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Abstract
Zero-shot cross-domain dialogue state tracking
(DST) enables us to manage task-oriented di-
alogues in new, unseen domains without the
cost of collecting in-domain data. Previous
studies have implemented slot-based input im-
provements, such as schema-driven descrip-
tions and question-answering formats, but still
suffer from negative transfer for seen slots and
inefficient transfer for unseen slots due to the
significant source-target domain gap. To ad-
dress these issues, we introduce a novel frame-
work called Context-aware Auto-prompting
and Instruction-following Contrastive Decod-
ing (CAPID). This framework generates dy-
namic, context-aware slot queries, effectively
improving the model’s transferability. Our
context-aware auto-prompting approach tailors
slot queries to the current dialogue context,
increasing flexibility and reducing ambigui-
ties. Additionally, an instruction-following con-
trastive decoding strategy helps reduce errors
related to off-topic slots by penalizing devia-
tions from the provided instructions. Exten-
sive experiments on two datasets, with varying
model sizes (from 60M to 7B), demonstrate the
superior performance of CAPID. The source
code1 is provided for reproducibility.

1 Introduction

Task-oriented dialogue systems are powerful tools
for assisting users in accomplishing a wide range
of tasks, e.g. booking a train or making restau-
rant reservations (Huang et al., 2020). Dialogue
State Tracking (DST), a crucial component of these
systems, is responsible for identifying domain-slot
pairs (e.g., <Restaurant-Name>) and extracting the
corresponding values (e.g., “Eraina”) from the con-
versation (Peng et al., 2020; Lin et al., 2020).

In industrial applications, these systems fre-
quently need to incorporate new domains based

* Equal contribution
† Corresponding author.
1https://github.com/dong7313/CAPID_

Dialogues

Value of the slot <Restaurant-Name> for different slot formats

Conventional Pre-defined Slot: <Restaurant-Name>

Schema-driven Prompting: name of the restaurant

Question-answering: What is the name of the restaurant?

Their result: Bridge Guest House

Context-aware Slot Query:
Given the conversation, what is the name 
of the specific expensive European 
restaurant the user is looking for? 

Our Result: eraina

I am looking at staying at the Bridge Guest House.

Can you help me find a particular restaurant that 
I'm looking for? The restaurant is called eraina. 

I also need a taxi.  I would like for the taxi to pick me 
up from the hotel and drop me off at the restaurant. 

Ah yes, the Eraina. It's an expensive European 
restaurant in the city centre. Would you like more info?

well what hotel will you be staying at?

Turn 1

Turn 4

Turn 5

···

Hello! What can I do for you?

Figure 1: An example illustrating negative transfer in
Zero-Shot Cross-Domain DST. After training on source
domains—hotel, taxi, and others—the model is tested
on the restaurant domain to evaluate its cross-domain
transfer ability. Previous methods using static slot de-
scriptions erroneously assign the value “Bridge Guest
House,” which belongs to the previously trained “Hotel”
domain, to the <Restaurant-Name> slot. Conversely,
our context-aware slot query approach allows the model
to accurately identify “eraina” as the correct value.

on user requirements. However, collecting exten-
sive data for each new domain is both costly and
inefficient. Consequently, there is a substantial
need for zero-shot cross-domain DST, which re-
quires a DST model to adapt to entirely new target
domains without retraining, leveraging knowledge
already acquired in previous source domains (Lin
et al., 2021b). This transferability is essential for
developing flexible and scalable dialogue systems
that can operate effectively across diverse domains
without exhaustive, domain-specific training.

With the impressive performance demonstrated
by large-scale pretrained neural language models

8527

https://github.com/dong7313/CAPID_


(LMs), recent studies have focused on using slot-
related descriptions as input to enhance slot under-
standing (Lee et al., 2021; Feng et al., 2024b; Aksu
et al., 2023). For example, in order to mitigate the
confusion arising from abbreviated slots (e.g., “Ar-
riveBy,” which does not clearly indicate whether it
refers to a time or a method of arrival), Lin et al.
(2021b) used schema-driven prompting by incorpo-
rating natural language schema descriptions, result-
ing in remarkable performance improvement. Ad-
ditionally, Lin et al. (2021a) and Zhou et al. (2022a)
proposed to convert conventional slot descriptions
into question-answering formats, further enhancing
clarity and understanding. Building on these recent
advancements, our investigation of current works
on zero-shot cross-domain DST (see Section 2 for
an in-depth analysis) has uncovered the following
previously unreported challenge:

Challenge 1: Negative transfer for seen slots
(Tavares et al., 2023). This occurs when a slot in the
target domain has already been encountered in the
previously trained source domain. As illustrated
in Figure 1, the <Name> slot seen in the “Hotel”
domain during training. When tracking its value in
the target “Restaurant” domain, previous methods
erroneously apply learned patterns from previously
trained domains, resulting in incorrect responses.

Challenge 2: Inefficient transfer for unseen
slots. This arises when the model encounters a slot
that has never been seen in the source domain. Due
to the significant domain gap, the model struggles
to transfer existing knowledge effectively.

These challenges arise because of the fixed de-
scriptions for each slot used by traditional meth-
ods, which are collected by crowd-sourced human
annotators and might be inconsistent across differ-
ent domains. Moreover, these slot-based enhance-
ments lead the model to learn fixed slot-value pairs,
lacking the contextual diversity and nuanced un-
derstanding achieved from a broader contextual
perspective. For instance, contexts such as “expen-
sive” and “European” in Figure 1 would help the
model better differentiate between domains.

