meaningful space in which the dimen-
sions capture explanatory factors in the data (Ben-
gio et al., 2013; Le-Khac et al., 2020) and dis-
tance metrics are rendered meaningful (Le-Khac
et al., 2020). Moreover, in contrastive representa-
tion learning (Carreira-Perpiñán and Hinton, 2005),
this is achieved by training on contrasting pairs of
instances, where similar instances are pulled to-
gether and dissimilar instances are pushed apart in
the embedding space. One recent approach is the
fine-tuning paradigm SetFit (Tunstall et al., 2022),
which uses a Siamese network to train embeddings
that are then used as representations in downstream
tasks. SetFit has shown incredible effectiveness in
the few-shot setting (Tunstall et al., 2022), making
it an obvious choice for active learning.

Algorithm 1 AL WITH SELF-TRAINING

Input: unlabeled pool U ; labeled pool L; initial model
M0; number of queries Q; batch size B;
self-training iterations T

1: for q ∈ {1, ..., Q} do
2: Xq ← query batch of size B from U
3: Yq ← labels provided by oracle
4: L ← L ∪ {(xq,i, yq,i), ..., (xq,i+B , yq,i+B)}
5: U ← U \ {(xq,i, yq,i), ..., (xq,i+B , yq,i+B)}
6: Mq ← TRAIN(L)
7: M∗

q ← SELFTRAIN(U ,L,Mq,T)

Output: Final model M∗
Q

4.2 Active Learning and Self-Training

We incorporate self-training into pool-based ac-
tive learning by adding a subsequent self-training
step after each training step as shown in Algo-

rithm 1. After each query (line 2), a new model
is trained (line 6), expressed through a generic
TRAIN() function that takes a list of labeled in-
stances, and optionally a list of weights. This is
followed by a self-training step (line 7), which may
be HAST or one of the previous approaches. The
training in line 6 could be skipped after the first iter-
ation, but this additional step “resets” a potentially
degraded model, thereby counteracting model in-
stability (Mosbach et al., 2021) and model collapse
due to error propagation.

Algorithm 2 SELFTRAIN (HAST)

Input: unlabeled pool U ; labeled pool L; current
Model Mt0 , number of self-training iterations T

1: Lp = L; Up = U
2: for t ∈ {1, ..., T} do
3: Yq,t ←Mt0(Up)
4: X ∗

q,t ← {xi|xi ∈ Up and 1PL(x)}
5: Lp ← Lp ∪ {(xt,i, yt,i), ..., (xt,m, yt,m)}
6: Up ← Up \ {(xt,i, yt,i), ..., (xt,m, yt,m)}
7: Wq,t ←Weights as described by Eq. 4.
8: M∗

q,t ← TRAIN(Lp,Wq,t)

Output: Self-trained model M∗
q,t

4.3 HAST: Pseudo-Labels and Weighting
The proposed approach is intended to exploit the
current model to ideally provide larger amounts of
pseudo-labels by leveraging the embedding space.
Instead of relying on label distributions, we use
hard labels, which are obtained by a majority vote
of the instance’s k nearest neighbors (KNN). The
proposed approach is shown in Algorithm 2. Our
pseudo-label selection (line 4) takes all instances
from the unlabeled pool Up, where the most con-
fident label crosses the binary decision threshold
of 0.5 and the predicted label ŷi agrees with the k
nearest neighbors’ majority vote:

1PL(x) =

{
1 if si > 0.5 ∧ ŷknni = ŷi

0 otherwise
(1)

where si=P (yi= ŷi|x)∈(0, 1] is the confidence
of the most confident predicted label ŷi, and ŷknn

is the label given by a KNN majority vote. Since
the predicted label ŷi=argmaxP (y|x) is obtained
from the class with highest confidence, this strategy
implicitly selects instances with high certainty.

Weighting With the proposed pseudo-label se-
lection strategy, we can obtain a potentially large
number of pseudo-labels. This can introduce both
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(1) a class imbalance (Henning et al., 2023) among
the pseudo-labels and (2) an imbalance between
the pseudo-labels and human-annotated labels.

To overcome these issues, we first introduce a
weighting term to adjust for class imbalance:

z =
N/C − hc
max(1, hc)

(2)

where N is the number of all pseudo-labels in Yq,t,
C is the number of classes, N/C is the expected
number of instances for a balanced class distribu-
tion, and hc is the count of class c in the histogram
of Yq,t over c bins. A max operator in the denomi-
nator makes the function well-defined for hc ∈ N0.

This yields a term that is inversely proportional
to the current class imbalance. Since the resulting
values are unbounded and can potentially grow very
large, we apply a sigmoid function to squash the
values into the interval (0, 10):

αc =
10

1 + e−z
(3)

To reduce the effect of a possibly excessive num-
ber of pseudo-labels and retain some weight on
the human-annotated labels, we introduce another
term β ∈ (0, 1], which is the labeled-to-unlabeled
ratio weight that penalizes pseudo-label weights iff
β < 1. The final weights are then given by:

Wi = αŷi · β (4)

Human-annotated instances have a weight of
Wi=1.0. Finally, the resulting weights are
L1-normalized, i.e.

