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Abstract
Segmenting text into sentences plays an early
and crucial role in many NLP systems. This is
commonly achieved by using rule-based or sta-
tistical methods relying on lexical features such
as punctuation. Although some recent works
no longer exclusively rely on punctuation, we
find that no prior method achieves all of (i) ro-
bustness to missing punctuation, (ii) effective
adaptability to new domains, and (iii) high effi-
ciency. We introduce a new model — Segment
any Text (SAT) — to solve this problem. To en-
hance robustness, we propose a new pretraining
scheme that ensures less reliance on punctua-
tion. To address adaptability, we introduce an
extra stage of parameter-efficient fine-tuning,
establishing state-of-the-art performance in dis-
tinct domains such as verses from lyrics and
legal documents. Along the way, we introduce
architectural modifications that result in a three-
fold gain in speed over the previous state of the
art and solve spurious reliance on context far
in the future. Finally, we introduce a variant of
our model with fine-tuning on a diverse, mul-
tilingual mixture of sentence-segmented data,
acting as a drop-in replacement and enhance-
ment for existing segmentation tools. Overall,
our contributions provide a universal approach
for segmenting any text. Our method outper-
forms all baselines — including strong LLMs
— across 8 corpora spanning diverse domains
and languages, especially in practically relevant
situations where text is poorly formatted.1

1 Introduction

Sentence segmentation is defined as the task of
identifying boundaries between sentences in a
given text. High-quality sentence boundaries are
crucial in many NLP tasks and systems since
models often expect individual sentences as in-
put (Reimers and Gurevych, 2019, 2020; Liu et al.,

*Equal senior authorship.
1Our models and code, including documentation,

are available at https://github.com/segment-any-text/
wtpsplit under the MIT license.
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Figure 1: F1 scores and inference time for the prior
SoTA (WTP) and our models (SAT and SAT+SM), eval-
uated on the Ersatz sentence segmentation benchmark.
We average over all 23 languages and show the aver-
age time (10 runs) for variants with different sizes (L
= #layers) to segment 1,000 sentences using consumer
hardware (1 Nvidia GTX 2080 Ti GPU).

2021; Tiedemann and Thottingal, 2020, inter alia).
Further, errors in segmentation can have detrimen-
tal effects on downstream task performance, e.g.,
in machine translation (Minixhofer et al., 2023;
Wicks and Post, 2022; Savelka et al., 2017).

Existing sentence segmentation tools predomi-
nantly rely on punctuation marks. This limitation
renders them impractical for text lacking punctu-
ation. To address this issue, some recent methods
aim to overcome this dependency (Honnibal et al.,
2020; Minixhofer et al., 2023). Specifically, during
the training of their model, WTP (Minixhofer et al.,
2023) randomly removes punctuation characters to
increase robustness against missing punctuation.

However, the performance of WTP as the cur-
rent state-of-the-art (SoTA) model and all other
segmenters is still poor on texts from more chal-
lenging domains. This includes, among others,
user-generated text such as tweets and highly het-
erogeneous domains such as lyrics. Segmenting
these texts is challenging because of missing and/or
extra punctuation, inconsistent spacing, and espe-
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SaT
Also gut. = All right. Alles
klar? = All right? Na also! =
All right!

they are the same don’t
believe me let’s watch it again

we just wanna see yaa everyday
i’m shuffelin shuffelin shuffelin

“Also gut. = All right.”,
“Alles klar? = All right?”,
“Na also! = All right!”

“they are the same”,
“don’t believe me”,
“let’s watch it again”

“we just wanna see yaa”,
“everyday i’m shuffelin”,
“shuffelin shuffelin”

Figure 2: Examples of our model’s predictions from (i) ASR output, (ii) multilingual text, and (iii) verse segmentation.
(i) shows part of a transcribed TED talk, demonstrating our method is agnostic to punctuation and casing. (ii) is
from a Reddit post of German-English translations; existing rule-based systems would segment at nearly every
punctuation, and existing neural systems are too reliant on punctuation or need a language code. (iii) shows
segmentation of lyrics into verses, showing our model’s predictions in a distinct domain.

cially irregular casing. Furthermore, nearly all ex-
isting systems, including WTP, require the spec-
ification of the texts’ language at inference time.
This necessitates an additional preprocessing step
of language identification, which often proves to be
imperfect, particularly with user-generated content
(Lui and Baldwin, 2014; Sterner and Teufel, 2023).
Moreover, this necessity limits their applicability
to code-switching text.

To address these challenges, we present a sen-
tence segmentation method that does not rely on
language codes or punctuation marks, making it
universally applicable across a broad range of lan-
guages, corpora, and domains. Specifically, we
train subword-based multilingual encoder language
models (LMs) in a self-supervised way to predict
naturally occurring newlines on web-scale text.
We then continue training models on sentence-
segmented data in a second, supervised stage to fur-
ther improve sentence segmentation performance.

We deal with several major issues with previous
tools: To ensure robustness against missing punc-
tuation and noise, we propose a set of corruptions,
applied randomly to the input during training. Cru-
cially, our method does not rely on language codes.
In addition, we mitigate issues observed with short
sequences via a novel limited lookahead mecha-
nism. Furthermore, we recognize the variability of
sentence boundaries across domains and sentence
definitions. To address this, we show how our mod-
els can be efficiently adapted to target domains via
LoRA (Hu et al., 2022), outperforming previous
adaptation methods, especially in data-constrained
settings. Further, we improve efficiency by shed-
ding the upper layers of the base model for our
default 3-layer models, which segments 1000 sen-
tences in approx. 0.5 seconds on our hardware.

Figure 1 shows that the standard 3-layer version

of SAT outperforms the current open weights state-
of-the-art, WTP, while achieving a ≈ 3x reduction
in inference time. Overall, we present several in-
novations that overcome each of the shortcomings
of previous methods, culminating in a universal
model for sentence segmentation. We provide some
examples of our model’s predictions in Figure 2.

Contributions. 1) We introduce Segment any
Text (SAT), an efficient method for sentence seg-
mentation that can reliably segment text across 85
languages regardless of lexical features such as
punctuation or casing. 2) We show how our mod-
els can be adapted to different domains via data-
efficient means, requiring only a minimal set (e.g.,
16) of sentence-segmented examples. 3) We train
and release SAT models in five sizes, covering 85
languages, and demonstrate state-of-the-art perfor-
mance across 8 corpora, even outperforming newly
introduced strong (open weights) LLM baselines.

2 Background and Related Work

We start by providing an overview of existing sen-
tence segmentation systems. Following Read et al.
(2012), we categorize them into 1) rule-based, 2)
supervised statistical, and 3) unsupervised statis-
tical approaches. Then, we discuss the recently
introduced state-of-the-art approach, WTP. More-
over, we discuss domain-specific segmentation ap-
proaches. Lastly, since we are the first to evalu-
ate large language models (LLMs) for sentence
segmentation broadly, we briefly survey them and
discuss their usage in sentence segmentation tasks.

2.1 General Systems and Baselines

1. Rule-based methods segment text into sen-
tences using hand-crafted rules. The segmenters
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in Moses (Koehn et al., 2007) and SpaCy (Hon-
nibal et al., 2020) split on punctuation characters,
except for predefined exceptions like abbreviations
and acronyms. PySBD (Sadvilkar and Neumann,
2020) relies on exceptions and regular expression
rules. Although generally efficient, these methods
demand manual per-language effort to incorporate
language-specific rules. This also necessitates spec-
ifying a language code at inference time.

2. Supervised statistical methods learn segmenta-
tion from a sentence-segmentation annotated cor-
pus. One early method by Riley (1989) involved
a decision tree to determine if each punctuation
mark in a text represents a sentence boundary based
on linguistic features surrounding punctuation.
Satz (Palmer and Hearst, 1997) and Splitta (Gillick,
2009) build on this approach but utilize neural
networks and SVMs, respectively. Similarly, in
Ersatz, Wicks and Post (2021) propose to use a
Transformer (Vaswani et al., 2017) with subwords
as context around punctuation marks. However,
these methods are limited by their reliance on punc-
tuation to define sentence boundaries. This be-
comes problematic in poorly punctuated texts as
non-punctuation characters cannot serve as sen-
tence boundaries. Breaking from this limitation,
the dependency parser in the SpaCy library (Hon-
nibal et al., 2020) jointly learns dependency pars-
ing and sentence segmentation on a labeled corpus
without special treatment of punctuation.

3. Unsupervised statistical methods predict sen-
tence boundaries from unsegmented text alone.
Kiss and Strunk (NLTK; 2006) use features such as
character length and internal punctuation to identify
abbreviations, initials, and ordinal numbers, treat-
ing all other punctuation as sentence boundaries.
Furthermore, Wicks and Post (2021) additionally
introduces an unsupervised version of Ersatz, rely-
ing on punctuation preceding paragraph breaks.

2.2 Where’s the Point (WtP)

WtP represents the current state-of-the-art in sen-
tence segmentation (Minixhofer et al., 2023). Like
our method, it can be used in unsupervised and
supervised variations. Hence, we choose WTP as
our main baseline and examine it in the following.

WTP is trained to predict the newline proba-
bility (i.e., the probability for any character to be
followed by a \n symbol) on web-scale text data
in 85 languages. Training is self-supervised since
newline symbols occur naturally, typically corre-

sponding to paragraphs, each containing multi-
ple sentences. WTP thus takes characters as input
and generates a probability for each character to
be paragraph-ending. A character is treated as a
boundary if the probability is greater than a selected
threshold α. To apply models trained in this way
to segment text into sentences, Minixhofer et al.
(2023) find it is sufficient to lower the threshold α.

Robustness to corruptions. To make WTP less
reliant on punctuation, Minixhofer et al. (2023)
randomly remove some punctuation during train-
ing. In addition, they predict the likelihood of
commonly occurring punctuation as an auxiliary
objective. For details, we refer to Appendix A.5.
While this helps make WTP models less reliant on
punctuation, we still find that WTP models have
major issues when text is inconsistently formatted,
especially irregular casing.

Efficiency. WTP uses the character-level encoder
LM Canine-S (Clark et al., 2022) as its backbone.
Operating on characters as the fundamental unit
constitutes a major bottleneck in terms of speed,
resulting in poor efficiency.

Multilinguality. To increase language-specific ca-
pacity, WTP utilizes language adapters (Pfeiffer
et al., 2022). This, however, confines its multilin-
gual abilities since a language code must be speci-
fied at inference time. This is especially problem-
atic in code-switching, where multiple languages
are present, leading to ambiguity.

Short texts. We also found WTP models deficient
in segmenting short sequences, such as tweets or
sentence pairs. During training, paragraphs are
packed to always fully use the model’s context size.
While being efficient at training, we hypothesize
that this renders short sequences out-of-domain.

Domain adaptation. Minixhofer et al. (2023) also
evaluate two supervised adaptation methods. First,
WTPT tunes the segmentation threshold α based
on an already sentence-segmented corpus. Second,
based on the auxiliary punctuation prediction ob-
jective, WTPPUNCT fits a logistic regression on the
probability distribution of the punctuation logits.
However, these kinds of adaptations fall short on
more challenging domains such as lyrics and code-
switched text, as quantified later in Section 5.3.

2.3 Domain-specific Sentence Segmentation

Due to deviations from typical sentence structures,
differences in sentence lengths, and non-standard
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punctuation, sentence segmentation is highly de-
pendent on domain-specific characteristics (Sheik
et al., 2024), providing a strong basis for domain-
specific systems (Read et al., 2012).

Prior studies have focused on creating a dedi-
cated model for a single domain. Reynar and Rat-
naparkhi (1997) utilized features unique to the fi-
nancial domain. Tuggener and Aghaebrahimian
(2021) hosted a shared task on transcripts of spo-
ken texts. Brugger et al. (2023) train models to
segment sentences in the legal domain.

Previous approaches to segmenting lyrics into
verses require songs to be already pre-segmented
into lines. Watanabe et al. (2016) extract features
based on repeated patterns and part-of-speech. Fell
et al. (2018) improve upon this approach by using
convolutions and a more refined set of features.

In contrast to prior domain-specific models, we
propose a single model that can be efficiently
adapted for segmenting sentences from wildly het-
erogeneous domains and languages, outperforming
previous domain-specific models, even when using
only a limited number of examples.

2.4 Large Language Models

Large language models (LLMs) have become a de
facto tool for use in many NLP tasks (Zhao et al.,
2023; Minaee et al., 2024). Most modern LLMs are
decoder-only Transformers (Vaswani et al., 2017;
Brown et al., 2020; Touvron et al., 2023; Jiang
et al., 2024, inter alia). Recently, prompting has
emerged as the dominating paradigm for solving a
task (Ouyang et al., 2022; Liu et al., 2023).

However, despite widespread use, LLMs have
yet to be extensively evaluated for sentence seg-
mentation. In this work, we aim to bridge this gap
by shedding light on how well popular LLMs can
segment sentences when prompted to do so, partic-
ularly in more challenging domains such as lyrics,
where using LLMs may be especially valuable.

3 SAT: Segment any Text

To create a reliable and effective system across var-
ious scenarios, we pre-train a model on paragraph
segmentation as in Minixhofer et al. (2023). In the
following, we outline how we solve each of the
major issues of WTP discussed earlier, leading to
a universal model for sentence segmentation.

Efficiency. We resort to models using subword tok-
enization, processing tokens consisting of multiple
characters at a time, making them considerably

faster than their character-level counterparts.

Multilinguality. Unlike Minixhofer et al. (2023),
we do not rely on language adapters. In addition
to improving inference time and storage require-
ments, this also improves multilinguality since no
language has to be specified at inference time.

Robustness to corruptions. We randomly remove
common punctuation-only tokens with probability
p and use the auxiliary punctuation-prediction ob-
jective during training. For details, see § 2.2 and
Appendix A.5. Further, we randomly remove all
casing and punctuation in 10% of samples within
a batch during training. The resulting model, Seg-
ment any Text (SAT), already shows strong segmen-
tation performance at improved efficiency.