To address these challenges, we propose Context-
aware Auto-prompting and Instruction-following
Contrastive Decoding (CAPID), a context-aware
slot query generation approach through auto-
prompting to align the gap between source and
target domains. Rather than generating prompts
solely related to slots, our method is the first to
dynamically creates customized prompts for each
sample by also incorporating contextual informa-

tion from the dialogue. The detailed comparisons
between our method and the previous DST meth-
ods can be shown in Table 1.

We utilize auto-prompting capability of GPT-
4 (Achiam et al., 2023) to generate context-
aware slots by incorporating dialogue contexts and
domain-specific attributes. What’s more, when
training with these context-aware slots changing
dynamically with the dialogue, the model accumu-
late the knowledge of analyzing dialogue contexts
to extract slot values, which is more tranferrable to
unseen slots.

While GPT-4 demonstrates remarkable capabil-
ities, its usage limits and data privacy issues ne-
cessitate a different strategy for large-scale slot
query generation. We address this by training a
smaller student model to emulate GPT-4’s context-
aware slot query generation. Furthermore, to en-
sure the student model adheres to instructions
when handling off-topic slots, we developed a
novel instruction-following contrastive decoding
method. This method maximizes the difference
between expert log-probabilities from the original
prompt and amateur log-probabilities from the re-
purposed prompt, restricting the search space to
high-probability tokens that are semantically con-
sistent with the original prompt, thereby producing
coherent results.

To summarize, our main contributions include:

• We propose CAPID, a novel framework for zero-
shot cross-domain DST, which effectively ad-
dresses the challenges of negative transfer for
seen slots and inefficient transfer for unseen slots.

• We conduct comprehensive experiments to eval-
uate CAPID, demonstrating its remarkable capa-
bility to improve the performance of zero-shot
cross-domain DST. Specifically, CAPID achieves
a 16.8% increase JGA on MultiWOZ 2.1 and a
29.34% increase on MultiWOZ 2.4 compared to
the previous baseline.

2 Motivation

We categorize slots into two types: unseen slots,
which lack counterparts in the source domains
(e.g., “<Hotel_Stay>” vs. “<Restaurant_Food>”),
and seen slots, which exhibit similarities across
domains (e.g., “<Hotel_Name>” and “<Restau-
rant_Name”).
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Method Slot Prompting Approach Dynamic Prompt Context-aware Example

LDST, FNCTOD Pre-defined Slot ✗ ✗ <Restaurant-Name>
Prompter, D3ST, T5DST Schema-driven Prompting ✗ ✗ name of the restaurant
TransferQA Question-answering ✗ ✗ What is the name of the restaurant?

CAPID (ours) Context-aware Slot Prompting ✓ ✓ What is the name of the specific expensive European restaurant the user is looking for?

Table 1: Comparisons between previous methods and CAPID.

2.1 Minimizing Ineffective Knowledge
Transfer for Unseen Slots

Conventional pre-defined slot often lead the model
to focus primarily on learning slot-value pairs. This
type of knowledge, while effective within known
domains, proves difficult to transfer when the sys-
tem encounters slots that were unseen during train-
ing. The limited ability of these conventional sys-
tems to adapt to new or varied dialogue contexts
often results in ineffective knowledge transfer, man-
ifesting as frequent “None” responses.

To tackle this, we employ context-aware slots
that enable the model to learn how to extract slot
values based on varying dialogue contexts. This
approach enhances the model’s knowledge to ana-
lyze dialogues, whichs is more adaptable and trans-
ferrable to unseen slots in new domains. Addition-
ally, it increases the similarity between slots and the
dialogue, which also helps to prevent the common
issue of “None” responses in unseen slots. For ex-
ample, as illustrated in our study shown in Figure 2,
we tailor slot terms to better align with user-specific
language. Unlike previous methods that rigidly ap-
ply the term “hotel” across different dialogues, our
context-aware approach dynamically adapts, us-
ing terms like “guesthouse” or “hotel” depending
on the specific context. Additionally, it captures
varied user expressions such as “book a table” or
“in Cambridge” instead of merely requesting the
restaurant’s name.

2.2 Addressing Negative Transfer for Seen
Slots

Negative transfer occurs when a model trained in
one domain inappropriately applies learned pat-
terns to a different, unseen domain, leading to er-
rors in understanding and processing. This phe-
nomenon is particularly prevalent with seen slots
in trained domains in zero-shot learning. For exam-
ple, as is shown in Figure 1, a DST system trained
on “hotel_name” might mistakenly identify “restau-
rant_name” as “hotel_name” in the restaurant do-
main, assuming similarities between the domains
due to its training. As depicted in Figure 3, the sig-
nificant impact of negative transfer is highlighted,

Case 1: <Hotel_Stay>

 Diaglogue-1: ...[USER] i'm looking for a and b guest house [SYSTEM] It is a moderately priced 
guesthouse on the east side of town. It does not offer free parking. Do you want more information? [USER] 
yes book it for 4 people and 3 nights starting from thursday...

Conventional Pre-defined Slot: <Hotel-Stay> 
Question-answering: What is the user’s stay of the hotel?
Context-aware Slot Query: Given the conversation,  can you specify the duration for the user's planned 
stay at the guest house? 

 Diaglogue-2: ...[USER] I am looking for a hotel by the name of the Autumn House. [SYSTEM] The 
Autumn house is on the East part of time. Is there anything else you'd like to know? [USER] No, I just 
want to book it for 2 people for 5 nights starting Wednesday....

Conventional Pre-defined Slot: <Hotel-Stay> 
Question-answering: What is the user’s stay of the hotel?
Context-aware Slot Query: Given the conversation, can you identify the length of stay the user requested 
at the hotel named Autumn House?

Case 2: 
<Restaurant_Food>

Diaglogue-1: ...[USER] I am looking for a moderately priced place to dine in the centre of Cambridge. Are 
there any Turkish restaurants? [SYSTEM] I have 2 Turkish restaurants in the Centre...