∑
i |Wi|=1, and are then

element-wise multiplied with the per-instance loss.

5 Experiments

In the experiments, we evaluate the proposed self-
training method HAST. Moreover, in an extensive
reproduction study, we re-implement the four most
relevant previous self-training approaches, evaluat-
ing them on active learning for text classification.

Dataset Name (ID) Type Classes Training Test Metric

AG’s News (AGN) N 4 120,000 7,600 Acc.
DBPedia-14 (DBP) T 14 560,000 70,000 F1

IMDB (IMDB) S 2 25,000 25,000 Acc.
TREC-6 (TREC-6) Q 6 5,500 500 F1

Table 2: Key information about the examined datasets.
Abbreviations: N (News), S (Sentiment), Q (Questions).

5.1 Experiment Setup

The key task in this work is active learning for
single-label text classification. Using only 130
instances, the experiments are designed to be
both challenging and data efficient. We compare
HAST against the reproductions of four previous
approaches (UST, AcTune, NeST, and VERIPS)
which are compared under equivalent conditions.

Data We evaluate on four established text clas-
sification benchmarks, whose key characteristics
are displayed in Table 2. AGN and IMDB exhibit a
balanced class distribution, and DBP and TREC-6
exhibit an imbalanced class distribution. IMDB
is a binary classification problem, while the other
datasets are multi-class problems.

Evaluation Following Kirk et al. (2022), we re-
port the classification performance in accuracy for
balanced and in macro-F1 for imbalanced datasets.

Classification We evaluate two different models:
(1) the paraphrase-mpnet-base SBERT (Reimers
and Gurevych, 2019) model, which is fine-tuned
using SetFit (Tunstall et al., 2022), and, in order
to verify its effectiveness in the non-contrastive
setting, (2) a BERT-base model (Devlin et al., 2019)
that is trained using vanilla fine-tuning. Both of
these models consist of 110M trainable parameters.

Active Learning Models are initialized with
30 instances. Active learning is performed over
10 iterations during each of which 10 more in-
stances are labeled. Following (Hu et al., 2019) and
(Yu et al., 2022), the model is trained from scratch
after each active learning and self-training itera-
tion. While we do not directly investigate query
strategies in this work, they are paramount to ac-
tive learning and need to be considered. To assess
their effect on the self-training process, we evaluate
all configurations using two query strategies and a
baseline: breaking ties (Scheffer et al., 2001; Luo
et al., 2005), contrastive predictions1 (Margatina
et al., 2021), and random sampling.

Self-Training For HAST, we use k=5 and
β=0.1. For all other strategies, we use the best
hyperparameters as reported in the respective publi-
cations. A subsample of 16384 instances is drawn

1This query strategy is originally called contrastive active
learning, referring to contrastive differences between pre-
dictive distributions of embedding similar instances. In this
work, we refer to this strategy as contrastive predictions to
avoid confusion with contrastive representation learning.
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Datasets

Query Strategy Classifier Self-Training AGN DBP IMDB TREC

Breaking Ties

BERT

No Self-Training 0.763 0.057 0.619 0.129 0.745 0.030 0.341 0.130
UST 0.798 0.016 0.645 0.042 0.764 0.100 0.333 0.121

AcTune 0.806 0.021 0.651 0.054 0.795 0.050 0.434 0.063
VERIPS 0.834 0.012 0.907 0.047 0.816 0.050 0.540 0.110

NeST 0.840 0.013 0.918 0.006 0.783 0.041 0.580 0.090
HAST 0.762 0.055 0.605 0.071 0.806 0.097 0.424 0.193

SetFit

No Self-Training 0.853 0.011 0.973 0.004 0.872 0.009 0.691 0.029
UST 0.658 0.030 0.483 0.033 0.851 0.028 0.491 0.042

AcTune 0.863 0.006 0.980 0.003 0.896 0.024 0.642 0.030
VERIPS 0.859 0.005 0.981 0.002 0.857 0.024 0.730 0.021

NeST 0.878 0.005 0.981 0.001 0.927 0.005 0.781 0.034
HAST 0.886 0.007 0.984 0.001 0.882 0.040 0.773 0.024

Contrastive Predictions

BERT

No Self-Training 0.635 0.087 0.366 0.034 0.670 0.065 0.210 0.089
UST 0.712 0.153 0.203 0.108 0.765 0.056 0.311 0.108

AcTune 0.678 0.178 0.353 0.165 0.684 0.079 0.136 0.076
Verips 0.823 0.018 0.655 0.093 0.750 0.067 0.449 0.108
NeST 0.701 0.085 0.606 0.083 0.772 0.079 0.517 0.166