Still, to further improve SAT, we continue
training it on a Supervised Mixture of already-
segmented sentences. To be even less dependent
on patterns such as punctuation, spaces, and casing,
we augment the data by introducing several addi-
tional corruption schemes, resulting in our more
specialized model, SAT+SM.

Our first corruption scheme removes all casing,
if available, and punctuation tokens for all text.
Secondly, we add randomness to the corruption
in as many situations as we find useful, aiming to
emulate user-generated text in tweets or forums.
This includes duplicating punctuation, removing
punctuation, lowercasing, and removing/adding
spaces between sentences. Finally, we also use
clean, non-corrupted text. We then sample uni-
formly across these three categories. For details,
see Appendix A.2.

Short texts. To resolve issues with short sequences,
we enforce SAT to use only the immediate N fu-
ture tokens for its predictions. We do so via a
limited lookahead mechanism. Let ki be the token
occurring at position i, and aij its corresponding
attention mask, where j corresponds to the token
to be attended to. A naive modification of the at-
tention mask would set aij = 0 for j > i + N .
However, using Transformer networks with multi-
ple layers results in a lookahead of N × L, where
L is the number of Transformer layers (Jiang et al.,
2023). We thus split up the lookahead evenly into
L layers, resulting in the following attention mask:

aij = 0 for j > i+NL,

where NL is the per-layer lookahead, i.e., NL =
N
L . Using an intermediate value for N makes SAT
robust to both short and long sequences – relying
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Domain Dataset Description Characteristics Source

Clean Text

Universal Dependencies
(UD)

Treebanks in many languages. Includes gold-standard segmentation
into sentences.

de Marneffe et al. (2021);
Nivre et al. (2020)

OPUS100 Sentences from subtitles and news in 100
languages.

A challenging sentence segmentation
benchmark (Zhang et al., 2020) Tiedemann (2012)

Ersatz Sentences from WMT Shared Tasks, mainly
comprising news (commentary).

Includes manual sentence segmentation
corrections by Wicks and Post (2021).

Wicks and Post (2021); Bar-
rault et al. (2020)

Noisy Text

SEPP-NLG Shared Task
(surprise test set)

500 transcribed public TED talks in each of
4 European languages.

Neither casing nor punctuation tokens
are present.

Tuggener and Aghae-
brahimian (2021)

Tweets User-generated content in the form of
Slovene (sl) and Serbian (sr) tweets.

Noisy; short in length (70/115 characters
on average for sl and sr, respectively).

Fišer et al. (2020); Miličević
and Ljubešić (2016)

Code-
switching C.f . Table 10.

Reddit posts for German-English (de-en);
data for 3 additional language pairs taken
by concatenating code-switching sentences
from bilingual transcriptions.

We treat all data as transcriptions, re-
moving all punctuation and casing; we
only keep sentences with at least one to-
ken of each language.

Deuchar (2009), Osme-
lak and Wintner (2023),
Nguyen and Bryant (2020)
and Çetinoğlu (2017)

Legal MultiLegalSBD Laws and judgements from legal documents
in 6 languages.

Domain-specific jargon and structure;
formal and complex sentences. Brugger et al. (2023)

Lyrics Verses 35,389 English songs across 16 genres span-
ning 3 levels of repetitiveness.

We replicated the setup by Fell et al.
(2018).

Meseguer-Brocal et al.
(2017)

Table 1: Overview of the evaluation corpora we use. For more details, see Appendix A.2.

on some future context where appropriate, but not
so much that it falters on short sequences.

Limited lookahead can be thought of as slid-
ing window attention (Beltagy et al., 2020; Jiang
et al., 2023) with two crucial tweaks: 1) the sliding
window extends forward into the future instead of
backward, 2) past tokens are not masked out.

Domain adaptation. Finally, some domains re-
quire more sophisticated adaptation than only
changing the threshold or relying on punctua-
tion logits. We thus explore low-rank adapta-
tion (LoRA; Hu et al., 2022) to adapt our mod-
els efficiently, denoted by SAT+LORA. We show
how this enables state-of-the-art performance on
verse segmentation using our models later in § 5.
In our setup, it trains ≈ 1% of the parameters of
SAT but results in no inference overhead since
LoRA weights can be merged into the backbone
LM weights at inference time (Pfeiffer et al., 2023).

4 Experimental Setup

4.1 Evaluation

To evaluate our method, we compare ground truth
and predicted sentence boundaries on the test sets
of corpora spanning a diverse set of languages,
sources, and domains,2 summarized in Table 1.

In addition, to evaluate how well our method
can segment short sequences, we generate non-
overlapping sentence pairs from the datasets cat-
egorized as clean text. We additionally simulate
a real-time automatic speech recognition (ASR)
scenario using transcripts from speeches in 76 lan-

2We acknowledge the concept of domains remains an open
issue in NLP (Holtermann et al., 2024; Raffel et al., 2019).

guages. We generate sentence pairs in a similar way
and remove all punctuation as well as all casing.

We report character-level F1 scores for the pos-
itive (i.e., sentence-ending) labels. For short se-
quences, we use the proportion of perfectly seg-
mented sequences within a corpus; this is stricter
than F1 since any segmentation error results in
a score of zero for the entire sequence. For
SEPP-NLG, we use the evaluation script and sur-
prise test set provided by the shared task organiz-
ers (Tuggener and Aghaebrahimian, 2021), report-
ing F1 scores on the token level. In our evaluations
on clean text across all 85 languages, we run all
competitor and baseline systems ourselves. For
these results, we test all differences for significance
with paired two-tailed permutation tests. We ap-
proximate them with N=10, 000 and set the signif-
icance threshold at α=0.05. Additional evaluation
and dataset details are provided in Appendix A.2.

Baselines. We compare against PYSBD and
NLTK as representatives of rule-based and un-
supervised statistical methods. For supervised
methods, we evaluate the punctuation-agnostic
SPACYDP and Spacy’s multi-language model,
SPACYM. We also compare against ERSATZ. Our
main comparison is against the current SoTA mod-
els: WTP, WTPT, and WTPPUNCT.

LLM-based baselines. To evaluate LLMs, we use
1) Cohere’s COMMAND R as a recent LLM with
claimed strong multilingual performance, and 2)
Meta’s LLAMA 38B due to its popularity and strong
performance. Officially, COMMAND R supports
23 languages, whereas LLAMA 38B only supports
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Model ar cs de en es fi hi ja ka lv pl th xh zh
81

langs

MULTILINGUAL

SPACYM - 91.1 84.7 91.5 94.5 93.5 - - - 91.4 94.0 - - - -
ERSATZ 77.2 90.9 87.0 91.4 95.1 93.9 84.8 69.3 - 91.1 94.8 - - 77.2 -

LLAMA 38B 78.2 93.4 92.6 95.2 96.0 95.5 85.6 64.7 89.2 93.0 96.2 66.0 71.7 82.0 79.1
COMMAND R 58.6 68.1 79.1 84.6 81.0 74.1 72.0 52.2 25.6 74.2 78.6 10.6 56.1 73.7 55.6

SAT 79.9 91.7 90.4 93.6 94.0 94.2 84.9 88.6 75.7 92.2 93.7 68.0 80.3 78.0 84.9
SAT+SM 80.7 95.7 94.0 96.5 97.3 96.9 90.3 88.1 93.6 96.1 97.7 72.9 89.6 88.9 91.6

MONOLINGUAL

NLTK - 90.8 87.1 92.2 94.1 93.9 - - - - 94.5 - - - -
PYSBD 37.4 - 80.6 69.6 56.9 - 70.1 76.1 - - 49.3 - - 86.9 -
SPACYDP - - 89.0 92.9 93.5 94.1 - 77.1 - - 95.3 - - 87.7 -
WTP 77.3 91.1 89.2 93.9 93.2 93.4 85.0 72.7 91.3 90.4 93.6 66.6 77.2 90.7 84.2

WTPT 79.9 92.0 92.0 93.5 94.2 94.1 85.2 85.6 91.1 93.1 93.5 69.7 80.7 89.3 85.9
WTPPUNCT 85.4 96.4 95.0 96.7 97.4 97.7 90.8 93.1 92.8 96.6 97.5 71.3 89.8 95.5 91.7

SAT+LORA 86.3 96.2 95.4 96.7 97.7 97.5 92.9 94.4 93.3 97.0 97.7 73.7 90.8 94.9 93.1

Table 2: Mean sentence segmentation F1 scores over OPUS100, UD and Ersatz. For the average, we report macro
F1 over languages from all datasets where train and test sets are available. Results are shown using 3-layer variations
of all models. Numerically best results are in bold, statistically indistinguishable ones from this best are underlined.

Model en de fr it Avg.

htw+t2k 77 82 76 75 78
OnPoint 80 82 77 77 79
Unbabel 83 78 78 76 79

SAT 73.4 79.9 73.1 72.9 74.8
SAT+SM 79.7 84.0 78.3 77.1 79.8

Table 3: F1 scores on the surprise test set of the SEPP-
NLG Shared Task. For comparison, we provide results
for the 3 best-performing systems from the Shared Task.
We use 12-layer versions of our models.

English.3 We split up each dataset into chunks of
10 sentences to avoid cases where sentences are cut
off at critical positions and observed issues with
long context lengths. Then, we prepend the prompt
to each chunk and let the LLM segment 10 sen-
tences.4 Finally, to make evaluation metrics robust
to unwanted alterations of the input by the LLM,
we apply the Needleman-Wunsch algorithm (NW;
Needleman and Wunsch, 1970) to align sentences
within each input and output chunk. For the prompt
and other implementation details, including align-
ment via NW, we refer to Appendix A.2.

4.2 Training Setup
We train Transformer models operating on sub-
words, initialized with the weights of XLM-
RoBERTa (XLM-R; Conneau et al., 2020). We use
a lookahead limit of 48 tokens, which we found to

3Due to imperfect filtering of common web-crawled cor-
pora, all LLMs can be considered multilingual to some extent.

4For a fair comparison, we thus exclude every 10th label
when calculating F1 scores. For songs and short sequences,
we feed in whole samples and hence do not exclude any labels.

work well in practice on text of any length, leading
to SAT. We use the mC4 (Raffel et al., 2019) corpus
and sample text uniformly from the 85 languages
also used by Minixhofer et al. (2023).

To train SAT+SM, we continue training SAT on
the training set of UD due to its high quality and
availability in most of the 85 considered languages.
For languages without UD data, we resort to silver-
quality data from OPUS100 or NLLB (Costa-jussà
et al., 2022), whichever is available.

To adapt to different user requirements w.r.t. ef-
ficiency, we train and release SAT and SAT+SM
models in different sizes from 1-12 layers, where
we remove the upper layers for models < 12 layers.

For adaptation via LoRA (SAT+LORA), we use
SAT as a starting point.5 We use the respective
training set using max. 10,000 sentences.

The full details of the experiment setup regarding
the datasets, infrastructure, training, and hyperpa-
rameters are provided in Appendix A.2.

5 Results

5.1 Performance on Clean Text

Table 2 shows evaluation results on clean text, av-
eraged over OPUS100, UD, and Ersatz on a di-
verse selection of languages, including an average
over 81 languages.6 We categorize methods into

5We include its task head since we found that it improves
stability. We also experimented with applying LoRA to
SAT+SM, but did not find it to improve upon SAT+LORA.

6For the average, we only consider languages with datasets
with both train and test sets for a fair comparison. While we
evaluate on 85 languages, this is the case in 81 languages.
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Model
Tweets Sentence Pairs Macro

Avg.sl sr Speeches Ersatz

LLAMA 38B 73.4 76.0 66.9 94.8 77.8
COMMAND R 53.8 47.4 23.0 70.0 48.6

WTP 70.8 71.4 12.6 78.0 58.2
WTPT 70.4 71.4 18.9 79.0 59.9
WTPPUNCT 80.1 82.3 37.9 91.5 72.9

SAT 80.5 75.5 28.8 84.0 67.2
SAT+SM 78.0 72.9 41.7 92.5 71.3
SAT+LORA 87.2 89.1 56.8 93.9 81.8

Table 4: Proportion of perfectly segmented short se-
quences. For Speeches and Ersatz, we are averaging
scores over languages. We use 12-layer versions of each
model given the task’s increased difficulty.7

(i) multilingual, which take only text as input, and
(ii) monolingual, which additionally rely on a lan-
guage code or, in the case of WTPT, WTPPUNCT,
and SAT+LORA, are adapted to a target domain.

Both SAT and SAT+SM outperform the current
non-domain-adapted SoTA model, WTP. Mean-
while, unlike WTP, our models do not rely on spec-
ifying a language code as input.

Remarkably, SAT+SM and WTPPUNCT are not
statistically significantly different, achieving aver-
age F1 scores of 91.6 and 91.7 respectively. This
is despite WTPPUNCT relying on adaptation to a
target sentence-segmented corpus, whilst SAT+SM
is a general-purpose multilingual model. Finally,
SAT+LORA significantly outperforms the existing
domain-adapted SoTA, WTPPUNCT, making it the
best overall model. Our domain-adapted model out-
performs WTPPUNCT in 63 out of 81 languages.

Among the LLMs, COMMAND R, despite being
trained in 23 languages, does surprisingly poorly,
with LLAMA 38B surpassing it by 23.5% absolute
avg. F1. Nevertheless, LLAMA 38B still falls short
compared to all variants of SAT. On the English
benchmarks, given the abundance of English text,
we expected our models to be easily outperformed
by LLMs; yet, unlike WTP, SAT+SM outperforms
both LLMs on every dataset.

We provide full per-dataset results, including all
85 languages, in § A.4. We also conduct ablation
studies on each of our stages’ components in § A.1.