Conventional Pre-defined Slot: <Restaurant-Food>
Question-answering: What is the food of the restaurant?
Context-aware Slot Query: Given the conversation, can you identify the type of food the user has chosen 
for their restaurant in Cambridge?

Diaglogue-2: ...[SYSTEM] There is a cheap Chinese restaurant called the Dojo Noodle Bar located in the 
centre of town. Would you like to book a table? [USER] Yes please, for 8 people at 18:30 on thursday....

Conventional Pre-defined Slot: <Restaurant-Food>
Question-answering: What is the food of the restaurant?
Context-aware Slot Query: Given the conversation, can you identify the food type of the restaurant the 
user want to book a table?

Figure 2: Context-aware slots help minimize ineffec-
tive knowledge transfer for unseen slots, e.g. “<Ho-
tel_Stay>” vs “<Restaurant_Food>”. The two cases
show how to integrate useful dialogue context with
slots, where previous methods keep slot descriptions
fixed across various dialogues.

with 88.31% of errors attributed to this issue. Neg-
ative transfer ratio is calculated by dividing the
number of incorrect predictions where slot values
are predicted as those seen during training by the
total number of incorrect predictions.

Our context-aware slot representation addresses
this challenge by incorporating adjectives and ter-
minologies specific to the current domain, e.g.
“expensive” and “European”, thus strengthening
the slot descriptions. This adaptation enables the
model to better differentiate between domains and
accurately interpret user intents, significantly re-
ducing the risk of negative transfer and enhancing
accuracy across multiple domains.

3 Proposed Method: CAPID

Problem Formulation A task-oriented dialogue
consists of a sequence of utterances alternating be-
tween the assistant and user, {A1, U1, ..., At, Ut},
where A and U represent the assistant and user
utterances, respectively. A predefined slot set2

S = {Sj}Jj=1 is provided, where J is the to-
tal number of slots. Given the dialogue context
C = {(A1, U1) , (A2, U2) . . . , (At, Ut)}, the task

2To specify the domain to which a slot belongs, a slot is
defined as the concatenation of the specific domain and the
slot name, e.g., “<Restaurant_Area>”.
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Figure 3: Mitigation of negative transfer shown by de-
creased average negative transfer ratio in dashed lines.
This trend is particularly pronounced in seen slots, no-
tably those ending in “name”.

of DST is to predict the dialogue state (Sj
t , V

j
t ) at

each turn t, where (Sj
t , V

j
t ) is a set of slot-value

pair. Our CAPID framework involves training two
separate models. The first model is tasked with
training a student model to learn a context-aware
slot query function, represented as fs : S

′
t
j
=

ϕ(Ct, S
j
t ). The model is first trained on source do-

mains Dsource using dialogue contexts Ct and the
context-aware slot S

′
t
j

generated by GPT-4, then
apply the trained model f to a new, unseen do-
main Dtarget to perform inference. The second
model involves training a DST model, denoted as
fd : Ct⊕S

′
t
j → V j

t to predict the slot values based
on the enhanced slot descriptions provided by fs,
where ⊕ denotes simple text concatenation.

Overview Our CAPID framework leverages
LLMs to generate context-aware slots using an
auto-prompting strategy. These regenerated slots
are then structured into datasets of paired prompt
instructions to facilitate instruction-based training
for smaller student models. The student model is
then deployed for large-scale slot generation with
the innovative instruction-follwing contrastive de-
coding, as detailed in Figure 4.

3.1 Context-aware Auto-prompting for Slot
Query Generation via LLMs

We utilize GPT-4 (Achiam et al., 2023) to learn the
function ϕ(Ct, S

j
t ) through auto-prompting, which

aims to transform the conventional slots into new
questions by enhancing three key features. The
first is replacing conventional slots with synonyms
found within the dialogue. The second is inte-

grating contextual information related to the slot
value, including domain-specific adjectives and
user-described needs, to formulate a new question.
The third is enhancing the fluency of the new ques-
tion.

Specifically, we use a “crossover” operation
that cross the dialogue with the slot to generate a
context-aware slot query, fulfilling the second step.
This operation, adapted from general genetic algo-
rithms (Schmitt, 2004), swaps segments between
two prompts and acts as a global search mechanism
to broaden the search scope. Detailed instructions
are in Appendix A. After this process, we have the
new context-aware slot query S

′
.

3.2 Training a Student Model for
Context-aware Auto-prompting

Despite GPT-4’s impressive performance, its
closed-source nature and request restrictions are
significant limitations. Therefore, we train a stu-
dent model for large-scale S

′
generation. We

instruct the student model to generate questions
faithful to the pre-defined slots and to incorpo-
rate additional dialogue information into the ques-
tions. Training involves instruction tuning on
paired prompts, each consisting of a pre-defined
slot and its corresponding context-aware slot.

However, in DST tasks, slots often contain do-
mains not present in the dialogue, which we refer
to as off-topic slots. This mismatch may cause the
student model to incorrectly follow instructions by
substituting the domain of the predefined slots with
those appearing in the dialogue.

3.3 Instruction-following Contrastive
Decoding for Handling Off-topic Slots

To address the mismatch domain challenge in 3.2,
we propose the Instruction-following Contrastive
Decoding, as illustrated in Figure 5. This innova-
tive approach ensures that the student model gen-
erates slot queries which adhere to the original
domain specified in the slots, mitigating the risk of
deviating from our two primary instructions.