HAST 0.718 0.071 0.327 0.122 0.810 0.045 0.288 0.091

SetFit

No Self-Training 0.798 0.003 0.678 0.055 0.890 0.016 0.560 0.048
UST 0.597 0.025 0.400 0.028 0.842 0.015 0.420 0.069

AcTune 0.811 0.012 0.704 0.052 0.903 0.018 0.622 0.061
Verips 0.814 0.011 0.776 0.056 0.893 0.013 0.638 0.059
NeST 0.842 0.006 0.786 0.094 0.919 0.005 0.605 0.055

HAST 0.849 0.013 0.815 0.087 0.916 0.009 0.773 0.016

Random

BERT

No Self-Training 0.760 0.040 0.534 0.061 0.740 0.046 0.276 0.100
UST 0.797 0.039 0.693 0.083 0.794 0.014 0.298 0.065

AcTune 0.791 0.050 0.559 0.082 0.801 0.045 0.386 0.123
VERIPS 0.812 0.023 0.850 0.063 0.813 0.029 0.551 0.074

NeST 0.819 0.039 0.865 0.037 0.782 0.022 0.553 0.071
HAST 0.677 0.114 0.650 0.053 0.831 0.051 0.514 0.169

SetFit

No Self-Training 0.848 0.005 0.939 0.031 0.907 0.007 0.676 0.031
UST 0.659 0.038 0.476 0.039 0.871 0.031 0.491 0.061

AcTune 0.847 0.014 0.970 0.008 0.918 0.004 0.651 0.025
VERIPS 0.854 0.010 0.968 0.008 0.921 0.002 0.726 0.017

NeST 0.860 0.011 0.965 0.004 0.923 0.008 0.797 0.024
HAST 0.885 0.002 0.974 0.006 0.926 0.004 0.738 0.020

Table 3: Classification performance after the final iteration (in accuracy or macro-F1), broken down per query
strategy, classifier, and self-training approach. The reported numbers represent the average over five runs, with the
standard deviations shown to the right of each value.

before obtaining pseudo-labels for all strategies
supporting subsampling. To minimize the effect
of error propagation (as shown in Section 3.2), but
also for reasons of computational feasibility, we
refrain from consecutive self-training iterations.

5.2 Results

The final classification performance of each con-
figuration is shown in Table 3. We observe self-
training to be highly effective, with improvements
of up to 29 percentage points compared to active
learning without self-training. The best results (in
bold) are always achieved by either NeST or HAST.
The former wins for most BERT configurations,
while the latter wins for most SetFit configurations.

Besides the final performance, it is also crucial to
investigate the performance after each active learn-
ing iteration, which can be seen in the learning
curves depicted in Figure 2. HAST self-training is
a strong contender in most settings, especially with
SetFit, where it sometimes reaches a performance
close to the final value already during the first few
iterations. Besides the learning curves, a horizontal
line at the top represents the model performance
when training on the full train set, showing that
several configurations achieve remarkable results
at only 130 instances. Moreover, the SetFit models
are still slightly superior in this case, except for
TREC-6, indicating that larger class imbalances
could be a problem (at least for the hyperparame-

11993



USTNo Self-Training AcTune VERIPS NeST HAST

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

30 70 110 30 70 110 30 70 110 30 70 110
Number of Instances

B
re

ak
in

g 
Ti

es
C

on
tr

as
tiv

e 
P

re
d.

R
an

do
m

 S
am

pl
in

g

B
E
R
T

S
et
Fi
t

B
E
R
T

S
et
Fi
t

B
E
R
T

S
et
Fi
t

AG News [Acc.] DBPedia [F1] IMDB [Acc.] TREC-6 [F1]

Figure 2: Learning curves per model, query strategy, and dataset, showing the classification performance on the test
set. The x-axis shows the number of instances, while the y-axis indicates classification performance. The horizontal
(red) line represents the performance of the respective model trained on 100% of the data (without active learning).

Dataset Approach (Parameters) N Score

AGN ReGen1 (125M) 0 0.850
[Acc.] BERT3 (336M) 525 0.904

HAST (110M) 130 0.886

DBP DeBERTa4 (355M) 0 0.945
[F1] UST2 (110M) 420 0.986

HAST (110M) 130 0.984

IMDB RoBERTa (355M)4 0 0.925
[Acc.] UST2 (110M) 60 0.900

HAST (110M) 130 0.927

TREC-6 GPT3.5 Turbo & RoBERTa5 0 0.914
[F1] BERT3 (336M) 525 0.968

HAST (110M) 130 0.773

Table 4: Comparison with previous works that have
investigated low-resource methods: 1(Yu et al., 2023),
2(Mukherjee and Awadallah, 2020), 3(Schröder et al.,
2022), 4(Gera et al., 2022), 5(Xiao et al., 2023). Column
N represents the number of traning instances.

ters that we used). The corresponding area under
curve values can be found in Appendix Table 7.