5.2 Performance on Noisy and Short Text

Table 3 presents the results of our method when
evaluated on the SEPP-NLG Shared Task. SAT+SM
establishes a new state-of-the-art, outperforming
the SEPP-NLG winners. This is despite our model

7We exclude other baselines since none of them support
sl/sr or all languages from TED/Ersatz.

Model es
en

de
en

vi
en

tr
de

Macro
Avg.

LLAMA 38B 47.9 56.3 35.5 33.9 43.4
COMMAND R 30.4 51.9 30.0 17.6 32.5

SPACYDP* 17.6 8.6 11.3 12.2 12.2
WTP* 38.6 39.0 25.5 33.5 29.1
WTPT* 52.2 45.7 46.7 34.4 43.2
WTPPUNCT* 62.1 60.1 59.0 41.0 54.9

SAT 54.5 49.2 49.3 39.8 48.2
SAT+SM 59.6 58.4 57.3 42.4 54.4
SAT+LORA 65.0 65.6 67.5 48.8 61.7

Table 5: Sentence segmentation F1 scores for code-
switched text. We use 12-layer versions of each model.
* indicates models using language codes, where we try
both language codes and show the better score. We show
results using both language codes in Appendix A.4.

supporting 81 additional languages and use cases
not considered in the Shared Task.

Furthermore, Table 4 shows evaluation results
on short sequences, including tweets and sentence
pairs taken from manually corrupted speeches and
Ersatz. We observe similar patterns on these cor-
pora: SAT and SAT+SM outperform WTP, improv-
ing avg. F1 scores by 9% and 13.1%, respectively,
SAT+LORA continues to be the best overall model,
also outperforming both LLMs. We additionally
provide an ablation study showing the importance
of limited lookahead in SAT in Table 9.

5.3 Performance on Challenging Domains

Code-switching. The results in Table 5 reveal
that WTP achieves an average F1 score of 29.1%,
while the highest-performing LLM scores 43.4%.
SAT and SAT+SM achieve average F1 of 48.2%
and 54.4%, respectively. SAT+LORA continues to
improve performance, achieving 61.7%. To the
best of our knowledge, this is the first comprehen-
sive evaluation of sentence segmentation tools on
code-switching text. While our models now repre-
sent SoTA, the evaluation results indicate that it is
a challenging task.

We now evaluate domain adaptation perfor-
mance of our method on two highly distinct do-
mains: lyrics and legal data.

Lyrics. Table 6 shows results on verse segmen-
tation (i.e., segmenting songs into verse, chorus,
bridge, etc.). None of the other baseline sys-
tems, including LLMs, can improve over the cur-
rent domain-specific SotA, SSMstring. In contrast,
SAT+LORA outperforms SSMstring by 10% avg. F1.
The difference is especially pronounced in hard-to-
segment songs that are low in repetitiveness (e.g.,
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Model
Corrupted? Repetitiveness

✓ ✗ High Mid Low

SSMstring
† - 63.8 71.3 64.8 47.3

LLAMA 38B 45.5 49.7 48.9 46.7 33.8
COMMAND R 36.3 38.3 38.0 37.1 28.7

WTPPUNCT@100 46.9 53.8 55.8 55.2 35.9
WTPPUNCT@1000 49.1 56.1 58.4 57.5 44.9
WTPPUNCT 49.2 56.2 58.4 57.6 44.9

SAT+LORA@100 60.8 62.4 67.8 62.9 51.6
SAT+LORA@1000 67.3 72.4 76.5 73.1 62.7
SAT+LORA 68.5 73.8 77.9 74.8 62.3

Table 6: Macro-averaged verse segmentation perfor-
mance over per-genre F1 scores. †Values for SSMstring
taken from Fell et al. (2018), with lyrics already pre-
segmented into lines. @N corresponds to using a maxi-
mum of N songs per genre for adaptation.

Rap music), with a 15% difference in F1 scores.
When evaluating SAT+LORA on manually corrupted
lyrics, it still outperforms all baselines, even when
compared to baselines evaluated on non-corrupted
songs. Additionally, SAT+LORA@1000, using 1000
songs per genre for adaptation, still outperforms all
baselines. We provide complete results, including
those for each genre, in Appendix A.4.

Legal and qualitative examples.. We provide
comprehensive results on MultiLegalSBD in Ap-
pendix A.4. Finally, We provide qualitative exam-
ples from several domains in Appendix A.3.

6 Discussion

LLMs. Contrary to our expectations, our evalua-
tion results reveal that LLMs generally underper-
form, particularly in non-English languages. No-
tably, when using LLMs for sentence segmentation
via prompting, each sentence is processed twice –
once as part of the input, appended to the prompt,
and once within the output. This redundancy leads
to inefficient processing, needing to copy the input
verbatim to the output, ideally only adding new-
lines. However, in practice, LLMs are highly prone
to alter their input (Barbero et al., 2024). We found
this issue to be particularly severe for noisy text
and lyrics.8 This is highly problematic for a spe-
cific task requiring input and output characters to
remain the same. Still, we tried to address this by
using the Needleman-Wunsch sequence alignment
algorithm to make pure segmentation performance
comparable to other methods.9

8LLAMA 38B and COMMAND R altered 1.5% and 2%
of all characters within lyrics, respectively, even though we
prompted them not to alter their input (c.f. Appendix A.2).

9The same objective could be achieved via other means,
e.g., constrained decoding (Beurer-Kellner et al., 2024).

16 32 64 128 256 512 1024
# of Training Sentences
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84

86

88

90

92

94
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WtPPUNCT

SaT
SaT+LoRA

Figure 3: Macro avg. F1 vs. number of sentences used
for adaptation, averaged over languages in {OPUS100,
UD, Ersatz}. Per-corpus results shown in Appendix A.1.

Aiming to improve the segmentation perfor-
mance of LLMs, we experimented with few-shot
prompting. However, this did not yield the desired
improvements; in fact, it degraded performance.
Additionally, we tested varying the number of
input-output sentences. The results of both of these
ablation studies are presented in Appendix A.1.

Efficiency. For our method, we rely on XLM-R as
the LM backbone. Operating on subwords makes
SAT considerably faster than WTP. We compare
sentence segmentation performance and time on Er-
satz across model sizes from 1-12 layers, illustrated
in Figure 1. Additional datasets are shown in Fig-
ure 4. The standard 3-layer variations of SAT take
≈ 0.5 seconds to segment 1000 sentences on the
hardware specified in Appendix A.2, making them
3 times faster than WTP, while also outperforming
WTP models in all sizes on Ersatz. Furthermore,
for SAT, performance plateaus with sizes > 3 lay-
ers, whereas SAT+SM continues to improve when
scaling up its size, making it by far the best model,
despite never being exposed to Ersatz.

Few-shot domain adaptation. We now analyze
how many sentences are needed to adapt our do-
main adaptation method, SAT+LORA, to a target cor-
pus, and compare it to previous methods. As shown
in Figure 3, WTPT and WTPPUNCT perform simi-
larly when using 1024 sentences for domain adapta-
tion. However, WTPPUNCT fails to outperform the
fully self-supervised variation of WTP when ≤ 32
sentences are available. In contrast, SAT+LORA
markedly improves upon the self-supervised SAT
with only 16 available sentences, and outperforms
WTPPUNCT by almost 10% in F1 score, making it
substantially more sample-efficient.

11915



7 Conclusion

We proposed SAT, an efficient, robust, and
highly adaptable multilingual sentence segmenta-
tion method that neither relies on language codes
nor punctuation. Further, we introduced SAT+SM,
improving SAT via supervised adaptation using
multiple corruption schemes. Our method consis-
tently achieves state-of-the-art performance among
open weights models in experiments across 85
languages and eight diverse corpora, even outper-
forming newly introduced and optimized strong
LLM baselines. We also demonstrated that SAT
can be efficiently domain-adapted via LoRA, set-
ting new performance standards on segmenta-
tion of lyrics and code-switching text. Over-
all, we hope SAT will unlock significantly im-
proved text data (pre-)processing across a range
of NLP applications for multiple languages and
domains via its robust and consistently strong
performance, versatility, and high efficiency.

Limitations

To the best of our knowledge, our evaluations are
the most comprehensive to date, spanning 8 diverse
corpora across different domains, languages, and
noise levels, and sequence lengths. Still, we may
not have covered every possible scenario. Second,
since we use XLM-R as our backbone, we also
use its tokenizer, which has been shown to tok-
enize text less efficiently in some language (Liang
et al., 2023), potentially exacerbating existing bi-
ases. We try to minimize bias w.r.t. performance
by sampling text from all languages uniformly in
both stages. Furthermore, our use of subword
LMs merges characters into subwords. Theoret-
ically, this could limit sentence boundaries to end-
of-token positions; however, in practice, we did not
find this to be an issue. Finally, language support
could be further improved by e.g., replacing mC4
with MADLAD-400 (Kudugunta et al., 2023) for
the pre-training stage. We leave this to future work.

Ethical Considerations

Our work is multifaceted, as are the ethical dimen-
sions it encompasses. First, we acknowledge the
possibility of NLP datasets and models for encod-
ing unfair stereotypical (Blodgett et al., 2020) and
exclusive (Dev et al., 2021) biases that may lead
to representational and allocational harms (Baro-
cas et al., 2017). This issue is a general property
of pre-trained LMs, and the models and datasets

utilized in our study are similarly at risk. We ad-
vise practitioners to use these models with the
appropriate care and we refer to existing works
(Liang et al., 2021; Lauscher et al., 2021) for dis-
cussions on bias mitigation. Second, one key as-
pect of our work deals with efficiency. On the one
hand, considering the well-documented relation-
ship between model training efforts and potential
CO2 emissions (Strubell et al., 2019), our research
contributes to Green AI by improving the environ-
mental sustainability of state-of-the-art sentence
segmentation systems. On the other hand, since
the training of language models often comes with
high infrastructure prerequisites only available to
certain user groups (Bender et al., 2021), we hope
that our work also contributes to the continued de-
mocratization of language technology by reducing
resource- and language-related usage barriers.
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A Appendix

A.1 Ablation Studies

Model Variation Clean
Text Tweets Code

Switching

SAT - 84.9 78.0 48.2
Only clean text 84.7 33.5 16.5

SAT+SM

- 91.6 75.5 54.4
Only clean text 91.5 77.2 10.2
No pre-training 89.9 42.1 44.0

SAT+LORA
- 93.1 88.2 61.7
No pre-training 88.4 74.5 12.4

Table 7: Effect of various components of our method’s
variants. We report macro average F1 scores for each
domain and use models with the same number of layers
for each category of text as in the main text. Only clean
text does not apply any corruptions. No pre-training
skips the paragraph segmentation stage on web-scale
mC4, and thus starts from XLM-R weights. Best per-
category results are bold.

Model Variation
Lyrics Legal

Corrupted? Corrupted?

✓ ✗ ✓ ✗

SAT+LORA@100 - 60.8 62.4 81.1 93.6
No pre-training 20.3 34.3 61.2 79.8

SAT+LORA
- 68.5 73.8 83.3 95.1
No pre-training 59.9 62.1 82.5 94.9

Table 8: Effect of the web-scale pre-training stage on
adaptation to hard domains, averaged over genres/legal
categories. @100 corresponds to using a maximum of
100 songs/documents per genre/category for adaptation.

SAT components. We show the effect of remov-
ing different components of our corruption schemes
used in SAT and SAT+SM in Table 7. For SAT,
only using clean text even slightly hurts perfor-
mance on clean text and strongly degrades perfor-
mance in our more noisy tweets and code-switching
evaluations. A similar pattern occurs for SAT+SM:
Only using clean text hurts performance. Moreover,
skipping the web-scale pre-training stage (No pre-
training) also decreases performance to a large ex-
tent, with the difference being particularly large for
tweets and code-switching. Finally, for SAT+LORA,
no pre-training similarly degrades performance,
with the difference being particularly large in code-
switching, where SAT+LORA is better by 49.3%
absolute F1.

Moreover, Table 8 compares domain adaptation
performances via LoRA to models without our web-
scale pre-training to SAT models with it. As ob-
served before, no pre-training markedly degrades

performance in both lyrics and legal data. The dif-
ference is especially large in cases where only 100
songs or documents are available, clearly show-
ing that our pre-training stage improves sample-
efficiency.

Limited lookahead. We further provide an ab-
lation study on the effect of disabling the limited
lookahead mechanism using sentence pairs in Ta-
ble 9. Without limited lookahead, SAT is outper-
formed by WTP. On the contrary, with limited
lookahead, SAT outperforms WTP by a consider-
able margin, where the difference is even more
pronounced for 12-layer variations. Moreover,
SAT+SM hardly benefits from limited lookahead,
justifying our decision to disable it for SAT+SM.

Effect of model size. Figure 4 shows the effect of
scaling up model sizes on OPUS100, UD, and code-
switching, respectively. Remarkably, all 3-layer
variations of SAT+SM clearly outperform WTP, de-
spite not relying on language codes and being ≈ 5x
faster. The difference is particularly pronounced in
code-switching, where even the 1-layer variations
of both SAT and SAT+SM outperform the best vari-
ation of WTP. In general, performance continues
to increase when further scaling up model sizes up
to 12 layers.

Model Layers Look-
ahead OPUS100 UD Ersatz TED

WTP 3 ∞ 52.4 80.6 78.0 9.8

12 ∞ 52.8 77.9 78.0 12.6

SAT
3 ∞ 4.4 1.8 3.5 1.9

48 56.9 82.4 82.2 16.9

12 ∞ 31.0 55.0 55.5 20.9
48 63.3 85.2 84.0 28.8

SAT+SM

3 ∞ 72.2 91.4 85.9 29.4
48 73.7 93.1 85.8 28.4

12 ∞ 78.0 93.5 92.5 41.7
48 78.6 93.6 91.3 38.3

Table 9: Proportion of perfectly segmented sequences
within additional corpora.

