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Abstract

Audio deepfake detection (ADD) is essential
for preventing the misuse of synthetic voices
that may infringe on personal rights and privacy.
Recent zero-shot text-to-speech (TTS) models
pose higher risks as they can clone voices with
a single utterance. However, the existing ADD
datasets are outdated, leading to suboptimal
generalization of detection models. In this pa-
per, we construct a new cross-domain ADD
dataset comprising over 300 hours of speech
data that is generated by five advanced zero-
shot TTS models. To simulate real-world sce-
narios, we employ diverse attack methods and
audio prompts from different datasets. Ex-
periments show that, through novel attack-
augmented training, the Wav2Vec2-large and
Whisper-medium models achieve equal error
rates of 4.1% and 6.5% respectively. Addition-
ally, we demonstrate our models’ outstanding
few-shot ADD ability by fine-tuning with just
one minute of target-domain data. Nonetheless,
neural codec compressors greatly affect the de-
tection accuracy, necessitating further research.
Our dataset is publicly available 1.

1 Introduction

Audio deepfakes, created by text-to-speech (TTS)
and voice conversion (VC) models, pose severe
risks to social stability by spreading misinforma-
tion, violating privacy, and undermining trust. For
advanced TTS models, the subjective score of the
synthetic speech can surpass that of the authen-
tic speech (Ju et al., 2024) and humans are often
unable to recognize deepfake audio (Müller et al.,
2022; Cooke et al., 2024). Consequently, it is im-
perative to develop robust audio deepfake detection
(ADD) models capable of identifying impercepti-
ble anomalies.

Several datasets built upon various TTS and VC
models have been released to benchmark the ADD

1https://github.com/leolya/CD-ADD

task (Yi et al., 2022; Yamagishi et al., 2021; Frank
and Schönherr, 2021; Wang et al., 2020; Yi et al.,
2023). However, these datasets mainly include
the traditional TTS models rather than the emerg-
ing zero-shot TTS models. Moreover, there is a
lack of transparency regarding the specific types of
models used within these datasets, hindering com-
prehensive analysis of cross-model performance.
Additionally, the range of attacks these datasets
consider is confined to conventional methods, ex-
cluding attacks associated with deep neural net-
works (DNNs), such as noise reduction and neu-
ral codec models. Based on the aforementioned
datasets, a multitude of detection models have been
proposed. These models incorporate diverse fea-
tures, such as the traditional linear frequency cep-
stral coefficient (Yan et al., 2022) and features de-
rived from self-supervised learning (Zeng et al.,
2023; Martín-Doñas and Álvarez, 2022), emotion
recognition (Conti et al., 2022), and speaker iden-
tification models (Pan et al., 2022). These studies
mainly concentrate on a single benchmark dataset.
To demonstrate generalization capabilities, sev-
eral studies have implemented cross-dataset eval-
uation (Müller et al., 2022; Ba et al., 2023). Fur-
thermore, to enhance the models’ generalizability,
researchers have explored the combination of data
from various sources (Kawa et al., 2022) and the
integration of multiple features (Yang et al., 2024).

In this paper, we present a novel cross-domain
ADD (CD-ADD) dataset, which encompasses more
than 300 hours of speech data generated by five
cutting-edge, zero-shot TTS models. We test nine
different attacks, including those involving DNN-
based codecs and noise reduction models. For
cross-domain evaluation, rather than adopting the
naive cross-dataset scenario, we formulate a unique
task for zero-shot TTS models by analyzing pair-
wise cross-model performance and utilizing audio
prompts from different domains. Experiments re-
veal:
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Figure 1: Zero-shot TTS architectures. a) Decoder-only.
b) Encoder-decoder.

• The cross-domain task is challenging.

• Training with attacks improves adaptability.

• The ADD model is superior in the few-shot
scenario.

• The neural codec poses a major threat.