When comparing the results across query strate-
gies, their impact seems to be minimal. The con-
trastive predictions strategy does not achieve su-
perior performance in any configuration, so we
focus on the comparison between breaking ties and
random sampling. Breaking ties reaches slightly
higher final scores at the expense of marginally
lower area under curve.

In Table 4, we compare the best result per dataset
to results from literature for sample-efficient meth-
ods, including zero-shot, few-shot, and active learn-
ing. Except for TREC-6, HAST achieves results
close to the state of the art, despite using only very
few instances and a comparably small model. No-
tably, on AGN and DBP, HAST achieves results
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comparable to methods that used 525 and 420 in-
stances, respectively, while using only 25% and
30% of those instances. HAST outperforms UST,
AcTune, and VERIPS, while being on par with
NeST. In combination with SetFit models, it even
achieves slightly higher accuracy and F1 scores.

6 Discussion

The experiments have shown that HAST is a highly
effective self-training strategy that is able to lever-
age a large number of pseudo-labels. When com-
bined with SetFit models, HAST outperforms most
other approaches and is on par with NeST in classi-
fication performance and area under curve. Further
investigation revealed that these gains can likely
be attributed to the large number of pseudo-labels
(as shown in Appendix Table 9), whose acquisition
is facilitated by the semantically meaningful em-
bedding space. The large number of pseudo-labels,
however, is likely to increase the level of label
noise, but HAST demonstrates robustness against
this, tolerating up to 20% incorrect labels, particu-
larly when paired with SetFit (see Appendix E.1).

Through an extensive reproduction, we have also
investigated the relative strength of UST, AcTune,
VERIPS, and NeST in the context of active learning
for text classification. The strongest contender is
NeST, which is on par with HAST but does not
outperform, despite using a computationally more
expensive pseudo-label acquisition. The primary
impediment of previous approaches appears to be
an overreliance on confidence thresholds, which are
difficult to optimize in active learning scenarios.

Why did the experiments not incorporate the
most recent large language models of 1B or
more parameters? With a total runtime of
2600 hours, the experiments are already computa-
tionally expensive—despite using models that are
considered small by today’s standards—and would
be infeasible with larger model sizes. Moreover,
research has demonstrated that smaller models can
outperform larger ones (Hsieh et al., 2023) when
properly fine-tuned or distilled. Therefore, we pri-
oritize model efficiency in our active learning re-
search, which ultimately aims to support real-world
annotation where smaller models provide a more
accessible and practical solution.

Why did the experiments use only a single self-
training iteration? While increasing the number
of self-training iterations may further increase the

classification performance, this also runs the risk of
degradation (Gera et al., 2022; Xu et al., 2023). For
this reason, by using only a single self-training iter-
ation we minimize the risk of degradation, thereby
using self-training not to replace but to complement
active learning, and in favor of real-world settings
at only little additional computational costs.

For which real-world use cases is the proposed
method a good fit? As previously stated, when
self-training is combined with active learning it
introduces another source of error. The most favor-
able is the transductive setting (Tong and Koller,
2001; Kottke et al., 2023), where the models do
not necessarily need to generalize on future unseen
data e.g., when active learning is used for labeling
corpora in social sciences (Romberg and Escher,
2022) or biomedicine (Nachtegael et al., 2024). For
datasets, whose class balance is heavily skewed, it
might not be optimal yet, but this remains to be
investigated in future research.

Will the reduced need in labeled data ultimately
render active learning obsolete? Although our
work has shown that strong models can be trained
using very few samples, this was conducted on
established benchmark datasets that are relatively
small in size and less challenging compared to real-
world datasets, which may have hundreds of multi-
label classes, hierarchies, or highly skewed class
distributions. While simpler tasks, such as two-
class sentiment analysis, might be solvable with
zero-shot learning, more complex problems will
still benefit from active learning. Should text classi-
fication become able to tackle the majority of prob-
lems through zero-shot or few-shot, active learn-
ing will remain valuable for refining class defini-
tions by providing high-quality labels for instances
where the current model exhibits high uncertainty.

7 Conclusions

In this work, we devise and evaluate HAST, a new
self-training approach that is tailored to contrastive
learning and aims to generate a large number of
pseudo-labels to enhance the efficiency of con-
trastive training. We reproduce four existing self-
training approaches and evaluate all approaches on
the task of active learning for text classification.
Using only small language models of 110M param-
eters and 25% of instances used in previous work,
the proposed approach achieves results close to the
state of the art on three out of four datasets.
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Limitations

This study is a not a replication, but a reproduc-
tion with slight deviations that provide comparable
conditions. While this makes previous approaches
comparable for the first time, this also introduces
the risk of deviations or errors in the code.

While the overall approach has shown to be
highly effective, for an active learning study, it
is unfortunate that this seems to be largely caused
by data-efficient models leveraging the additional
pseudo-labels, and only to a minor degree by the
instances selected by the query strategy. Neverthe-
less, this was previously unknown and motivates
further research on finding a query strategy that
might be more beneficial for self-training.