LLMs. Figure 5 shows the effect of few-shot
prompting and varying the number of input-output
sentences for LLAMA 38B and COMMAND R. Con-
trary to our expectations, in-context learning via
few-shot prompting does not improve sentence seg-
mentation performance for both LLMs in consider-
ation. Providing only a single example already de-
grades performance, and providing more examples
further degrades it. Furthermore, increasing the
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Figure 4: F1 scores and inference time for the prior SoTA (WTP) and our models (SAT and SAT+SM), evaluated on
additional sentence segmentation benchmarks. We average over all 23 languages and show the average time (10
runs) for variants with different sizes (L = #layers) to segment 1,000 sentences using consumer hardware (1 Nvidia
GTX 2080 Ti GPU). Performance on Ersatz is shown in Figure 1.
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Figure 5: Ablation study on sentence segmentation performance of LLMs.

number of input-output sentences from our favor-
ably low default of 10 results in considerable per-
formance decreases. Notably, when using 80 input-
output sentences per chunk, both LLMs achieve F1
scores of only < 60%.

A.2 Complete Experiment Details

Language
Number of Sentences

Source
Train Test

sl 2728 2728 Fišer et al. (2020)
sr 1727 192 Miličević and Ljubešić (2016)

es-en 1335 1334 Deuchar (2009)
en-de 678 599 Osmelak and Wintner (2023)
tr-de 578 805 Çetinoğlu (2017)
vi-en 1360 1361 Nguyen and Bryant (2020)

Table 10: Number of train and test sentences from
tweets and code-switched text, including their source.

Dataset details. We give an overview of all used
languages and their evaluation dataset sizes for
clean text in Table 15. Furthermore, we provide
statistics of splits for noisy text and additional do-
mains in Table 10 for tweets and code-switching,
Table 11 for lyrics, and Table 12 for legal data.

Repetitiveness Genre
Number of Songs

Train Test

High
Punk Rock 778 190
Pop Punk 512 141
Country 2916 711

Mid

Rock 4611 1182
Pop 3490 891
RnB 3542 915
Alternative Rock 3370 856
Alternative Metal 651 155
Soul 494 110
Hard Rock 1821 430
Indie Rock 1193 305
Pop Rock 1633 412
Heavy Metal 988 216
Indie Rock 1193 305

Low Southern Hip Hop 836 208
Gangsta Rap 270 64

Table 11: Number of train and test songs per genre.

If a given corpus does not provide train and test
splits, we set aside 10,000 sentences for testing and
keep the rest for training if more than 10,000 sen-
tences are available. If a corpus is smaller, we set
aside 50% for testing and use the rest for adapta-
tion. To train SAT+SM, if neither UD nor OPUS100
train data is available, we resort to NLLB. This is
the case in Cebuano (ceb), Javanese (jv), Mongo-
lian (mn), and Yoruba (yo), where we take 10,000
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Language
Number of Documents

Laws Judgements

Train Test Train Test

de 10 3 104 27
en - - 64 16
es 494 183 151 39
fr 1672 459 252 63
it 2206 704 194 49

Table 12: Number of legal train and test documents
per category. We discard Portuguese since there is no
training data available.

sentences each.
To simulate our real-time automatic speech

recognition (ASR) scenario, we take publicly
available TED talk transcripts in 76 languages,
available at opus.nlpl.eu/TED2020/corpus/
version/TED2020. We generate non-overlapping
sentence pairs as done in other experiments to eval-
uate performance on short sequences. Addition-
ally, we remove fully lowercase all pairs and all
punctuation tokens. We generally derive punctu-
ation tokens with the commonly used Moses tok-
enizer (Koehn et al., 2007) for languages where
it is available. For all other languages, we simply
remove all punctuation characters.

Moreover, we observe that used tweets in sl
and sr are inconsistent w.r.t. segmenting single
emojis. We thus filter out all emojis as a simple pre-
processing step. Similarly, we normalize tweets by
filtering out words starting with http, #, and @.

Computing infrastructure. We train SAT on a
TPUv4 VM with 8 cores, SAT+LORA on a TPUv3
VM with 1 core, and SAT+SM using a single
A100 GPU. To measure inference time, we use
a consumer-grade GPU, the Nvidia GTX 2080 Ti
with an AMD EPYC 7402P CPU.

Implementation details. We use the
PyTorch (Paszke et al., 2019) and
transformers (Wolf et al., 2020) libraries
for all experiments. For adaptation via LoRA,
we make use of the adapters library (Poth et al.,
2023; Pfeiffer et al., 2020) library, a wrapper
around the transformers library. Our code
and models are released under the MIT License,
ensuring open access to the community for further
development.

Training of SAT. We train SAT using a context
window of 256 since we observed that it improves
performance. During inference, we use the full
context size of XLM-R, 512. Moreover, we follow

Minixhofer et al. (2023) and sample paragraphs to
ensure that a maximum of 10% of paragraphs do
not end in punctuation (except for Thai, which does
not use sentence-ending punctuation). We also
sample paragraphs of languages uniformly. We
continue training XLM-R on naturally occurring
newline symbols for 200k training steps using a
batch size of 512. We use a linearly increasing
learning rate warmup from 0 to 1e-4, and decay
the learning rate to 0 for the remaining 195k steps.
We use the AdamW optimizer (Kingma and Ba,
2015). For the auxiliary objective as introduced
by Minixhofer et al. (2023), we set the removal
probability p = 0.25 using the union of the 30 most
common punctuation characters in every language.
We then take the corresponding tokens as used by
XLM-R as labels for the auxiliary objective.

For models without limited lookahead (cf. Ta-
ble 9), we follow Minixhofer et al. (2023) and use a
threshold of 0.01 for sentence boundary detection.
When using limited lookahead, we observe that the
optimal threshold increases. We thus use a constant
threshold of 0.025 with limited lookahead.

Training of SAT+SM. In our supervised mixture
stage, we continue training SAT using the same
context window of 256. The training data now
consists of sentence-segmented text, and we train
SAT+SM predicting sentence-ending tokens.

For each language, we corrupt the data in two
ways. In the first, we lowercase and remove all
punctuation tokens. This aims to roughly emu-
late the output of an automatic speech recognition
(ASR) system. In the second, we lowercase all
text with probability 0.5, remove all punctuation
with probability 0.5, duplicate punctuation (e.g.,
changing ! to !!!) with geometric distribution scal-
ing with the number of duplications (i.e., doubling
with probability 0.5, tripling with probability 0.25,
etc.), and join sentences without a whitespace with
probability 0.1 (or with a space for the four lan-
guages which do not generally use a whitespace to
split sentences, see Table 1.) This aims to emulate
user-generated text.

We generally pack sentences into chunks. For
the uncorrupted sentences and sentences corrupted
with the first scheme, we pack until each chunk
fully fills up the model’s context window. For our
second corruption scheme, we include s sentences
in each block, where s is drawn from the same
geometric distribution as used before.

We train with a batch size of 128, linear learning
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rate warmup from 0 to 3e-5 for 500 steps, and lin-
early decay for another 19,500 steps. We uniformly
sample batches of sentences from a single language
and evenly sample batches corrupted with one of
the three corruption schemes. During inference, we
use a constant threshold of 0.25.

Training of SAT+LORA. For adaptation via
LoRA, we use a learning rate of 3e-4. We train
LoRA modules with AdamW for a target domain
for 30 epochs, where we linearly warm up the learn-
ing rate for the first 10% of training, followed by a
decay to 0 for the remaining training steps. We do
not apply early stopping. We apply LoRA to the
query and value matrices of the attention block, as
well as the intermediate layer of the Transformer,
using a rank r = 16 and scaling factor a = 32.
We noticed this to positively impact performance
at a comparably low computational cost. More-
over, similarly to WTPT and WTPPUNCT, we ad-
ditionally tune the classification threshold on the
same training data if more than 512 sentences are
available. We noticed that this helps performance
in such cases. For verse segmentation, we use
SAT models without limited lookahead, since, with
verses, it is both helpful and desirable to rely on
future verses.

LLM details. We use default hyperparameters
for both LLAMA 38B and COMMAND R. For COM-
MAND R, We used the Cohere API. This led to
some API refusals, particularly for lyrics. We
thus only consider chunks that were not refused
when calculating metrics. To align input and out-
put chunks using the Needleman-Wunsch sequence
alignment algorithm, we use a gap penalty of −0.5,
a gap extension penalty of −0.5, a match reward of
1, and a mismatch penalty of −0.5. If no alignment
is found, the LLM produced output that strongly
deviated from the input chunk. We thus assign no
sentence boundaries to the predictions of the LLMs
for this input chunk.

We experiment with several prompts, optimizing
performance on the training set, resulting in the
following final prompt:

General LLM Prompt

Separate the following text into sentences
by adding a newline between each sentence.
Do not modify the text in any way and keep
the exact ordering of words! If you modify
it, remove or add anything, you get fined
$1000 per word. Provide a concise answer
without any introduction. Indicate sentence
boundaries only via a single newline, no
more than this!

We then append \n\n# Input: \n\n, followed by
the input chunk, followed by \n\n# Output: \n\n,
resulting in the complete input to the LLM.

For few-shot prompting, we append the prompt
with When provided with multiple examples, you
are to respond only to the last one. In addition, we
indicate chunk n with Input N: and Output N: ,
respectively.

Since it is a highly distinct task, we use the fol-
lowing prompt for verse segmentation:

LLM Lyrics Prompt

Separate the following song’s lyrics into
semantic units (e.g., verse, chorus, bridge,
intro/outro, etc - similar to how they are
presented in a lyrics booklet) via double
newlines, but do not annotate them. Only
include the song in the output, no annota-
tions. Do not modify the song in any way
and keep the exact ordering of words! If
you modify it, remove or add anything, you
get fined $1000 per word. Indicate semantic
units by double newlines.

A.3 Qualitative Examples

ASR output. We show predictions of SAT+SM
on parts of transcribed TED talks in different lan-
guages in Table 16.

Code-switching. We also show predictions of
SAT+SM on code-switching text in four language
pairs in Table 17.

Verse segmentation. In addition, we show pre-
dictions of SAT+LORA on verse segmentation in
Tables 18, 19, and 20 for songs of high, mid, and
low levels of repetitiveness, respectively.
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Figure 6: Avg. F1 vs. number of sentences used for adaptation, averaged over languages within a given dataset.

Model OPUS100 UD Ersatz Macro
Avg.

SPACYM 88.8 91.7 94.0 91.5
ERSATZ 87.6 89.1 97.5 91.4

LLAMA 38B 92.8 94.8 98.2 95.3
COMMAND R 89.5 77.1 87.2 84.6

SAT 90.4 93.9 96.7 93.7
SAT+SM 94.6 96.7 98.3 96.5

NLTK 88.2 90.8 97.7 92.2
PYSBD 59.6 75.3 73.9 69.6
SPACYDP 89.0 91.3 98.5 92.9
WTP 90.6 94.5 96.5 93.9
WTPT 89.4 94.5 96.7 93.5
WTPPUNCT 94.7 96.9 98.6 96.7

SAT+LORA 94.8 96.8 98.7 96.8

Table 13: English (en) sentence segmentation F1 scores.
We use 3-layer versions of each model. Numerically
best results are in bold, statistically indistinguishable
ones from this best are underlined.

A.4 Additional Results

Results in English. We provide an overview of
the performance of different models on different
corpora in Table 13.

Legal data. Table 21 shows the sentence segmen-
tation performance of different models on MultiLe-
galSBD. Furthermore, Table 22 shows performance
on MultiLegalSBD when applying the same cor-
ruptions as on Speeches, removing all casing and
punctuation tokens.

More few-shot results. Figure 6 shows the per-
dataset few-shot domain adaptation results, com-
paring WTPT, WTPPUNCT, and SAT+LORA.

Effect of stride. For both SAT and WTP, we use
a default stride of 64 during evaluation. Each sub-
word or character is thus processed multiple times,
where we average predictions for overlapping posi-
tions. Since SAT operates on subwords but WTP
on characters, this results in different scaling be-
haviors, illustrated in Figure 7.

Model es
en

de
en

tr
de

vi
en

Macro
Avg.

NLTK 0.0/0.0 0.0/1.1 0.0/0.0 -/0.0 0.3/-
PYSBD 0.0/0.0 2.1/2.1 -/0.0 -/0.0 0.5/0.5
SPACYDP 0.0/17.6 8.6/8.0 -/12.2 -/11.3 12.2/-
WTP 20.8/38.6 39.0/31.4 33.5/21.0 22.7/25.5 29.1/29.0
WTPT 46.9/52.2 45.7/39.1 33.3/34.4 46.7/36.7 40.6/43.2
WTPPUNCT 60.7/62.1 60.1/58.1 39.9/41.0 59.0/50.7 53.0/54.9

Table 14: Complete sentence segmentation F1 scores
for code-switched text for systems relying on language
codes, where the first number corresponds to the first
language shown.

Complete verse segmentation results. We pro-
vide complete per-genre results for verse segmen-
tation in Tables 23 and 24. Furthermore, Ta-
bles 25 and 26. show verse segmentation perfor-
mance when applying the same corruptions as on
Speeches, removing all casing and punctuation to-
kens.

Complete results on clean data. Results of SAT,
its variations, and other methods on all languages
are shown in Tables 27-32.

Complete code-switching result. We show re-
sults using both language codes on code-switched
text for models using language codes in Table 14.

A.5 Auxiliary Punctuation Prediction
Objective

As mentioned in Section 3, we adopt the auxiliary
punctuation prediction objective from WtP (Minix-
hofer et al., 2023) as our base corruption scheme.