Inspired by contrastive decoding(CD) (Li et al.,
2023), our method adapts this concept to suit slot-
verified generation process. We also observe di-
minished confidence in the model’s outputs under
scenarios where the slot domain mismatches the
dialogue domain. Specifically, the model often
assigns lower probabilities to output tokens, with
only a slight discrepancy between erroneous and
correct tokens. Therefore we use an “repurposed
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Training

Step 1: Context-aware Auto-prompting via LLMs

Dialogue Context:
[USER] Can you help me find 
a particular restaurant that I'm 
looking for? The restaurant is 
called eraina. [SYSTEM] Ah 
yes, the Eraina. It's an 
expensive European restaurant 
in the city centre. Would you 
like more info?    
... ...    
[USER] I am looking at staying 
at the Bridge Guest House.

Instruction: Change 
the slot in to a smooth 
and reasonable 
question. The new 
prompt should seek 
the same information 
as the original slot.

<restaurant-name>

what is the name of 
the restaurant?

Cross over

Paired Prompt Training Datasets
Input: Original Slot
e.g., <restaurant-name>

Output: Optimized Prompt
e.g., Given the conversation in 
[DIALOGUE_CONTEXT], what is the name of the 
specific expensive European restaurant the user is 
inquiring about?

Step 2: Training a Student Model 

Step 3: Slot Descriptions Generation Via Student Model 

Dialogue History <restaurant_name>

Slot Generation with Instruction-following 
Contrastive Decoding by Student Model

Given the conversation in [DIALOGUE_CONTEXT], what 
is the name of the European expensive restaurant the user is 
asking about?

CAPID: Context-aware Auto-prompting and Instruction-following Contrastive Decoding

[USER] Can you help me find a restaurant that I'm looking for? 
The restaurant is called eraina. [SYSTEM] Ah, the Eraina. It's 
an expensive European restaurant in the city centre. ...
[SYSTEM] well what hotel will you be staying at? [USER] I 
am looking at staying at the Bridge Guest House.

<restaurant-name>

Dialogue History Values

Vanilla Slot

Context-aware Slot 

eraina

Optimized Prompt:  Given the conversation in 
[DIALOGUE_CONTEXT], what is the name of the specific 
expensive European restaurant the user is looking at? 

Inference

Student 
Model

Figure 4: Overview of our CAPID framework. The upper panel delineates our three-stages process for generating
context-aware slots. Initially, we harness LLMs to craft context-aware slot query. These refined slots are formatted
into datasets featuring paired prompts for instruction-tuning in student model, then the student model is deployed
extensively for slot generation with instruction-following contrastive decoding method. The lower panel of the
figure illustrates how the CAPID framework combines with the DST task.

prompt”, which deliberately instructs the model
not to generate responses that adhere strictly to the
original slot but to produce entities that actually
exist in the dialogue. Then we use the output of the
“repurposed prompt” xr as a penalty to the origin
prompt. Details on the implementation of the origi-
nal and repurposed prompts for tuning the student
model’s instructions are provided in Appendix A.2.

Specifically, the original prompt of length n is
denoted as xo = x1...xn, the “repurposed prompt”
of length m is denoted as xr = x1...xm. The
distribution of the next token during the contrastive
decoding can be formulated as:

Lt = log s(xt|xox<t; θ)− β log s(xt|xrx<t; θ), (1)

p(xt|xox<t; θ) := softmax(Lt), s.t. xt ∈ Vvalid, (2)

where θ symbolizes the parameters of the actual stu-
dent model, and s represents the logits produced by

the model. In Eq. (1), we introduce an repurposed
prompt xr as a penalty to suppress the original like-
lihood of tokens that may lead to hallucinations.
The authentic distribution of the next token is de-
fined in Eq. (2).

We introduce a trick termed adaptive plausibility
constraint (i.e., xt ∈ Vvalid) to select a subset valid
of tokens for a penalty as follows:

Vvalid = {xt ∈ V : p(xt|xox<t; θ) ≥ αmaxw p(w|xox<t; θ)},
(3)

where V is the vocabulary set. This constraint is
strategically implemented to mitigate the effects
of contrastive decoding when our model demon-
strates high confidence in its predictions. Specif-
ically, if the genuine model assigns a probability
greater than 0.9 to a particular token, suggesting
that this token is the dominant choice post-softmax,
the contrastive decoding is designed to refrain from
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Original Prompt
You are an expert prompt engineer.
1. Transform the original slot 
<Restaurant-Time>  into a clearer, user-
friendly question that seeks the same 
information with <Restaurant-Time> .
2. Enrich the new question with the 
relevant context in [Dialogue].....

Repurposed Prompt
You are an expert prompt engineer.
1. Craft a question that incorporates both 
the domain and the slot found within the 
dialogue.                      
2. Enrich the new question with the 
relevant  context in [Dialogue].....

0.54 taxi

0.21 trip

0.001 restaurant

0.41 taxi

0.31 restaurant

0.10 travel

restaurant 5.74

expensive 1.20

taxi -0.27

Output w CD Given the conversation in [DIALOGUE], can you identify the 
time the user has requested for their restaurant visit? 

Output w/o CD Given the conversation in [DIALOGUE], can you identify the 
time the user has requested for their taxi service?

Next token prediction with Instruction-Following Contrastive Decoding

푙���푖�푖 −�푙���ℎ푎푙푙�

�푖�푖 �ℎ푎푙푙�

[Dialogue]:
[USER] I would like a taxi from Saint John's college to Pizza Hut Fen Ditton. 
[SYSTEM] What time do you want to leave and what time do you want to arrive by?

… …

Figure 5: Instruction-following Contrastive Decoding.
This figure presents an off-topic scenario. The model
receives two instructions and might overlook the first.
We design a repurposed prompt to deliberately generate
entities from the dialogue, which is penalized during
decoding to ensure the first instruction is followed.

intervening. This ensures that the model’s high-
confidence outputs are preserved without undue
influence from the contrastive mechanism.