Finally, the proposed approach is targeted at
single-label classification. Our heuristic for hard-
label decisions is not applicable to the multi-label
settings and would require a different heuristic.

Ethical Considerations

This work presents a method that reduces annota-
tion efforts and could be used for good or bad—
similar to most methods. In either scenario, our
method would help to reduce the annotation efforts,
however, all of this could be achieved through ex-
tensive labeling efforts, without our method.

Moreover, since self-training relies on algo-
rithmically assigned pseudo-labels, the obtained
pseudo-label distribution is dependent on the un-
known true distribution of the dataset, which could
be biased towards certain classes. In this case, self-
training might not only be prone to error propaga-
tion, but also might propagate class biases.
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Supplementary Material

In the following, we provide details for reproduc-
tion (Sections A–D), supplementary analyses (Sec-
tion E), and an extended discussion (Section F).

A Environment

The experiments were conducted using CUDA
11.2 and a single NVIDIA A100 GPU per
run. Experiment code is written in Python and
executed in a Python 3.8 environment. All
experiment code has been published on Github:
https://github.com/chschroeder/self-training-for-
sample-efficient-active-learning.

B Software

Our experiments leverage tried and test ma-
chine learning libraries: PyTorch (2.2.1), trans-
formers (4.29.2), scikit-learn (1.4.1.post1), set-
fit (0.7.0), small-text (2.0.0-dev, commit f9be17a0),
scipy (1.12.0), numpy (1.26.4). A full list, in-
cluding transitive dependencies, is included in the
Github repository.

The experiment code extends a previous code
base (Schröder et al., 2022), which is built around
the small-text library (Schröder et al., 2023). We
extend this setup with self-training functionality,
including the four reproduced strategies.

C Datasets

The experiments used text classification bench-
marks that are well-known and also widely
used: AG’s News (AGN; Zhang et al., 2015),
DBPedia (DBP; Zhang et al., 2015), IMDB (Maas
et al., 2011), and TREC-6. (Li and Roth, 2002)
The raw texts were obtained via the huggingface
datasets library. Following (Margatina et al., 2022),
we subsampled DBP to 10K instances per class
(140K in total) to render the computational efforts
(which are outlined in Section E) feasible.

Dataset Batch Size Max. Seq. Length

AGN 40 64
DBP 24 128
IMDB 14 512
TREC 40 64

Table 5: Hyperparameter settings for the maximum
sequence length (as number of tokens) per dataset.

D Hyperparameters

Self-Training For VERIPS, we used the margin-
based variant, which has been shown to be superior
to the entropy-based variant (Gilhuber et al., 2022).

Maximum Sequence Length We set the max-
imum sequence length to the minimum multiple

Figure 3: The effect of label noise for NeST and HAST on AGN. Each label is replaced by an incorrect random
label with probability λ. The left side shows validation accuracy after the final active learning iteration. The right
side shows the respective area under the learning curve for all 10 queries.
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power of two for which 95% of the dataset’s sen-
tences contain less than or an equal number of
tokens, capped at 512 which is an architectural
restriction of employed models (see Table 5).

D.1 Classification

BERT We fine-tuned each model from bert-base-
uncased using a learning rate of η = 2e−5 and train-
ing the model for 15 epochs.

SetFit We follow the original publication (Tun-
stall et al., 2022) and first train the embeddings,
which are subsequently used as features in com-
bination with a logistic regression classification
head. The original implementation was extended
to support the per-instance weighting.

We use a learning rate of η = 2e−5 and train
for 1 epoch, which in the SetFit implementation is
defined in iterations through the data. During each
iteration, two pairs (one positive and one negative)
are formed per labeled instance, which can lead to
a steep increase in training data. For the sake of
computational efficiency, we scale this parameter
inversely to the number of pseudo-labels down to a
minimum of 1 iteration.

E Experiments

In Table 7, we provide the final area under curve
values for the learning curves shown in Section 2.

Overall Runtime and GPU hours The total run-
time of all experiments configuration is 2600 hours.

Individual Computational Costs The average
runtime of the training step (including self-training)
is shown in Table 8.

Evaluation Metrics We adhere to established ac-
tive learning evaluation protocols and evaluate both
the final classification performance and area under
curve. The former is measured in accuracy for bal-
anced datasets and in F1 for imbalanced datasets.
For both metrics, tried and tested implementations
from scikit-learn were used.

E.1 Impact of Label Noise

In the simulated active learning experiments, the an-
notation is realized by a simple lookup of the true
labels. In real-world settings, however, answers
provided by annotators may be wrong, either due
to human label variation (Plank, 2022) or annota-
tors making mistakes. Pseudo-labels are an imper-
fect heuristic, and especially in combination with

self-training, those labels may be wrong—even
disregarding human annotation errors, which may
introduce additional noise.