For clarity, we first specify the target without
the auxiliary objective. Here, the original sequence
of tokens c within some corpus is first stripped of
newline characters:

x = {ci | ci ∈ c, ci ̸= \n}. (1)

We then create labels, which we set positive if the
following token in the original sequence is a new-
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line character:

y =

{
1 if ci+1 = \n
0 otherwise

| ci ∈ x

}
, (2)

where ci indexes into the original sequence c. Us-
ing these labels, we optimize the standard cross-
entropy of these labels and the model’s predictions.
Note that the newline character is not contained
in our base model’s vocabulary and will thus only
appear as a single character. We also tokenize the
whole batch at the start before applying any corrup-
tions and do not re-tokenize later. We found this to
be more effective than re-tokenizing the sequence
after applying corruptions.

Auxiliary Punctuation Prediction. For the aux-
iliary objective, we adapt the methodology from
Minixhofer et al. (2023) to tokens and identify
the union of the 30 most common punctuation-
only tokens within the training set. For simplicity,
we ignore tokens containing multiple (potentially
non-punctuation) characters. We also include the
<UNK> token in this resulting set P , resulting in
109 punctuation tokens. We then define a random
binary mask that determines which punctuation
characters to remove among P , resulting in the
new sequence x′:

x′ =
{
ci | ci ∈ c, ci ̸= \n,

ci /∈ P or pi = 0

}
(3)

Here, we do not remove two consecutive charac-
ter tokens to be able to reconstruct the original
sequence. In addition, unlike WtP, we only remove
character tokens if the following token is not a
newline token. For the remaining characters, the
auxiliary labels z indicate which (if any) character
among P followed them in the original sequence:

z =

{
ci+1 if ci+1 ∈ P
0 otherwise

| ci ∈ x′
}

(4)

To avoid needing two separate forward passes
through the model, we substitute the input x with
x′ also for the main (newline prediction) objective.
The final loss L is obtained by summing up the
main newline prediction objective and the auxiliary
objective of predicting punctuation:

L = Lmain + Laux (5)
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Figure 7: Sentence segmentation F1 scores vs. execu-
tion time across different strides (default 64), evaluated
on Ersatz. We use the standard 3-layer variants of each
model. Higher stride values result in faster inference.
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Language iso Space UD OPUS100 Ersatz Speeches

Afrikaans af AfriBooms (425) 1.9k 1.3k
Amharic am 2.0k 514
Arabic ar PADT (680) 2.0k 1.5k 10.0k
Azerbaijani az 2.0k 6.8k
Belarusian be HSE (1.1k) 2.0k 6.2k
Bulgarian bg BTB (1.1k) 2.0k 10.0k
Bengali bn BRU (56) 2.0k 5.2k
Catalan ca AnCora (1.8k) 2.0k 10.0k
Cebuano ceb GJA (188) 55
Czech cs PDT (10.1k) 2.0k 1.7k 10.0k
Welsh cy CCG (953) 1.8k -
Danish da DDT (565) 2.0k 10.0k
German de GSD (977) 1.9k 2.0k 10.0k
Greek el GDT (456) 2.0k 10.0k
English en GUM (1.1k) 2.0k 7.7k 10.0k
Esperanto eo 2.0k 10.0k
Spanish es AnCora (1.7k) 2.0k 3.1k 10.0k
Estonian et EDT (3.2k) 2.0k 2.0k 5.9k
Basque eu BDT (1.8k) 2.0k 10.0k
Persian fa PerDT (1.5k) 2.0k 10.0k
Finnish fi TDT (1.6k) 2.0k 2.0k 10.0k
French fr GSD (416) 2.0k 1.7k -
Western Frisian fy 1.9k 46
Irish ga IDT (454) 2.0k -
Scottish Gaelic gd ARCOSG (545) 1.1k 10.0k
Galician gl TreeGal (400) 2.0k 7.9k
Gujarati gu 1.9k 1.0k 13
Hausa ha 2.0k 10.0k
Hebrew he IAHLTwiki (393) 2.0k 10.0k
Hindi hi HDTB (1.7k) 2.0k 2.5k 10.0k
Hungarian hu Szeged (449) 2.0k 10.0k
Armenian hy BSUT (595) 7.0k 104
Indonesian id PUD (1.0k) 2.0k 1.6k
Igbo ig 1.7k 10.0k
Icelandic is IcePaHC (5.2k) 2.0k 10.0k
Italian it ISDT (482) 2.0k 5.8k
Japanese ja ✗ GSD (543) 2.0k 1.1k 533
Javanese jv CSUI (125) 1.1k
Georgian ka 2.0k 10.0k
Kazakh kk KTB (1.0k) 1.9k 1.0k 4.1k
Khmer km ✗ 1.9k 2.4k 12
Kannada kn 906 10.0k
Korean ko Kaist (2.3k) 2.0k 215

Language iso Space UD OPUS100 Ersatz Speeches

Kurdish ku 1.9k 10.0k
Kirghiz ky 1.7k 3.0k
Latin la ITTB (2.1k) 10.0k
Lithuanian lt ALKSNIS (684) 2.0k 1.0k 2.1k
Latvian lv LVTB (2.3k) 2.0k 2.0k 10.0k
Malagasy mg 2.0k 103
Macedonian mk 2.0k 10.0k
Malayalam ml 2.0k 2.1k
Mongolian mn 4.2k 5.5k
Marathi mr UFAL (47) 2.0k 10.0k
Malay ms 1.9k 2.1k
Maltese mt MUDT (518) 2.0k 10.0k
Burmese my ✗ 2.0k 5.5k
Nepalese ne 1.9k 6.7k
Dutch nl Alpino (596) 2.0k 10.0k
Norwegian no Bokmaal (1.9k) 2.0k 2.1k
Panjabi pa 2.0k 3.8k
Polish pl PDB (2.2k) 2.0k 1.0k 548
Pushto ps 1.8k 2.7k 10.0k
Portuguese pt Bosque (1.2k) 2.0k 5.5k
Romanian ro Nonstandard (1.1k) 2.0k 2.0k 10.0k
Russian ru Taiga (881) 2.0k 991 10.0k
Sinhala si 2.0k 516
Slovak sk SNK (1.1k) 2.0k 10.0k
Slovenian sl SSJ (1.3k) 2.0k 10.0k
Albanian sq TSA (60) 2.0k 10.0k
Serbian sr SET (520) 2.0k 5.6k
Swedish sv LinES (1.0k) 2.0k 2.6k
Tamil ta TTB (120) 2.0k 1.0k 3.0k
Telugu te 2.0k 303
Tajik tg 2.0k 10.0k
Thai th PUD (1.0k) 2.0k 7.8k
Turkish tr IMST (983) 2.0k 3.0k 3.8k
Ukrainian uk IU (892) 2.0k 10.0k
Urdu ur UDTB (535) 1.9k 7.8k
Uzbek uz 2.0k 3.8k
Vietnamese vi VTB (800) 1.9k 10.0k
Xhosa xh 1.9k 5.6k
Yiddish yi 1.3k 2.6k
Yoruba yo YTB (318) 9.4k 10.0k
Chinese zh ✗ GSDSimp (500) 2.0k 2.0k 1.7k
Zulu zu 1.9k 8.1k

Table 15: List of the 85 languages considered, whether they generally use whitespace to split sentences, and the
corresponding evaluation dataset size, measured in sentences. For UD, we use UDv2.13, where the treebank name
used is also shown. We use Speeches only in pairwise evaluations.
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English
(en)

we use science to create something wonderful
we use story and artistic touch to get us to a place of wonder
this guy wall-e is a great example of that
he finds beauty in the simplest things
but when he came in to lighting we knew we had a big problem
we got so geeked-out on making wall-e this convincing robot that we made his binoculars practically optically

perfect
laughter
(*) his binoculars are one of the most critical acting devices he has
he doesn’t have a face or even traditional dialogue for that matter
so the animators were heavily dependent on the binoculars to sell his acting and emotions
we started lighting and we realized the triple lenses inside his binoculars were a mess of reflections
he was starting to look glassy-eyed

German
(de)

aber ich habe auch das marfan-syndrom
das ist eine erbkrankheit
1992 nahm ich an einer genetikstudie teil
zu meinem entsetzen erfuhr ich dass wie sie hier sehen meine aorta ascendens nicht im normalbereich war die

grüne linie hier unten
alle hier im raum werden bei 3,2 und 3,6 cm liegen
ich war bereits bei 4,4
wie sie sehen können erweiterte sich meine aorta zunehmend und allmählich geriet ich an den punkt dass eine

operation nötig sein würde
die angebotene operation war ziemlich gruselig
anästhesie öffnen des brustkorbs man hängt sie an eine künstliche herzlungenmaschine lässt ihre

körpertemperatur auf etwa 18 grad fallen hält ihr herz an schneidet die aorta raus ersetzt sie mit einer klappe
und aorta aus plastik
und am wichtigsten verdonnert sie lebenslang zu antikoagulationstherapie
(*) normalerweise mit warfarin
der gedanke an diese operation war nicht gerade ansprechend

French
(fr)

j’ai montré mon intro et j’ai mis la scène de la méduse
le réalisateur est resté silencieux pendant un très long moment (|) assez long pour que je puisse me dire oh non

c’est foutu
et il a commencé à applaudir
puis le concepteur artistique
(*) et finalement toute la salle
c’est pour ces moments que je fais ce travail
le moment où tout fait sens et où l’on crée un monde auquel on peut croire
on utilise la science et la programmation pour créer ces mondes incroyables
on utilise les histoires et l’art pour leur donner vie
c’est la coexistence de l’art et la science qui transforme le monde en un lieu magique un lieu avec une âme un

lieu auquel on peut croire un lieu où les choses qu’on imagine deviennent réelles – et un monde où tout d’un
coup une fille réalise qu’elle n’est pas seulement une scientifique mais aussi une artiste

merci (*) applaudissements

Italian
(it)

cosa state leggendo
beau lotto
(*) cosa state leggendo
mancano metà delle lettere
giusto
non c’è nessuna ragione a priori perché una h debba comparire tra la w e la a
ma ne collocate una lì
perché
perché nella statistica della vostra esperienza passata sarebbe stato utile fare così
quindi lo fate di nuovo
e tuttavia non collocate una lettera dopo quella prima t
perché (|) perché non si sarebbe dimostrato utile nel passato
quindi non lo fate di nuovo

Table 16: Examples of predictions of SAT+SM taken from random positions from transcribed TED talks in four
langauges. (|) marks a missing sentence boundary (false negative), and (*) marks a wrongly inserted sentence
boundary (false positive). All others are correctly segmented, according to the ground truth segmentation.
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German-
English
(de-en)

its about the rundfunkstaatsvertrag and the licence you need to stream to more than 500 viewers
just go to the amt on your day off arrive at 9 and bring all the papers and a book
hat ihr kein editor angekreidet
guess op thought everyone pays freiwillige gesetzliche krankenversicherung und pflegeversicherung which

is around 780eurs month per person family depends (|) is the date that matters
the bescheinigungszeitraum on my ausdruck der elektronischen lohnsteuerbescheinigung für 2013 or my

first anmeldung
na anti-establishment anti-kapitalismus oder generell anti-zwang
(*) zum beispiel (|) ich bin software engineer mit data-management data-security background und er is

front-end mobile dev
noch besser in flughäfen in england kommt keine höflich message wie achten sie bitte auf ihr eigenes

gepäck... sondern direkt eine drohung for security reasons baggage left unattended will be removed and
destroyed

da bleibt irgendwie nicht mehr viel übrig

Spanish-
English
(es-en)

in the morning over there cada vez que yo decía algo él me decía algo
the best thing about her ella no complain you know (|) tiene she has a great personality
hasta que tú pushed the wrong button
linda lópez la testing
ay but she’s cool
el teniente y ella han tenido tú sabes conflicts
entonces tina es the computer person
so ella ella es la jefa de linda
sí i i have a room
no
(*) pero tal vez consigue un roommate
un roommate (|) mandó un e-mail diciendo que le había que había otra persona en la dirección en lugar de

ella
yo me dio a entender según como leí yo que era ella e edith

Turkish-
German
(tr-de)

ja bence ich probiere es einfach
ja vor allem sınav olduğu zaman muss ja muss ja schon so sein
geçen sene ich weiß noch eh sınavların olduğu günlerde (|) ja tam denk geldi weißt du (|) die woche noch

ich denke mir so tutayım mı tutmayayım mı kann gar nicht mehr
ben tutmuştum bir tanesinde
(*) und ich dachte so tamam bittin sen die
(*) hani das ist nicht gut gegangen
(*) die prüfung das war auch so
(*) ich konnte mich gar konzentrieren überhaupt nicht
hani yemek de değil
(*) weißt du einfach nur wasser
ja bir de o geçen sene da war es so heiß

Vietnamese-
English
(vi-en)

bởi vậy lux đường có overconfident (|) ai cũng cần phải improve (|) nên lux phải phải phải đưa cho chị ti với
anh alex check nha (|) thì design đến đâu rồi lux (|) cái graphic design của lux

(*) lux design được đến đâu rồi come up with idea để ghi ra
(*) chị ti sẽ cùng help lux to write down
(*) hoặc là ở woden qua đây ăn dinner với chị ti
get it out of the way là done với một cái đó rồi là xong
thái writing cũng đâu có good đâu
deadline như vậy được chưa
vậy là tối mai lux biết spend time write it tomorrow (|) được rồi ta design như vậy nè
mọi thứ là lux phải plan ahead như vậy chứ

Table 17: Examples of predictions of SAT+SM taken from random positions from code-switching text in four
language pairs. (|) marks a missing sentence boundary (false negative), and (*) marks a wrongly inserted sentence
boundary (false positive). All others are correctly segmented according to the ground truth segmentation. There are
many ambiguous sentence boundaries in these corpora.
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Original (non-corrupted) song Corrupted song

Have yourself a merry little Christmas
Let your hearts be light
From now on
Our troubles will be out of sight

Have yourself a merry little Christmas
Make the Yule-tide gay
From now on
Our troubles will be miles away.