4 Experiments

4.1 Experiment Setup

Dataset Our experiments use the MultiWOZ
2.1 (Eric et al., 2019) and MultiWOZ 2.4 (Ye et al.,
2021) datasets, widely utilized in previous cross-
domain research. MultiWOZ 2.4 builds on Multi-
WOZ 2.1 with improved DST evaluation and rean-
notated validation and test sets. We use MultiWOZ
2.4 as a reliable dataset for testing and MultiWOZ
2.1 to assess model robustness and its ability to
handle annotation noise. Both datasets span five
domains, with each conversation potentially cover-
ing multiple domains.

Evaluation Metrics We evaluate DST perfor-
mance using Joint Goal Accuracy (JGA) and Aver-
age Goal Accuracy (AGA), consistent with previ-
ous works (Feng et al., 2023). JGA calculates the
proportion of dialogue turns where the entire state
is accurately predicted, while AGA measures the
mean accuracy across active slots per turn. A slot
is active if its value is mentioned in the current turn
and is not inherited from previous turns.

Baselines We compare our approach against ex-
isting cross-domain zero-shot approaches, which
train on MultiWOZ with one domain excluded
and then evaluate on the held-out domain. These
methods include TRADE (Wu et al., 2019), Trans-
ferQA (Lin et al., 2021a), T5DST (Lin et al.,
2021b), D3ST (Zhao et al., 2022). TRADE and
MADST use RNNs and slot names as input, where
T5DST uses slot descriptions with a T5-small
model. D3ST uses slot descriptions and a T5 model.
As for MultiWOZ 2.4, we select recent baseline
models including IC-DST (Hu et al., 2022), Pars-
ingDST (Wu et al., 2023), RefPyDST (King and
Flanigan, 2023), D0T (Finch et al., 2024).

Training Details We employ the CAPID method
in a cross-domain setting, training on four domains
and evaluating on the unseen domain. We train
the student model with a T5-base model using a
balanced dataset of five thousand samples, equally
distributed between “None” and other specified
values, over five epochs at a 3e− 4 learning rate.

The primary reason for selecting the T5-base
model as our student model is its efficiency. Af-
ter testing the inference time for 100 samples on
an NVIDIA 3090 GPU, we find that the T5-base
model completes the task in approximately 27 sec-
onds, making it roughly four times faster than the
LLaMA-2-7B model, as is shown in Table 4. Addi-
tionally, our experiments reveal no significant dif-
ferences in the quality of context-aware slot queries
generated by either model. Therefore, we conclude
that the T5-based model possesses adequate capa-
bilities for this task.

To ensure that student models learn from a di-
verse corpus, we develop a sampling strategy by
maximizing slot variations and dialogue context
coverage. This involves uniformly sampling across
all slot types and randomly selecting 5,000 dia-
logues, ensuring a broad spectrum of dialogue con-
texts for training. The model, trained exclusively
on known domains, is not exposed to the held-out
domain. We assess our method’s generalization us-
ing various backbones, including LLaMa2-CHAT-
7B (Touvron et al., 2023), T5-small (60M) (Raffel
et al., 2020), and T5-base (220M). For instruction-
following contrastive decoding, we set the β at 0.9,
α at 0.1.

4.2 Main Results

Context-aware slots descriptions effectively
boost DST Performance. We conducted com-
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Method Backbone

MultiWoz 2.1

Hotel Restaurant Taxi Attraction Train Average

JGA AGA JGA AGA JGA AGA JGA AGA JGA AGA JGA AGA

TRADE ELMo 13.70 65.32 11.52 53.43 60.58 73.92 19.87 55.53 22.37 49.31 25.61 59.50
MA-DST ELMo 16.28 - 13.56 - 59.27 - 22.46 - 22.76 - 26.87 -
TransferQA T5-large 22.72 77.84 26.28 81.73 61.87 86.48 31.25 60.62 36.72 87.21 35.77 78.78
T5DST T5-small 21.21 - 21.65 - 64.62 - 33.09 - 35.43 - 35.2 -
D3ST T5-base 21.80 - 38.20 - 78.40 - 56.40 - 37.70 - 46.5 -
Prompter PPTOD-s 19.20 - 26.00 - 66.30 - 35.80 - 39.00 - 37.26 -
FNCTOD LLaMa2-13B 46.83 - 60.27 - 67.48 - 62.24 - 60.90 - 59.54 -
LDST LLaMa2-7B 63.32 - 73.72 - 91.47 - 75.61 - 75.03 - 75.83 -

CAPID T5-small 31.10 72.56 31.64 69.06 65.41 83.75 40.88 68.99 34.26 65.93 40.66 72.06
CAPID T5-base 43.53 83.33 37.08 75.24 87.06 92.02 33.33 64.42 49.46 73.42 50.10 77.69
CAPID LLaMa2-7B 71.64 94.24 77.51 95.26 91.21 95.99 83.63 92.59 89.97 97.77 82.79 95.17

Table 2: Overall performance on the MultiWOZ 2.1 dataset across various backbones, evaluated using JGA and
AGA. Our CAPID framework outperforms the previous best method, LDST, with a 9.17% increase with LLaMa2-7B
in JGA. Additionally, CAPID surpasses baseline models with other backbones, such as T5-small (with an 5.46%
absolute improvement in JGA) and T5-base (with an 3.6% absolute improvement in JGA).