For this reason, we investigate the effect of erro-
neous labeling in the annotation step and introduce
a label noise λ, which represents the probability
of a label to be wrong, i.e. replaced by random
label other than the true label. We investigate the
two strongest self-training approaches from Sec-
tion 5: HAST and NeST. In Figure 3, we present
validation accuracy and AUC, broken down by in-
creasing label noise. We find that up to a noise level
of λ = 0.2, HAST is only affected to smaller de-
gree in AUC, while accuracy is only slightly lower.
In the two rows where NeST is applied in combi-
nation with BERT, self-training fails since NeST
is not able to find pseudo-labels, which is why the
results are considerably better. This also shows
the potential risk of self-training—especially when
facing high label noise.

E.2 Instance Weighting Ablation
In Table 6, we present an ablation study over the
weighting terms introduced in Section 4.3. Here we
use HAST with the best performing query strategy,
breaking ties, and ablate (1) class weights (by set-
ting α = 1), (2) pseudo-label weights (by setting
β = 1), (3) class and pseudo-label weights (by set-
ting α = β = 1). Surprisingly, using both weight-
ings simultaneously, does not yield the best results.
Pseudo-label down-weighting seems to have more
impact in general. Most importantly, it seems that
weighting has a larger impact on BERT, while Set-
Fit results are often close—except for the highly
imbalanced dataset TREC. Since, as reported in
Section 5, even the fully supervised SetFit models
seem to perform subpar on TREC-6, this is likely
already a problem at the level of the classifier.

F Extended Discussion

Why does HAST introduce a confidence thresh-
old, despite the paper criticized previous meth-
ods for this? At some point in every self-training
algorithm, a decision on how to assign pseudo-
labels is required. We use a threshold of si > 0.5,
the well-known tried and tested binary decision
threshold, which is used in many classification set-
tings. Being the middle of the [0, 1] confidence
interval, this is the weakest decision criterion possi-
ble, and more importantly, it not optimized on the
datasets (and not intended to).
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Datasets

Classifier Self-Training AGN DBP IMDB TREC

Final Accuracy/F1

BERT

HAST 0.766 0.063 0.604 0.067 0.807 0.109 0.405 0.192
w/o class weighting (α = 1.0) 0.845 0.008 0.794 0.048 0.799 0.097 0.589 0.160
w/o pseudo-label down-weighting (β = 1.0) 0.855 0.017 0.794 0.048 0.695 0.139 0.601 0.112
w/o class weighting and down-weighting (α = β = 1.0) 0.859 0.019 0.794 0.048 0.849 0.016 0.536 0.091

SetFit

HAST 0.889 0.006 0.984 0.001 0.881 0.045 0.691 0.012
w/o class weighting (α = 1.0) 0.886 0.003 0.985 0.003 0.924 0.004 0.763 0.015
w/o pseudo-label down-weighting (β = 1.0) 0.889 0.002 0.983 0.004 0.914 0.009 0.761 0.009
w/o class weighting and down-weighting (α = β = 1.0) 0.889 0.002 0.985 0.001 0.902 0.031 0.785 0.019

Area under Curve

BERT

HAST 0.634 0.034 0.332 0.018 0.670 0.037 0.278 0.029
w/o class weighting (α = 1.0) 0.683 0.012 0.484 0.037 0.711 0.032 0.393 0.046
w/o pseudo-label down-weighting (β = 1.0) 0.651 0.042 0.484 0.037 0.690 0.029 0.381 0.041
w/o class weighting and down-weighting (α = β = 1.0) 0.691 0.009 0.484 0.037 0.700 0.026 0.392 0.036

SetFit

HAST 0.873 0.004 0.942 0.015 0.898 0.004 0.636 0.023
w/o class weighting (α = 1.0) 0.871 0.005 0.951 0.009 0.891 0.008 0.737 0.012
w/o pseudo-label down-weighting (β = 1.0) 0.870 0.003 0.937 0.017 0.897 0.008 0.714 0.014
w/o class weighting and down-weighting (α = β = 1.0) 0.869 0.005 0.940 0.009 0.897 0.008 0.721 0.020

Table 6: Ablation analysis: final classification performance (top) in accuracy or macro-F1 and area under curve
(bottom) when removing different components from the instance weighting (see Section 4.3). Breaking ties was
employed as query strategy for all runs and the reported numbers are the average over five runs. The reported
numbers represent the average over five runs, with the standard deviations shown to the right of each value.