Here we are as in olden days
Happy golden days of yore
Faithful friends who are dear to us
Will be near to us once more

Through the years We all will be together
If the Fates allow
Until then we’ll have to muttle through somehow
So have yourself a merry little Christmas now

Here we are as in olden days
Happy golden days of yore
Faithful friends who are dear to us
Will be near to us once more

Through the years We all will be together
If the Fates allow
Until then we’ll have to muttle through somehow
So have yourself a merry little Christmas now

Have yourself a merry little Christmas now
Merry Christmas

i’d never leave the perfect girl
or rip apart the perfect world
just up and leave in the middle of a song

i’d never pack my things in a silverado
drive on out to colorado
just to find some freedom i thought was gone
(|) ooooh
there are things i’d never do

but here i am in this hotel room
thinking bout you and what i ’ve done
oh what have i done
head in my hands
thinking about a lot of things
i wish that i could change
it’s sad but it’s true
i ’ve done a lot of things i’d never do

i’d never ever work so much
that i’d lose sight i’d lose touch
of everything a man could ever want

i’d never lose my cool and say
those words that cut just like a blade
and leave you dying crying all alone

i’d never leave the perfect girl
or rip apart the perfect world
just up and leave in the middle of a song

Table 18: Examples of predictions of SAT+LORA taken from songs categorized as Country (High Repetitiveness).
(|) marks a missing verse boundary (false negative), and (*) marks a wrongly inserted verse boundary (false positive).
All others are correctly segmented according to the ground truth segmentation. While the task was only to segment
songs into verses and no line segmentation was provided, we format songs using both lines and verses for clarity.

Original (non-corrupted) song Corrupted song

Hope, a new beginning
Time, time to start living
Just like just before we died

There’s no going back to the place we started from

Hurt, falling through fingers
Trust, trust in the feeling
There’s something left inside

There’s no going back to the place we started from
All secrets known

Calm, old wounds are healing
Strong, truth is worth saving
I want to feel alive

There’s no going back to the place we started from
All secrets known

lock me up inside my room
leave me without toys and food
keep that monster in my bed
just remember i’m not dead

you forget my memory lives way beyond these walls
you forget my indecision’s taking all control

once in a far land i grabbed you
and you woke me up to my origin

people have to understand my innocence has gone
(|) go beyond my urge
or make an effort to
living on my own plagued by images

once in a far land i grabbed you
and you woke me up to my origin

Table 19: Examples of predictions of SAT+LORA from songs categorized as Alternative Metal (Mid Repetitiveness).
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Original (non-corrupted) song Corrupted song

Let me chirp these fools

Juice got weed Juice got pills
Juice got the work on the corner cutting deals
Juice know you haters out there snitching ain’t for real
So Juice got some gang niggas down for the kill
Juice know the feds got surveillance on the field
We never had a job but we sitting on a mill
We ball out in the club wit our niggas staying trill
We never wrote a check just them big face bills
A player drinking Makers Marka, cranberry vodka
Wearing a mink coat thats furry as Chewbacca
I saw ya main girl and a player had to stop her
Her name wasn’t Silkk but her face was The Shocker
The feds taking pictures of us balling but I got ’em
A 7 footer hole for his body we gonna drop ’em
We always on the grind we be watching when they watching
And when they turn they back its the clucka-clucka-rock ’em yeah!

If you boys got beef we can (roll wit it)
In the club or the street we can (go wit it)
It don’t make me none (blow for blow wit it)
Crack his head wit a gun (I’ma sho split it)

We got them tones in the club and them bulletproof vests
Them three fifty seven titanium Smith-N-Wess
And plus we deep as hell and prepared to bust
You gonna have hell if you fuck wit us and thats whats up

(*) The whole club we maintain
These hydrashock bullets mushroom in ya brain
We in bed with the med we give ’em something to do
Cause clown ass niggas love to act a fool

My hood is real nigga my hood ain’t fake
My hood is home nigga everything straight
My hood will rob you with mask on they face
My hood will do it to put food on they plate
My hood ain’t tame dog they wanna jump fool
My hood they hang together they all jump you
And if you don’t believe me then come to my hood
And you will see that it ain’t all good

zaytoven on the track
(|) zay-tiggy
gucci
gucci

so watch entertainment
lets go

they call me chef-boy-r.g.
but hold that thought
its a kodak moment
but hold that thought
hurricane wrist game
turn that junk off
hot as piggly wiggly
cant kermit the frog dog

early in the mornin
i aint even yawnin
cookin up a cake
like i’m doin a performance
when it come to flossin
i aint even talkin
diamonds on my joint
got my chevy moonwalkin
10 bricks on my bart simpson just look
my watch 35 pounds of kush
my ring 36 oz’s my nig
my bracelet 500 lbs of mid
a gucci wrapped tour bus
yall hoes follow us
party pack pills man
hoes gonna swallow us
naturally a loner
but love my kid
mix the soda with the cola
i can buy me a friend
new swag somethin like
trap house times 10
ery nigga round me
bust heads, ya-dig
iced out grill
i can’t buy that bullshit
i’m wit some street shit,
like a reverend in the pulpit

they call me chef-boy-r.g.
but hold that thought
its a kodak moment
but hold that thought
hurricane wrist game
turn that junk off
hot as piggly wiggly
cant kermit the frog dog
...

Table 20: Examples of predictions of SAT+LORA from songs categorized as Southern Hip Hop (Low Repetitiveness).
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Model fr es it en de Macro
Avg.

Judg. Laws Judg. Laws Judg. Laws Judg. Judg. Laws

SPACYM 82.7 61.2 67.7 85.2 73.6 53.8 81.4 65.8 67.9 71.0
ERSATZ 81.5 51.7 63.6 81.9 - - 79.5 59.8 68.5 69.5

LLAMA 38B 85.5 52.7 70.4 66.5 81.1 77.2 89.2 78.3 83.4 76.0
COMMAND R 62.5 51.2 55.5 52.8 56.2 70.3 69.0 55.7 64.3 59.7

SAT 82.7 86.8 68.8 73.2 85.1 71.2 82.6 67.8 86.4 78.3
SAT+SM 85.1 95.8 80.1 89.3 88.3 80.6 93.1 81.3 92.7 87.4
NLTK 75.6 51.5 65.2 87.7 72.9 45.3 76.3 65.1 73.3 68.1
PYSBD 74.2 50.5 60.8 79.7 74.1 55.0 75.0 67.6 70.4 67.5
SPACYDP 71.6 74.3 64.9 87.3 74.0 54.4 84.5 68.2 65.2 71.6
WTP 87.8 63.0 75.6 84.6 84.3 80.0 88.8 79.7 85.8 81.1
WTPT 87.0 80.7 76.3 87.1 85.0 79.5 88.7 80.4 85.9 83.4
WTPPUNCT 96.8 98.4 88.7 94.6 94.0 96.9 96.3 87.3 93.7 94.1

MLSBD-T Mono
Specific

96.4 97.7 88.7 93.8 93.7 98.0 95.3 86.9 93.5 93.8

MLSBD-T Mono
Both

96.5 98.5 88.2 93.7 87.1 84.4 95.3 87.6 92.7 91.6

MLSBD-T Multi
Specific

96.4 98.9 89.0 94.8 94.5 98.1 95.7 87.5 93.6 94.3

MLSBD-T Multi
Both

96.6 98.9 88.7 94.8 94.6 98.2 95.6 78.6 93.2 93.2

SAT+LORA@10 95.1 96.6 86.5 93.5 94.0 85.6 96.3 87.7 97.3 92.5
SAT+LORA@100 96.7 97.0 89.3 94.0 95.4 87.1 97.0 88.8 97.3 93.6
SAT+LORA 96.8 98.5 89.1 94.4 95.5 98.3 97.3 88.9 97.1 95.1

Table 21: Sentence segmentation F1 score for legal data (MultiLegalSBD). We take the macro F1 scores over
documents within a given category. @N correspond to using a maximum of N documents per category for adaptation,
respectively. Transformer-based MLSBD-T baselines are taken from Brugger et al. (2023). For these domain-
specific baselines, mono and multi correspond to models trained on documents from only one or all languages,
respectively. Both corresponds to models trained on both laws and judgments, whereas specific corresponds to
models trained on a given category (laws/judgments). Best per-category results are in bold.
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Model fr es it en de Macro
Avg.

Judg. Laws Judg. Laws Judg. Laws Judg. Judg. Laws

SPACYM 0.0 0.0 1.5 0.0 0.4 0.0 0.2 2.2 0.0 0.5
ERSATZ 0.7 0.1 4.7 0.0 - - 0.6 4.1 - 1.7

LLAMA 38B 60.0 40.7 50.5 55.9 54.2 35.6 69.2 59.2 74.2 55.5
COMMAND R 54.3 57.7 42.8 44.5 46.4 42.9 56.0 45.4 64.1 50.5

SAT 63.7 80.6 54.9 63.3 56.0 55.9 49.9 57.6 75.0 61.9
SAT+SM 68.8 89.5 65.3 83.3 62.3 71.9 74.5 72.0 80.9 74.3
NLTK 1.4 0.0 3.8 0.0 1.3 1.6 0.2 4.9 0.0 1.5
PYSBD 21.7 0.2 3.8 0.0 20.0 0.2 1.3 0.4 0.0 5.3
SPACYDP 7.9 4.4 4.6 0.0 5.3 2.3 2.4 13.1 8.8 5.4
WTP 32.2 19.5 38.0 41.1 36.9 28.8 28.1 25.0 19.0 29.8
WTPT 48.9 64.7 51.8 71.5 46.5 43.8 54.5 52.4 62.0 55.1
WTPPUNCT 65.0 83.4 67.2 83.1 58.3 66.9 73.5 73.0 84.1 72.7

MLSBD-T Mono
Specific

9.6 45.1 7.9 13.2 6.9 47.1 3.6 12.1 0.3 16.2

MLSBD-T Mono
Both

9.0 43.0 8.1 15.6 6.7 39.6 3.6 7.7 0.6 14.9

MLSBD-T Multi
Specific

8.8 44.4 7.3 34.4 6.9 47.2 2.5 9.2 0.7 17.9

MLSBD-T Multi
Both

8.9 43.5 5.6 24.6 6.9 47.4 1.3 2.4 0.4 15.7

SAT+LORA@10 70.8 82.9 67.8 79.9 63.5 62.6 80.6 78.6 93.5 75.6
SAT+LORA@100 76.9 86.6 75.9 84.1 69.3 75.3 84.2 84.1 93.5 81.1
SAT+LORA 77.5 90.2 76.1 85.5 71.2 87.5 84.2 83.8 93.5 83.3

Table 22: Sentence segmentation F1 score for corrupted legal data (MultiLegalSBD), where we remove all casing
and punctuation tokens. We take the macro F1 scores over documents within a given category.

Repetitiveness
High Low

Model Country Punk
Rock

Pop
Punk

Southern
Hip Hop

Gangsta
Rap

SSMstring
† - - - - -

LLAMA 38B 47.0 50.2 49.5 34.7 32.8
COMMAND R 35.3 39.7 39.2 27.5 29.9
WTPPUNCT@100 56.5 56.1 54.9 43.3 42.4
WTPPUNCT@1000 58.9 58.8 57.5 45.9 43.9
WTPPUNCT 58.9 58.8 57.5 45.9 43.9

SAT+LORA@100 66.7 67.5 69.2 53.0 50.3
SAT+LORA@1000 76.7 76.0 76.8 64.5 60.9
SAT+LORA 79.3 76.8 77.6 64.2 60.3

Table 23: Complete verse segmentation F1 scores for songs categorized as low and high repetitiveness. Categoriza-
tion of songs into genres and repetitiveness taken from Fell et al. (2018). We report the macro average over songs.
†Values for SSMstring taken from Fell et al. (2018), with lyrics already pre-segmented into lines.@N corresponds to
using a maximum of N and 1000 songs per genre for adaptation, respectively.

11934



Mid Repetitiveness

Model Rock Pop RnB Soul Alt.
Rock

Alt.
Metal

Indie
Rock

Pop
Rock

Hard
Rock

SSMstring
† 64.8 66.6 65.6 63.0 67.9 68.5 65.6 65.8 67.7

LLAMA 38B 48.2 47.0 45.7 48.7 49.3 47.6 48.4 47.1 48.7
COMMAND R 37.8 36.3 33.3 36.5 40.1 39.1 40.2 37.6 38.4
WTPPUNCT@100 57.5 55.9 51.4 52.5 59.9 58.6 56.3 57.5 57.0
WTPPUNCT@1000 60.5 57.7 53.1 55.0 63.0 60.5 59.8 58.1 59.4
WTPPUNCT 60.7 58.2 53.5 55.0 63.3 60.5 60.1 58.3 59.5

SAT+LORA@100 65.4 63.8 61.5 59.8 64.9 68.6 63.9 63.8 64.1
SAT+LORA@1000 74.7 72.7 71.2 71.1 75.3 77.7 72.6 74.5 75.7
SAT+LORA 78.1 75.6 73.4 71.7 77.4 77.7 73.5 75.6 76.6

Table 24: Complete verse segmentation F1 scores for songs categorized as mid repetitiveness.

Repetitiveness
High Low

Model Country Punk
Rock

Pop
Punk

Southern
Hip Hop

Gangsta
Rap

SSMstring
† 70.2 70.9 72.7 47.0 47.7

LLAMA 38B 54.6 53.5 57.1 36.6 36.2
COMMAND R 38.8 42.6 41.4 35.0 26.3
WTPPUNCT@100 48.9 52.5 50.0 35.5 36.4
WTPPUNCT@1000 51.7 55.6 53.1 36.5 39.5
WTPPUNCT 51.9 55.6 53.1 36.5 39.5

SAT+LORA@100 66.7 67.2 67.7 44.9 48.4
SAT+LORA@1000 72.7 71.8 74.5 54.7 55.8
SAT+LORA 75.2 71.4 74.7 54.8 55.8

Table 25: Complete verse segmentation F1 scores for songs categorized as low and high repetitiveness, where we
remove all casing and punctuation tokens. We report the macro average over songs.