Method Backbone

MultiWoz 2.4

Hotel Restaurant Taxi Attraction Train Average

JGA AGA JGA AGA JGA AGA JGA AGA JGA AGA JGA AGA

IC-DST Codex 46.69 - 57.28 - 71.35 - 59.97 - 49.37 - 56.93 -
ParsingDST Gpt-3.5-turbo-0301 46.76 - 67.67 - 80.58 - 65.63 - 62.59 - 64.65 -
RefPyDST LLaMa2-13B 51.20 - 65.60 - 67.10 - 70.90 - 69.20 - 64.70 -
D0T T5-11B 32.00 - 72.30 - 50.60 - 68.10 - 55.80 - 55.70 -
D0T Llama2-13B 56.40 - 78.80 - 54.70 - 76.80 - 76.10 - 68.60 -

CAPID T5-small 38.73 77.05 29.35 67.92 73.35 88.25 47.87 74.32 47.88 74.43 47.43 76.39
CAPID T5-base 31.34 79.05 39.14 78.68 89.28 93.75 22.816 59.33 56.71 76.86 47.86 77.53
CAPID LLaMa2-7B 71.30 94.55 79.06 95.44 91.62 96.04 84.40 93.13 89.56 97.62 83.19 95.35

Table 3: Overall performance on the MultiWOZ 2.4 dataset across various backbones, evaluated using JGA and
AGA. Our CAPID framework outperforms the previous method, D0T, by achieving a 21.26% increase on JGA.

Backbone Model Total Inference Time for 100 Samples

LLaMA-2-7B 113.84 s
T5-base 27.59 s

Table 4: We choose T5-base as the student model, since
it completes the task roughly four times faster than
LLaMA-2-7B.

prehensive evaluations of the CAPID method, de-
tailed in Table 2 for MultiWOZ 2.1 and Table 3
for MultiWOZ 2.4. Our findings confirm that
context-aware slot descriptions substantially im-
prove DST performance. For MultiWOZ 2.1, inte-
grating this method with advanced models like T5-
small, T5-base, and LLAMa-7B results in signifi-
cant performance boosts across domains: T5-small
reaches 40.66%, T5-base 50.10%, and LLaMa2-
7B achieves an exceptional 82.79%. For Mul-
tiWOZ 2.4, T5-small reaches 47.43%, T5-base
47.86%, and LLaMa2-7B achieves 83.19%. More-

over, the consistent performance gains across di-
verse datasets suggest that our approach is robust
and versatile.

Context-aware slots significantly minimize the
ineffective knowledge transfer and negative trans-
fer problems in zero-shot cross-domain DST. Fig-
ure 3 shows that context-aware slots have signifi-
cantly lowered the average negative transfer ratio,
from 88.31% to 33.10%, particularly in slots like
those ending in “name” seen during training, high-
lighting their effectiveness in clarifying ambigui-
ties across various domains. Figure 6 showcases
the CAPID’s superior performance in minimizing
ineffective knowledge transfer challenge.

We use misclassified off-topic slot values to mea-
sure its degree, which refers to the number of in-
stances where a slot in the conversation has a value,
but the model fails to extract it, incorrectly pre-
dicting it as “none”. CAPID consistently exhibits
fewer misclassifications (illustrated by yellow bars)
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Figure 6: CAPID minimizes ineffective knowledge
transfer, as demonstrated by a significant reduction in
the number of slots misclassified as “none” across most
domains, compared to the baseline using standard pre-
defined slots. Both CAPID and the baseline utilize the
same backbone network.

than the baseline model (grey bars), with an overall
decrease in errors across domains. This improve-
ment underscores the CAPID’s enhanced accuracy
and consistency in diverse settings.

4.3 Ablation Study
Effectiveness of context-aware slot prompting.
Our initial experiment focuses on the impact of
context-aware slot prompting. In previous studies,
there are three types of slot forms: (i) conventional
pre-defined slots, e.g., “<Restaurant_Area>”. (ii)
Question-answering which transform the slot into a
question using hand-made craft “what is the <slot>
of the <domain>”, e.g. “what is the area of the
restaurant”. (iii) Schema-driven Prompting lever-
aging the official slot description offered by Multi-
WOZ datasets, e.g. “area or place of the restaurant”.
The JGA scores for the models using T5-small as
the backbone are presented in Table 5, while the
scores for the models utilizing LLaMA2-7B as the
backbone, which were trained on only 5% of the
training data, can be found in Table 6.

The CAPID model outperforms the baseline ap-
proaches across all domains. In contrast, the con-
ventional pre-defined slots shows the lowest perfor-
mance on average. The Question-answering and
Schema-driven Prompting methods demonstrate
moderate improvements.

Effectiveness of instruction-following con-
trastive decoding. Our second investigation
focuses on the influence of the Instruction-
following Contrastive Decoding method. In this

Hotel Restaurant Taxi Attraction Train Average

Vanilla Pre-defined Slots 16.28 13.56 59.27 22.46 22.76 26.87
Question-answering 22.72 26.28 61.87 31.25 36.72 28.18
Schema-driven Prompting 21.21 21.65 64.62 33.09 35.43 35.2

CAPID 33.33 48.11 59.60 34.50 43.12 43.73

Table 5: Ablation study on the effectiveness of context-
aware slot query using T5-small as the backbone.

Slot Prompting Approach Hotel Restaurant Taxi Attraction Train Average

Vanilla Pre-defined Slots 29.67 31.24 48.77 37.43 42.40 37.90
Schema-driven Prompting 43.22 50.19 64.15 56.58 50.62 52.95
CAPID 45.19 58.70 91.24 63.34 69.02 65.60

Table 6: Ablation study on the effectiveness of context-
aware slot query using LLaMa2-7B as the backbone.

ablation study, we evaluate the effectiveness of
instruction-following contrastive decoding within
the context-aware auto-prompting framework.
The results, depicted in Table 7, suggest that
instruction-following contrastive decoding plays a
significant role in enhancing model performance.
Without instruction-following CD, there is a
notable degradation in how accurately the model
adheres to the intended slot meanings, often
substituting them with unrelated elements from the
dialogue. The significant decrease in average JGA
from 43.73% to 37.22% across all domains quan-
titatively demonstrates that instruction-following
contrastive decoding crucially enhances the
model’s capacity to discern relevant context and
accurately generate slot values.