Datasets

Strategy Classifier Self-Training AGN DBP IMDB TREC

Breaking Ties

BERT

No Self-Training 0.638 0.030 0.335 0.021 0.650 0.019 0.285 0.032
UST 0.664 0.017 0.283 0.030 0.684 0.009 0.231 0.077

AcTune 0.656 0.028 0.324 0.015 0.676 0.030 0.268 0.033
VERIPS 0.728 0.019 0.640 0.026 0.701 0.010 0.465 0.063

NeST 0.733 0.011 0.638 0.047 0.695 0.025 0.467 0.028
HAST 0.634 0.030 0.333 0.018 0.668 0.033 0.304 0.032

SetFit

No Self-Training 0.818 0.009 0.830 0.016 0.868 0.003 0.628 0.021
UST 0.573 0.006 0.295 0.012 0.794 0.008 0.394 0.020

AcTune 0.831 0.006 0.906 0.005 0.886 0.007 0.548 0.021
VERIPS 0.825 0.006 0.851 0.022 0.877 0.008 0.650 0.017

NeST 0.840 0.006 0.865 0.016 0.917 0.002 0.728 0.031
HAST 0.871 0.002 0.942 0.015 0.898 0.004 0.711 0.010

Contrastive
Predictions

BERT

No Self-Training 0.498 0.036 0.228 0.037 0.640 0.021 0.203 0.026
UST 0.594 0.041 0.148 0.035 0.665 0.014 0.195 0.046

AcTune 0.550 0.043 0.222 0.032 0.642 0.015 0.208 0.026
Verips 0.678 0.021 0.451 0.042 0.676 0.026 0.366 0.058
NeST 0.598 0.060 0.424 0.037 0.661 0.023 0.386 0.073

HAST 0.566 0.052 0.232 0.021 0.675 0.023 0.233 0.082

SetFit

No Self-Training 0.757 0.003 0.643 0.014 0.849 0.009 0.573 0.019
UST 0.537 0.017 0.250 0.014 0.769 0.018 0.345 0.031

AcTune 0.785 0.011 0.623 0.020 0.877 0.010 0.608 0.046
Verips 0.765 0.009 0.708 0.022 0.880 0.011 0.621 0.026
NeST 0.780 0.002 0.722 0.036 0.907 0.004 0.622 0.017

HAST 0.845 0.007 0.814 0.046 0.904 0.005 0.714 0.016

(Continued on next page.)
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(Continued from previous page.)

Datasets

Strategy Classifier Self-Training AGN DBP IMDB TREC

Random

BERT

No Self-Training 0.630 0.013 0.307 0.028 0.653 0.024 0.263 0.038
UST 0.681 0.030 0.330 0.034 0.694 0.010 0.233 0.021

AcTune 0.648 0.023 0.335 0.027 0.658 0.026 0.284 0.031
VERIPS 0.727 0.013 0.608 0.051 0.697 0.033 0.446 0.049

NeST 0.735 0.022 0.592 0.034 0.676 0.024 0.428 0.056
HAST 0.625 0.042 0.354 0.027 0.679 0.039 0.301 0.041

SetFit

No Self-Training 0.814 0.009 0.755 0.038 0.885 0.006 0.608 0.023
UST 0.577 0.008 0.285 0.020 0.811 0.020 0.381 0.026

AcTune 0.820 0.012 0.774 0.028 0.912 0.001 0.547 0.018
VERIPS 0.823 0.007 0.916 0.015 0.912 0.002 0.649 0.021

NeST 0.834 0.007 0.916 0.012 0.914 0.005 0.763 0.008
HAST 0.868 0.006 0.941 0.010 0.911 0.007 0.693 0.021

Table 7: Area under curve per query strategy, classifier, self-training method, and dataset. For AGN and IMDB
the area under the accuracy curve is listed, for DBP and TREC the area under the macro-F1 curve. The reported
numbers represent the average over five runs, with the standard deviations shown to the right of each value.

Datasets

Strategy Classifier Self-Training AGN DBP IMDB TREC

Breaking Ties

BERT

UST 352.24 1.11 970.27 3.81 1879.50 3.14 98.25 1.36
AcTune 301.39 13.73 692.87 5.08 1013.13 42.33 36.61 0.83

VERIPS 252.08 2.94 723.46 3.57 837.57 1.79 62.17 2.13
NeST 244.58 1.86 723.03 3.26 846.71 4.91 63.70 0.99

HAST 240.71 2.12 690.35 3.71 1897.03 89.95 41.48 3.48

SetFit

UST 716.14 2.34 1312.27 3.68 2655.04 7.94 42.71 0.24
AcTune 673.86 1.07 1475.65 2.91 1578.38 4.40 17.68 0.48

VERIPS 453.75 1.66 1021.13 2.43 1238.13 2.12 13.67 0.14
NeST 465.65 2.61 1011.67 3.52 1242.64 3.68 16.03 0.30

HAST 677.57 5.97 1123.51 3.71 2579.80 10.94 25.27 0.33

Contrastive
Predictions

BERT

UST 353.84 4.89 948.33 7.66 1882.40 5.53 97.87 3.00
AcTune 353.40 3.46 691.46 1.41 1059.80 8.37 37.00 0.74