Mid Repetitiveness

Model Rock Pop RnB Soul Alt.
Rock

Alt.
Metal

Indie
Rock

Pop
Rock

Hard
Rock

SSMstring
† - - - - - - - - -

LLAMA 38B 53.8 51.7 47.4 51.9 54.1 52.3 54.0 52.8 52.2
COMMAND R 41.1 37.5 34.0 40.0 41.4 40.7 42.6 39.5 40.6
WTPPUNCT@100 51.5 47.0 41.5 47.3 52.6 52.7 52.4 48.8 50.4
WTPPUNCT@1000 52.8 48.9 43.1 48.6 54.9 54.2 55.1 51.2 52.0
WTPPUNCT 53.1 49.4 43.2 48.6 55.0 54.2 54.8 51.0 52.6

SAT+LORA@100 64.5 62.2 58.8 60.8 67.4 66.9 62.7 63.5 63.6
SAT+LORA@1000 70.4 68.5 65.2 65.6 71.4 73.1 69.9 68.3 71.4
SAT+LORA 73.2 71.5 67.1 65.1 73.3 73.5 69.5 70.4 72.7

Table 26: Complete verse segmentation F1 scores for songs categorized as mid repetitiveness, where we remove all
casing and punctuation tokens. We report the macro average over songs.
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Model af am ar az be bg bn ca ceb cs cy da de el en

UD

SPACYM 98.3 - 79.1 - 80.0 93.8 47.9 98.8 98.5 89.6 98.9 94.9 87.7 93.8 91.7
ERSATZ - - 79.7 - - - - - - 89.3 - - 92.4 - 89.1
LLAMA 38B 100.0 - 80.1 - 88.1 97.3 96.9 99.4 99.7 93.0 98.7 95.2 96.7 94.7 94.8
COMMAND R 86.1 - 75.6 - 68.1 76.9 59.2 76.6 89.9 68.9 80.8 73.8 85.3 66.7 77.1
SAT 99.1 - 82.9 - 89.0 97.9 96.2 98.9 99.7 91.5 99.1 95.5 96.4 97.5 93.9
SAT+SM 100.0 - 84.5 - 93.5 99.3 100.0 99.7 99.7 94.3 99.4 98.5 97.8 97.9 96.7

NLTK - - - - - - - - - 89.1 - 94.4 92.6 92.7 90.8
PYSBD - - 28.1 - - 74.9 - - - - - 72.6 80.0 91.0 75.3
SPACYDP - - - - - - - 99.8 - - - 94.0 96.7 94.0 91.3
WTP 98.3 - 80.5 - 88.9 98.2 93.5 98.3 99.7 92.3 99.2 95.1 95.6 97.3 94.5
WTPT 99.0 - 86.4 - 88.8 98.1 - 98.4 - 92.0 99.2 94.3 95.8 97.7 94.5
WTPPUNCT 99.9 - 87.4 - 91.9 99.6 - 99.6 - 95.4 99.5 98.9 96.5 97.8 96.9
SAT+LORA 100.0 - 86.6 - 91.2 99.4 - 99.9 - 95.2 99.6 98.7 96.8 98.9 96.8

OPUS100

SPACYM 41.9 6.3 57.9 72.3 33.9 93.4 37.2 88.0 - 87.3 25.8 90.2 72.9 89.2 88.8
ERSATZ - - 59.2 - - - - - - 86.5 - - 73.1 - 87.6
LLAMA 38B 65.4 36.2 62.2 76.8 54.5 94.6 80.0 90.9 - 91.3 46.3 93.2 83.8 94.3 92.8
COMMAND R 55.8 6.6 44.5 60.5 36.1 57.9 4.8 66.0 - 69.0 39.8 75.4 76.2 65.1 89.5
SAT 78.4 58.0 67.0 75.0 70.4 93.5 80.5 87.7 - 89.2 72.0 90.9 78.2 92.0 90.4
SAT+SM 86.2 70.8 65.2 85.3 87.8 96.2 86.1 93.0 - 94.3 79.6 94.0 86.9 95.9 94.6

NLTK - - - - - - - - - 86.7 - 89.9 73.3 84.8 88.2
PYSBD - 5.9 38.0 - - 72.9 - - - - - 70.2 66.5 62.7 59.6
SPACYDP - - - - - - - 87.3 - - - 90.2 74.0 91.1 89.0
WTP 74.6 58.2 64.5 74.9 71.7 93.2 77.9 87.7 - 87.5 68.7 88.2 76.7 90.9 90.6
WTPT 76.4 63.7 64.6 74.6 72.5 92.8 82.1 88.6 - 90.0 74.2 90.1 84.6 91.9 89.4
WTPPUNCT 87.8 70.5 76.1 83.0 89.1 96.2 86.5 94.0 - 94.9 81.0 94.5 89.4 95.9 94.7
SAT+LORA 88.5 75.9 79.1 85.0 89.4 96.4 88.6 94.6 - 95.0 83.0 95.2 90.1 96.1 94.8

Ersatz

SPACYM - - 91.1 - - - - - - 96.4 - - 93.5 - 94.0
ERSATZ - - 92.8 - - - - - - 96.7 - - 95.4 - 97.5
LLAMA 38B - - 92.4 - - - - - - 95.9 - - 97.3 - 98.2
COMMAND R - - 55.8 - - - - - - 66.4 - - 75.9 - 87.2
SAT - - 89.7 - - - - - - 94.3 - - 96.6 - 96.7
SAT+SM - - 92.3 - - - - - - 98.5 - - 97.2 - 98.3

NLTK - - - - - - - - - 96.7 - - 95.3 - 97.7
PYSBD - - 46.2 - - - - - - - - - 95.3 - 73.9
SPACYDP - - - - - - - - - - - - 96.3 - 98.5
WTP - - 87.0 - - - - - - 93.6 - - 95.3 - 96.5
WTPT - - 88.7 - - - - - - 93.9 - - 95.6 - 96.7
WTPPUNCT - - 92.7 - - - - - - 99.0 - - 99.3 - 98.6
SAT+LORA - - 93.1 - - - - - - 98.5 - - 99.3 - 98.7

Table 27: Sentence segmentation test F1 scores on languages af-en. Results are shown using 3-layer variations of
all models. Numerically best results are in bold, statistically indistinguishable ones from this best are underlined.
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Model eo es et eu fa fi fr fy ga gd gl gu ha he hi

UD

SPACYM - 98.6 93.6 95.7 99.8 92.7 96.1 - 96.3 62.9 92.1 - - 93.9 -
ERSATZ - 97.5 92.9 - - 92.8 97.3 - - - - - - - 99.5
LLAMA 38B - 98.5 94.1 97.3 99.7 95.9 99.1 - 94.5 67.6 94.6 - - 93.4 99.8
COMMAND R - 81.8 74.9 79.4 95.5 75.3 92.3 - 73.5 54.2 73.7 - - 77.2 91.8
SAT - 97.0 92.8 97.0 98.5 93.8 97.5 - 87.3 68.1 97.4 - - 94.2 96.2
SAT+SM - 99.4 98.2 100.0 99.9 97.2 98.3 - 95.5 84.3 98.9 - - 95.5 99.9

NLTK - 98.5 93.6 - - 92.6 97.0 - - - - - - - -
PYSBD - 46.2 - - 98.8 - 62.1 - - - - - - - 99.8
SPACYDP - 99.1 - - - 94.9 91.6 - - - - - - - -
WTP - 96.5 92.6 97.1 96.6 92.1 96.4 - 84.3 71.2 97.5 - - 95.1 96.1
WTPT - 96.9 92.5 97.3 97.8 92.7 96.6 - 90.4 70.7 98.7 - - 96.1 96.8
WTPPUNCT - 99.7 98.0 99.9 100.0 98.1 98.3 - 98.2 79.6 98.6 - - 97.1 99.9
SAT+LORA - 99.6 97.7 100.0 100.0 97.7 98.9 - 98.8 82.2 98.7 - - 96.4 99.9

OPUS100

SPACYM 88.4 90.4 87.0 80.7 54.5 92.9 85.1 21.7 61.0 36.4 88.2 5.2 88.5 91.8 52.8
ERSATZ - 90.0 87.4 - - 92.7 86.1 - - - - 21.2 - - 58.0
LLAMA 38B 91.6 93.6 89.0 84.5 60.4 93.9 91.4 42.4 71.3 62.8 90.8 33.0 88.1 91.6 59.6
COMMAND R 84.6 80.1 67.2 57.8 42.9 68.4 80.8 30.6 55.9 50.5 71.6 16.7 65.8 62.7 39.3
SAT 90.3 91.1 84.6 82.2 56.8 91.3 87.3 64.9 82.3 81.6 87.9 71.5 83.8 89.4 62.9
SAT+SM 95.2 95.3 93.0 90.0 60.1 95.3 92.6 91.0 80.8 82.5 93.1 83.4 91.4 92.2 72.8

NLTK - 89.8 87.6 - - 93.1 85.8 - - - - - - - -
PYSBD - 67.6 - - 41.3 - 80.9 - - - - - - - 23.0
SPACYDP - 88.0 - - - 92.1 84.1 - - - - - - - -
WTP 90.9 89.9 82.5 84.4 59.6 90.8 86.8 44.4 77.8 83.5 88.5 69.2 82.8 90.2 65.1
WTPT 90.5 91.4 87.7 86.0 59.3 92.5 - 61.0 77.3 83.7 88.9 69.6 88.9 89.4 64.3
WTPPUNCT 95.4 95.0 94.6 91.6 72.7 95.5 - 88.1 87.5 92.7 93.9 76.5 91.5 93.8 76.3
SAT+LORA 95.8 95.8 94.7 92.8 74.1 96.3 - 88.8 90.6 94.5 94.6 80.5 91.0 94.1 81.5

Ersatz

SPACYM - 97.2 97.0 - - 95.0 96.4 - - - - 3.8 - - 17.9
ERSATZ - 96.6 98.0 - - 96.0 96.3 - - - - 94.3 - - 96.8
LLAMA 38B - 98.3 97.0 - - 96.7 97.9 - - - - 93.1 - - 97.3
COMMAND R - 76.8 77.2 - - 78.8 84.6 - - - - 74.8 - - 84.9
SAT - 98.4 95.9 - - 97.6 97.3 - - - - 92.0 - - 95.5
SAT+SM - 99.5 98.9 - - 98.4 98.5 - - - - 70.7 - - 98.1

NLTK - 96.4 97.5 - - 95.9 96.0 - - - - - - - -
PYSBD - 84.2 - - - - 96.0 - - - - - - - 87.5
SPACYDP - - - - - - 91.0 - - - - - - - -
WTP - 98.7 96.0 - - 97.4 97.2 - - - - 89.7 - - 93.9
WTPT - - 95.7 - - 97.2 96.6 - - - - 88.9 - - 94.6
WTPPUNCT - - 98.0 - - 99.4 98.4 - - - - 96.7 - - 96.3
SAT+LORA - - 99.0 - - 98.6 99.1 - - - - 95.4 - - 97.3

Table 28: Sentence segmentation test F1 scores on languages eo-hi.
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Model hu hy id ig is it ja jv ka kk km kn ko ku ky

UD

SPACYM 98.3 11.3 97.8 - 95.1 92.3 0.0 97.9 - 96.1 - - 99.8 - -
ERSATZ - - - - - - 93.4 - - 95.6 - - - - -
LLAMA 38B 98.1 92.0 99.3 - 94.1 98.1 97.9 99.1 - 98.5 - - 99.9 - -
COMMAND R 73.2 50.3 91.7 - 74.6 88.8 90.7 83.3 - 86.1 - - 79.9 - -
SAT 97.0 97.6 98.5 - 73.4 96.3 96.1 98.8 - 95.8 - - 99.6 - -
SAT+SM 99.5 98.4 99.6 - 95.7 98.7 97.1 99.3 - 99.3 - - 100.0 - -

NLTK - - - - - 95.2 - - - - - - - - -
PYSBD - 92.8 - - - 74.9 97.9 - - 95.5 - - - - -
SPACYDP - - - - - 99.5 97.8 - - - - - 99.9 - -
WTP 96.0 96.0 98.0 - 85.8 93.7 93.4 97.8 - 97.4 - - 99.2 - -
WTPT 96.3 96.2 - - 88.9 93.7 95.7 - - 82.8 - - 99.4 - -
WTPPUNCT 99.5 98.5 - - 96.6 99.3 98.1 - - 84.7 - - 99.9 - -
SAT+LORA 99.5 98.3 - - 96.8 99.7 98.0 - - 96.9 - - 99.9 - -

OPUS100

SPACYM 93.0 24.2 89.6 29.8 95.0 85.8 0.1 - 38.3 42.1 0.0 9.8 50.9 26.8 21.7
ERSATZ - - - - - - 28.8 - - 37.9 0.0 - - - -
LLAMA 38B 94.2 73.1 92.3 39.3 95.1 90.7 9.0 - 89.2 56.4 9.9 26.7 70.3 41.9 58.3
COMMAND R 62.6 46.7 71.3 28.0 77.7 78.6 6.0 - 25.6 34.5 4.3 5.5 38.9 29.8 26.5
SAT 92.3 85.3 86.6 81.7 93.7 87.0 83.1 - 75.7 80.3 70.4 70.2 72.4 77.2 84.1
SAT+SM 95.8 90.6 93.7 92.1 96.5 90.9 78.0 - 93.6 92.2 86.6 87.9 78.9 91.1 91.8