Impact of training data size. Under the context
of LLMs, models have become huge and difficult to
train or even obtain. Table 8 illustrates the impact
of varying training data sizes on the performance
of a model utilizing the LLaMa2-7B architecture.
The data sizes are represented as percentages (5%,
8%, and 10%) of the total available training data.
From the data, there is a clear trend: as the per-
centage of utilized training data increases, so does
the performance across all domains. This analysis
indicates that even with 8% of the training data, the
model achieves high performance, demonstrating
the efficiency of the LLaMa2-7B architecture in
leveraging data for improved outcomes.

5 Related Work

5.1 Zero-shot Cross-domain DST

Dialogue State Tracking (DST) is a critical
component of Task-Oriented Dialogue Systems
(TODS) (Lee et al., 2019; Heck et al., 2020;
Hosseini-Asl et al., 2020; Peng et al., 2020; Feng
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Hotel Restaurant Taxi Attraction Train Average

CAPID w/o CD 24.69 27.42 50.92 47.10 35.99 37.22
CAPID w CD 33.33 48.11 59.60 34.50 43.12 43.73

Table 7: Ablation study on the effectiveness of
instruction-following contrastive decoding. Instruction-
following contrastive decoding is essential for improv-
ing model accuracy, as demonstrated by a significant
drop in JGA from 43.73% to 37.22% when it’s absent.

Hotel Restaurant Taxi Attraction Train Average

w 5% 45.19 58.70 91.24 63.34 69.02 65.60
w 8% 71.64 77.51 91.21 83.63 89.97 82.79
w 10% 76.89 82.92 93.10 88.84 89.05 86.16

Table 8: Impact of training data size on performance.
Increased data usage enhances performance across all
domains.

et al., 2024a; Zhang et al., 2022a, 2023a), which
are designed to assist users by understanding their
needs and providing relevant suggestions through-
out a conversation (Lu et al., 2021), effectively
offering personalized recommendations (Liu et al.,
2022, 2024a). However, collecting training data for
new domains is costly, making it crucial to address
zero-shot cross-domain DST for unseen domains.

Prior strategies for zero-shot cross-domain DST
typically involve using auxiliary dialogue cor-
pora (Su et al., 2022; Lin et al., 2021a) or refor-
matting DST tasks into analogous formats, such
as question answering (Lin et al., 2021b) or sum-
marization (Shin et al., 2022). Despite these ef-
forts, the zero-shot performance of these methods
remains unsatisfactory.

With the rise of large language models (LLMs),
significant progress has been made across a wide
range of domains due to their ability to generalize
from vast and diverse data (Zhao et al., 2024; Liu
et al., 2024b). LLMs have also shown promise in
DST tasks (Feng et al., 2023, 2024a; Li et al., 2024;
Heck et al., 2023). However, despite the strong
performance of recent LLM-based DST methods,
their zero-shot DST capabilities remain unsatisfac-
tory (Hu et al., 2022; Bang et al., 2023; Hudeček
and Dušek, 2023; Heck et al., 2023; Zhang et al.,
2023b; Chung et al., 2023). These methods often
rely on crafted prompt templates that can introduce
ambiguity and fail to capture nuanced dialogue
information. The underlying reasons for their ef-
fectiveness in redefining slots also remain unclear
and difficult to interpret.

5.2 Automatic Prompt Optimization

Prompt learning and optimization have recently
become key research areas, as they allow mod-
els to adapt to specific tasks with minimal addi-
tional training, enhancing flexibility and efficiency
in both NLP and CV applications (Shin et al., 2020;
Lee et al., 2023; Wang et al., 2024). Optimizing
prompts for LLMs is also essential for boosting
performance.

Previous researches suggest that an automated
self-improvement process can optimize hard
prompts more effectively for specific domains,
as first introduced by AutoPrompt (Shin et al.,
2020). The advent of LLMs has enabled automated
techniques for prompt engineering. Zhang et al.
(2022b) automatically identify reasoning chains
for few-shot Chain of Thought applications. Auto-
matic Prompt Engineer (Zhou et al., 2022b) gener-
ates prompt candidates through an automatic model
and then uses another model to mutate them. Cheng
et al. (2023) develop an automatic prompt opti-
mizer that refines human-generated prompts to bet-
ter convey human intent.

6 Conclusion

We have introduced CAPID, a novel framework
that creates dynamic, context-aware slot prompts
for zero-shot cross-domain DST. By utilizing these
context-aware slot prompts, we have substantially
reduced the complexity of DST, enhancing the
model’s comprehension and adaptability to new do-
mains. The combination of a student model trained
on context-aware slot prompts with our instruction-
following contrastive decoding method has signifi-
cantly reduced errors on off-topic slots. Extensive
experiments on two datasets demonstrate the supe-
rior performance of the CAPID framework, high-
lighting its robustness and versatility across various
language models.

Limitations

The current auto-prompting strategy employed by
our CAPID framework is relatively basic. The
robustness and effectiveness of our auto-prompting
process can potentially be enhanced through the
implementation of multi-step optimization. These
enhancements could increase contextual sensitivity
of the new prompts, thus boosting the accuracy and
reliability of the DST process.
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A Prompt Templates

A.1 Prompt Templates for Generating
Context-aware Slot via LLMs.