Verips 245.26 1.14 730.82 3.11 834.88 4.35 64.69 0.58
NeST 250.04 2.00 739.44 1.82 841.60 5.00 64.84 0.59

HAST 244.35 1.78 694.14 1.68 1967.57 46.02 39.69 0.44

SetFit

UST 710.34 4.07 1290.36 1.92 2653.14 15.72 41.31 0.75
AcTune 667.61 1.65 1463.93 1.88 1564.77 5.86 15.07 0.11

Verips 454.07 1.20 994.89 1.71 1238.64 6.81 13.20 0.16
NeST 471.62 1.01 1010.48 3.86 1236.69 6.40 14.95 0.18

HAST 660.91 5.54 1040.48 8.59 2577.87 12.03 23.56 0.63

Random

BERT

UST 350.81 2.66 947.98 1.36 1881.25 3.22 96.76 2.98
AcTune 320.59 18.36 696.55 4.64 1015.37 31.33 36.29 1.22

VERIPS 261.08 5.14 726.11 5.94 836.54 2.41 94.99 5.26
NeST 265.89 5.44 726.38 4.50 847.49 4.60 62.09 0.98

HAST 240.68 2.14 691.40 0.62 1840.03 62.39 42.86 3.26

SetFit

UST 720.45 5.89 1304.55 1.78 2663.02 4.80 40.90 0.76
AcTune 685.87 6.17 1492.17 2.82 1573.35 1.39 18.43 0.28

VERIPS 457.66 0.43 993.81 3.14 1234.64 2.01 13.15 0.07
NeST 471.96 1.48 1011.17 2.69 1357.29 8.12 15.29 0.32

HAST 703.01 7.19 1150.31 7.58 2676.58 14.91 27.17 0.46

Table 8: Mean average training runtime (in seconds) over all iterations. A failed effort to obtain pseudo-labels is
counted as zero seconds and therefore reduces the runtime. The reported numbers represent the average over five
runs, with the standard deviations shown to the right of each value.
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Datasets

Strategy Classifier Self-Training AGN DBP IMDB TREC

Breaking Ties

BERT

UST 14.82 38.19 215.92 127.58 6.50 25.40 168.96 45.49
AcTune 5.23 11.84 0.00 0.00 4.40 13.32 0.00 0.00

VERIPS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NeST 0.00 0.00 0.00 0.00 6.96 6.91 0.00 0.00

HAST 620.80 1136.78 0.00 0.00 1172.96 4169.12 138.00 167.35

SetFit

UST 1.06 0.04 24.77 29.16 1.08 0.06 61.04 6.81
AcTune 1.72 0.34 2.89 0.64 1.20 0.20 7.20 4.95

VERIPS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NeST 3.15 1.47 3.76 1.39 2.03 1.06 7.36 4.19

HAST 1.49 0.45 90.91 116.36 1.14 0.15 292.69 222.55

Contrastive
Predictions

BERT

UST 120.0 0.0 420.0 0.0 60.0 0.0 180.0 0.0
AcTune 24.9 0.2 0.0 0.0 25.0 0.0 0.0 0.0

Verips 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NeST 0.0 0.0 0.0 0.0 536.5 443.3 0.0 0.0

HAST 1391.0 1085.6 0.0 0.0 13741.9 1268.1 90.0 116.8

SetFit

UST 120.0 0.0 420.0 0.0 60.0 0.0 180.0 0.0
AcTune 25.0 0.0 25.0 0.3 25.0 0.0 25.0 0.0

Verips 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NeST 81.6 78.3 19.8 22.7 155.9 102.2 22.8 14.0

HAST 9178.5 1000.0 1964.9 1312.3 14355.7 306.4 1507.5 337.0

Random

BERT

UST 12.13 33.69 164.45 106.32 5.84 22.03 165.05 46.27
AcTune 2.90 4.07 0.00 0.00 2.54 7.91 0.00 0.00

VERIPS 0.00 0.00 0.00 0.00 1.05 0.08 0.00 0.00
NeST 0.00 0.00 0.00 0.00 6.72 6.12 0.00 0.00

HAST 469.14 750.86 0.00 0.00 2105.59 5268.35 72.53 79.30

SetFit

UST 1.06 0.04 23.12 30.56 1.09 0.06 61.51 6.92
AcTune 1.54 0.30 4.86 2.59 1.23 0.25 10.05 7.46

VERIPS 0.00 0.00 0.00 0.00 1.18 0.00 0.00 0.00
NeST 5.07 3.22 13.25 10.74 3.69 3.06 9.46 5.95

HAST 1.63 0.40 86.84 142.18 1.07 0.06 333.54 255.17

Table 9: Mean average number of pseudo labels over all iterations, broken down per query strategy, classifier,
and self-training approach. A value of zero indicates that no pseudo-labels could be selected, mostly due to not
exceeding the confidence threshold. The reported numbers represent the average over five runs, with the standard
deviations shown to the right of each value.
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