NLTK - - - - - 87.5 - - - - - - - - -
PYSBD - 58.4 - - - 70.2 43.4 - - 35.7 - - - - -
SPACYDP - - - - - 85.3 42.6 - - - - - 46.6 - -
WTP 91.6 85.1 88.9 78.6 93.9 84.6 44.6 - 91.3 73.4 71.8 64.5 56.7 78.1 84.5
WTPT 92.1 - 89.5 82.1 94.4 88.4 79.5 - 91.1 74.9 71.1 60.4 70.4 66.4 84.4
WTPPUNCT 96.2 - 93.9 90.2 96.6 93.4 86.7 - 92.8 92.1 79.0 78.0 81.6 85.1 90.3
SAT+LORA 96.3 - 94.1 92.3 96.6 94.3 90.5 - 93.3 92.1 87.8 83.9 81.8 90.9 92.0

Ersatz

SPACYM - - - - - - 0.0 - - 96.9 0.0 - - - -
ERSATZ - - - - - - 85.7 - - 99.6 31.3 - - - -
LLAMA 38B - - - - - - 87.1 - - 99.0 85.6 - - - -
COMMAND R - - - - - - 59.7 - - 86.7 6.7 - - - -
SAT - - - - - - 86.5 - - 97.1 89.4 - - - -
SAT+SM - - - - - - 89.1 - - 99.7 83.9 - - - -

NLTK - - - - - - - - - - - - - - -
PYSBD - - - - - - 87.0 - - 64.7 - - - - -
SPACYDP - - - - - - 91.0 - - - - - - - -
WTP - - - - - - 80.2 - - 96.3 70.2 - - - -
WTPT - - - - - - 81.5 - - 95.7 91.4 - - - -
WTPPUNCT - - - - - - 96.7 - - 99.7 92.0 - - - -
SAT+LORA - - - - - - 94.6 - - 99.8 92.0 - - - -

Table 29: Sentence segmentation test F1 scores on languages hu-ky.
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Model la lt lv mg mk ml mn mr ms mt my ne nl no pa

UD

SPACYM 0.0 93.8 98.5 - - - - 92.5 - 85.7 - - 92.8 96.9 -
ERSATZ - 92.2 96.9 - - - - - - - - - - - -
LLAMA 38B 90.0 94.3 97.0 - - - - 90.0 - 94.4 - - 96.0 96.5 -
COMMAND R 65.1 65.7 69.5 - - - - 71.6 - 70.1 - - 66.3 69.5 -
SAT 67.8 97.1 96.4 - - - - 83.5 - 86.7 - - 92.6 98.6 -
SAT+SM 96.6 97.9 99.2 - - - - 100.0 - 93.0 - - 95.7 99.0 -

NLTK - - - - - - - - - - - - 95.7 95.6 -
PYSBD - - - - - - - 60.3 - - - - 93.6 - -
SPACYDP - 92.0 - - - - - - - - - - 93.1 - -
WTP 89.2 98.2 96.5 - - - - 89.4 - 89.8 - - 94.1 98.2 -
WTPT 89.3 97.9 96.4 - - - - 92.0 - 87.3 - - 92.9 98.4 -
WTPPUNCT 97.3 99.6 99.0 - - - - 98.8 - 93.6 - - 97.0 99.4 -
SAT+LORA 97.5 98.2 98.9 - - - - 96.5 - 90.9 - - 96.0 99.1 -

OPUS100

SPACYM - 76.5 76.9 83.1 93.2 38.7 32.8 86.5 87.6 55.6 0.0 6.4 93.0 95.0 4.9
ERSATZ - 77.0 77.6 - - - - - - - - - - - -
LLAMA 38B - 82.8 83.1 85.7 94.1 80.9 49.3 88.1 91.0 78.8 16.3 39.7 93.7 95.3 26.7
COMMAND R - 70.3 70.4 64.0 48.2 0.7 26.6 65.2 67.9 65.1 17.1 23.3 74.8 71.5 14.4
SAT - 82.6 82.6 88.5 93.0 77.6 73.5 89.9 85.8 62.2 74.1 69.8 92.1 94.8 69.5
SAT+SM - 90.0 89.7 91.6 95.4 85.9 90.1 93.3 94.1 85.1 89.4 82.0 94.8 95.8 81.0

NLTK - - - - - 80.2 - - - - - - 93.4 94.5 -
PYSBD - - - - - - - 86.2 - - 27.4 - 18.2 - -
SPACYDP - 78.9 - - 82.2 - - - - - - - 92.4 - -
WTP - 76.5 78.0 89.1 92.3 80.0 80.7 88.5 87.0 60.6 68.9 68.9 91.5 94.2 55.6
WTPT - 84.1 85.6 91.5 92.4 81.7 - 88.6 87.9 80.4 74.3 68.7 - 94.3 62.2
WTPPUNCT - 90.1 91.5 95.3 95.6 86.5 - 93.5 94.0 88.4 82.2 74.3 - 96.1 77.3
SAT+LORA - 92.6 92.8 95.4 95.5 86.5 - 94.9 93.8 89.2 86.7 77.3 - 96.3 79.6

Ersatz

SPACYM - 93.3 98.6 - - - - - - - - - - - -
ERSATZ - 95.0 98.7 - - - - - - - - - - - -
LLAMA 38B - 94.9 98.8 - - - - - - - - - - - -
COMMAND R - 78.3 82.7 - - - - - - - - - - - -
SAT - 96.3 97.5 - - - - - - - - - - - -
SAT+SM - 98.3 99.3 - - - - - - - - - - - -

NLTK - - - - - - - - - - - - - - -
PYSBD - - - - - - - - - - - - - - -
SPACYDP - 74.9 - - - - - - - - - - - - -
WTP - 96.5 96.9 - - - - - - - - - - - -
WTPT - 96.4 97.2 - - - - - - - - - - - -
WTPPUNCT - 99.2 99.3 - - - - - - - - - - - -
SAT+LORA - 98.4 99.4 - - - - - - - - - - - -

Table 30: Sentence segmentation test F1 scores on languages la-pa.
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Model pl ps pt ro ru si sk sl sq sr sv ta te tg th

UD

SPACYM
ERSATZ 97.4 - - 98.3 77.7 - - - - - - 90.5 - - -
LLAMA 38B 99.3 - 93.5 93.5 88.5 - 90.6 98.6 100.0 96.5 95.5 96.7 - - 81.4
COMMAND R 91.4 - 72.2 59.6 61.2 - 73.5 75.4 92.0 82.0 72.8 0.0 - - 12.4
SAT 95.3 - 96.6 73.2 82.7 - 94.8 96.8 100.0 98.0 95.0 99.5 - - 72.7
SAT+SM 99.2 - 97.2 99.0 92.4 - 96.5 99.2 99.1 99.4 96.2 99.5 - - 71.2

NLTK 97.2 - 91.9 - 78.3 - - - - - 93.9 - - - -
PYSBD 84.8 - - - 67.9 - 86.2 - - - - - - - -
SPACYDP 98.5 - 98.1 95.3 80.3 - - - - - 87.0 - - - -
WTP 94.4 - 95.9 80.9 84.9 - 96.0 95.7 100.0 97.9 94.7 96.9 - - 67.3
WTPT 95.5 - 95.6 93.5 86.8 - 95.8 96.2 - 98.2 95.0 97.7 - - -
WTPPUNCT 99.3 - 98.4 99.4 93.1 - 98.1 99.1 - 99.8 96.5 100.0 - - -
SAT+LORA 98.9 - 97.8 99.5 92.7 - 96.9 99.2 - 99.7 96.5 99.5 - - -

OPUS100

SPACYM 92.0 2.4 91.6 91.3 75.2 75.4 91.6 92.6 92.6 94.6 93.1 36.6 64.1 69.5 21.7
ERSATZ 92.1 1.8 - 92.8 68.6 - - - - - - 45.3 - - -
LLAMA 38B 93.8 26.1 94.1 94.9 89.3 76.9 94.3 93.8 92.3 94.6 94.3 45.3 65.9 76.1 66.0
COMMAND R 74.4 7.2 80.8 70.4 88.1 8.6 74.8 63.8 59.3 67.2 76.9 1.9 36.1 54.9 10.6
SAT 92.4 68.6 91.7 91.1 82.8 79.2 91.4 91.6 89.7 94.0 91.3 60.5 76.5 79.6 68.0
SAT+SM 95.6 85.6 93.8 95.9 84.1 85.4 95.9 95.3 95.7 95.9 95.0 75.0 86.8 92.3 72.9

NLTK 92.5 - 92.2 - 75.8 - - - - - 92.5 - - - -
PYSBD 17.5 - - - 64.9 - 29.5 - - - - - - - -
SPACYDP 92.9 - 90.8 91.9 75.4 - - - - - 90.2 - - - -
WTP 91.8 63.3 89.9 88.5 80.6 79.5 89.7 91.3 88.7 93.8 90.4 64.3 77.4 80.1 66.6
WTPT 92.2 70.4 91.4 89.0 - 80.1 92.4 92.7 89.9 94.3 92.5 65.7 77.5 82.7 69.7
WTPPUNCT 95.6 76.1 95.3 96.7 - 85.4 95.9 95.0 95.5 96.4 95.8 75.4 83.6 91.0 71.3
SAT+LORA 96.0 77.6 95.4 97.3 - 85.9 96.5 95.3 95.5 96.1 95.9 80.8 85.6 92.1 73.7

Ersatz

SPACYM 93.3 94.3 - 94.8 93.2 - - - - - - 67.9 - - -
ERSATZ 94.9 93.7 - 96.0 94.2 - - - - - - 95.2 - - -
LLAMA 38B 95.4 96.3 - 97.7 97.0 - - - - - - 97.0 - - -
COMMAND R 70.1 70.7 - 71.3 80.2 - - - - - - 1.3 - - -
SAT 93.5 92.4 - 97.5 97.2 - - - - - - 97.6 - - -
SAT+SM 98.3 82.7 - 99.1 98.8 - - - - - - 98.5 - - -

NLTK 94.0 - - - 93.7 - - - - - - - - - -
PYSBD 45.7 - - - 55.2 - - - - - - - - - -
SPACYDP 94.5 - - 94.4 94.1 - - - - - - - - - -
WTP 94.6 83.7 - 97.5 97.5 - - - - - - 94.1 - - -
WTPT 92.8 91.0 - 96.9 97.6 - - - - - - 94.7 - - -
WTPPUNCT 97.7 95.9 - 99.4 99.4 - - - - - - 97.8 - - -
SAT+LORA 98.1 96.1 - 99.3 98.8 - - - - - - 98.1 - - -

Table 31: Sentence segmentation test F1 scores on languages pl-th.
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Model tr uk ur uz vi xh yi yo zh zu

UD

SPACYM 97.5 93.9 0.0 - 96.0 - - 79.2 0.0 -
ERSATZ 96.8 - - - - - - - 89.3 -
LLAMA 38B 97.5 94.9 97.0 - 98.5 - - 89.8 95.8 -
COMMAND R 61.8 62.1 82.3 - 92.4 - - 66.1 91.8 -
SAT 96.3 92.7 97.7 - 90.8 - - 77.0 94.5 -
SAT+SM 98.6 98.3 99.3 - 99.5 - - 89.6 98.6 -

NLTK 93.2 - - - - - - - - -
PYSBD - - 99.2 - - - - - 98.9 -
SPACYDP - 96.5 - - - - - - 99.0 -
WTP 95.9 92.0 91.7 - 88.5 - - 83.5 97.9 -
WTPT 95.6 92.1 95.8 - 93.7 - - - 98.0 -
WTPPUNCT 98.4 98.6 99.5 - 99.7 - - - 99.9 -
SAT+LORA 98.5 98.1 99.5 - 99.4 - - - 99.3 -

OPUS100

SPACYM 93.6 89.2 29.4 63.6 90.1 64.6 4.1 27.2 0.0 25.4
ERSATZ 92.7 - - - - - - - 54.7 -
LLAMA 38B 93.8 91.1 47.6 67.4 92.9 71.7 13.6 37.5 55.7 42.5
COMMAND R 72.4 79.8 26.6 44.8 77.2 56.1 8.3 26.6 58.7 34.9
SAT 93.2 88.3 51.3 76.3 91.1 80.3 61.1 67.3 55.6 82.1
SAT+SM 94.7 93.5 60.5 84.9 94.7 89.6 89.0 52.3 77.5 93.3

NLTK 93.4 - - - - - - - - -
PYSBD - - 31.4 - - - - - 69.0 -
SPACYDP - 89.8 - - - - - - 68.2 -
WTP 92.8 88.2 53.0 76.4 90.1 77.2 73.0 75.4 80.5 72.7
WTPT 93.1 89.0 50.7 78.9 90.3 80.7 73.9 - 76.6 83.1
WTPPUNCT 95.3 94.3 66.3 85.0 94.5 89.8 80.7 - 88.8 90.6
SAT+LORA 95.4 94.7 72.0 87.6 94.8 90.8 86.6 - 90.5 92.0

Ersatz

SPACYM 95.2 - - - - - - - 0.0 -
ERSATZ 96.2 - - - - - - - 87.4 -
LLAMA 38B 94.3 - - - - - - - 94.5 -
COMMAND R 71.8 - - - - - - - 70.5 -
SAT 93.5 - - - - - - - 84.1 -
SAT+SM 97.5 - - - - - - - 90.5 -

NLTK 92.6 - - - - - - - - -
PYSBD - - - - - - - - 92.7 -
SPACYDP - - - - - - - - 95.9 -
WTP 92.8 - - - - - - - 93.7 -
WTPT 93.0 - - - - - - - 93.4 -
WTPPUNCT 98.3 - - - - - - - 97.9 -
SAT+LORA 98.2 - - - - - - - 95.0 -

Table 32: Sentence segmentation test F1 scores on languages tr-zu.

11941