Below, we present a specific example of the instruc-
tion used to elicit context-aware slot generation
from ChatGPT.
{

Instruction: “{}”
Dialogue: “{}”
Groundtruth:“{}”
Model Output:“{}”

Be an expert prompt engineer and enhance
the original slot “<domain_slot>” by
transforming it into a question that
effectively solicits the ground truth,
utilizing the context information related
to the “groundtruth”
Pay attention to:

1.Replace the slot “<domain_slot>” with
synonyms in the dialogue, if any.
2.If the slot “<domain_slot>” is
mentioned in the dialogue, cross over
the question with the dialogue context
information. Ensure that the question
includes adjectival phrases from the
dialogue that describe the “groundtruth”.
It is crucial that these adjectival
phrases are accurately incorporated
into the question to maintain context
relevance and accuracy. If not, do
nothing.
3.Replace the whole dialuge with a
token:“[DIALOGE_CONTEXT]”.
4.You should never generate a response to
the original instruction!
Output with the following format:
Valuable context information from the

dialogue: xxx [END]
Optimized slot description: xxx [END]

}

A.2 Prompt Templates for Student Model
Instruction Tuning

Below, we provide a specific example of the orig-
inal instruction and the evil instruction used for
fine-tuning the student model.

The original instruction:
{

You are an expert prompt engineer.
1.Transform the original slot
<Restaurant-Time> into a clearer,
user-friendly question that seeks the
same information with <Restaurant-Time>.
2.Enrich the new question with the

relevant context in [Dialogue], like
adjectival phrases for the domain or
synonyms for the slot.
[Dialogue]:[USER] I would like a taxi

from Saint John’s college to Pizza Hut
Fen Ditton. [SYSTEM] What time do you
want to leave and what time do you want
to arrive by? ]
}
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The repurposed instruction:
You are an expert prompt engineer.

{
1.Craft a question that incorporates

both the domain and the slot found within
the dialogue.
2.Enrich the new question with the

relevant context in [Dialogue], like
adjectival phrases for the domain or
synonyms for the slot.
[Dialogue]:[USER] I would like a taxi

from Saint John’s college to Pizza Hut
Fen Ditton. [SYSTEM] What time do you
want to leave and what time do you want
to arrive by? ]
}

B Implementation Details

B.1 Instruction-following Contrastive
Decoding

In this section, we clearly describe the contrastive
decoding methods utilized in different backbone
architectures (i.e., Encoder-decoder and Decoder-
only), and outline how inputs are handled and how
outputs are generated in each scenario.

• Decoder-only backbone. In a decoder-only
architecture utilizing causal decoding, the
model iteratively generates each token by con-
sidering the previously generated sequence
and contrasting different prompts. The pro-
cess can be formulated as:

1. Generating token probabilities for the
next position based on the concatenated
sequence of the selected prompt xi and
the previously generated output x<t,
where xi ∈ (xoriginal,xrepurposed).

2. Comparing these probabili-
ties for p(xt|xoriginal, x<t) and
p(xt|xrepurposed, x<t), and yield the
output token through Eq. 2 and Eq. 1

• Encoder-decoder backbone. For the
eencoder-decoder architecture where causal
decoding can not be adopted, the encoder and
decoder operate separately, the process can be
formulated as:

1. Encoding the prompt xi separately in the
encoder.

2. Feeding the encoded prompts and the se-
quence x<t to the decoder.

3. Comparing the output probabilities for
each token from the decoder, conditioned
on each encoded prompt and yield the
output token through Eq. 2 and Eq. 1

B.2 Model Training
B.2.1 DST Model Training
For different backbones, we utilized the following
hyperparameters:

• T5-small (60M), T5-base (220M). Training
was conducted with a learning rate of 3e-4,
batch size of 8, maximum input length of 512,
maximum target length of 128, and 5 epochs.

• LLaMA-7B: Utilizing LORA for efficiency,
with a learning rate of 3e-4, batch size
of 128, a cutoff length of 512, and 5
epochs. Lora settings were r = 8, alpha
= 16, dropout = 0.05, targeting modules
[[q_proj,k_proj,v_proj,o_proj]]. For testing,
settings included temperature = 0.02, top_p =
0, top_k = 1, num_beams = 1, max new tokens
= 128. Experiments are carried out using 8
NVIDIA 3090 GPUs with 24GB memory.

B.2.2 Student Model Training
We utilized T5-base (220M) as the student model
backbone, with a learning rate of 3e-4, batch size of
8, maximum input length of 512, maximum target
length of 128, and 15 epochs.

We train the student model using a dataset com-
prising five thousand samples generated by Chat-
GPT. These samples are evenly split between in-
stances with a ground truth of “None” and in-
stances with specified ground truth values other
than “None”.

C Further Ablation Study on Parameters
of Instruction-following Contrastive
Decoding

The proposed Instruction-following Contrastive De-
coding method incorporates two key hyperparam-
eters, α in Eq. 3 and β in Eq. 1. We choose an
example with the output slot query: “Given the
conversation in [DIALOGUE_CONTEXT], can
you identify the specific day of the week the user
intends to travel?”, and vary the two hyperparame-
ters to see their influence on the output, as is shown
in Table 9.
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β α Regenerated Slot with Instruction-following Contrastive Decoding
0.9 0.1 Considering the conversation in [DIALOGUE_CONTEXT], can you identify the specific

day of the week the user wishes to take the train?
0.5 0.1 Considering the conversation in [DIALOGUE_CONTEXT], can you identify the specific

day of the week the user wishes to take the train?
0.3 0.1 Considering the conversation in [DIALOGUE_CONTEXT], can you identify the specific

day of the week the user wishes to take the train?
0.1 0.1 Considering the conversation in [DIALOGUE_CONTEXT], can you identify the specific

day of the week the user wishes to travel?
0.9 0.9 Considering the conversation in [DIALOGUE_CONTEXT], can you identify the specific

day of the week the user wishes to travel?

Table 9: Sensitivity analysis of the parameters in instruction-following contrastive decoding.
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