2 Methods

2.1 Dataset Construction
As shown in Figure 1, we can categorize the zero-
shot TTS models into two types:

• Decoder-only (VALL-E (Wang et al., 2023)):
It accepts phoneme representations and the
speech prompt’s discrete codes as input, and
generates output speech codes autoregres-
sively. These codes are transformed into per-
sonalized speech signals.

• Encoder-decoder (YourTTS (Casanova et al.,
2022), WhisperSpeech (Kharitonov et al.,
2023), Seamless Expressive (Barrault et al.,
2023), and OpenVoice (Qin et al., 2023)):
An encoder extracts semantic information,
while a decoder incorporates speaker embed-
dings from the speech prompt. Together with
the vocoder, the autoregressive (AR) or non-
autoregressive (NAR) decoder generates per-
sonalized speeches. When the encoder is
trained to remove speaker-specific informa-
tion from the input speech, it transforms into
a VC model.

For zero-shot TTS, AR decoding may introduce
instability, leading to errors such as missing words.
Additionally, poor-quality speech prompts, char-
acterized by high noise levels, can result in un-
intelligible output. To address these issues, we
enforce quality control during dataset construction

Algorithm 1 Dataset construction
Require: prompts, text, retry, threshold
1: i← 0
2: success← False
3: while i < retry do
4: p← random_select(prompts)
5: audio← TTS(text, p)
6: ˆtext← ASR(audio)
7: if CER(text, ˆtext) < threshold then
8: success← True
9: break

10: end if
11: i← i+ 1
12: end while
13: return audio, success

(Algorithm 1). Specifically, we utilize an auto-
matic speech recognition (ASR) model to predict
the transcription of the generated speech. If the
character error rate (CER) exceeds the threshold,
we regenerate the speech using alternative prompts.
Utterances are discarded if the CER remains above
the threshold after a predefined number of retries. 2

Prompts from different domains are used to eval-
uate the generalizability of ADD models. Our
dataset introduces two tasks:

• In-model ADD considers all models during
both training and testing.

• Cross-model ADD excludes data from one
TTS model during training and uses data from
this TTS model only during testing.

ADD models should generalize to in-the-wild
synthetic data, which requires a well-designed
cross-model evaluation that can represent the real-
world scenario. To select the appropriate TTS
model for testing, we conduct a pairwise cross-
model evaluation, where the Wav2Vec2-base model
is trained exclusively on the data produced by a sin-
gle TTS model and subsequently evaluated on the
datasets generated by alternative TTS models. We
identify the TTS model that poses the greatest chal-
lenge, as evidenced by the high equal error rate
(EER), and use it as the test set.

2.2 Attacks

Figure 2 presents the nine attacks we test 3. For
traditional attacks, we add white Gaussian noise

2Note that we use CER rather than word error rate to
mitigate the influence of the ASR model’s limited ability to
recognize out-of-vocabulary words.

3We use the term ‘attack’ to describe perturbations to the
speech signals.
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Figure 2: Categories of tested attacks.

(Noise-white) and environmental noise (Noise-
env) (Maciejewski et al., 2020) with a signal-to-
noise ratio ranging from 15dB to 20dB, use artifi-
cial reverberation (Reverb) with a duration of 0.2
to 0.4 seconds, and apply a low-pass filter (LPF)
within the 4kHz to 8kHz range. Furthermore, we
employ lossy compression methods such as MP3
and a DNN-based Encodec model (Défossez et al.,
2022) operating at bit rates of 6kbps (Codec-6) and
12kbps (Codec-12). In terms of noise reduction,
we utilize the conventional noise gate approach
to eliminate stationary noise and the time-domain
SepFormer model (Subakan et al., 2021).

2.3 ADD Methods

We fine-tune pre-trained speech encoders for the
ADD task, namely, Wav2Vec2 (Baevski et al.,
2020) and the Whisper encoder (Radford et al.,
2022). We merge multi-layer features by using
learnable weights, and employ a classifier head
with two projection layers and one global pool-
ing layer to obtain the final logits. To adapt the
model to attacks, we consider all attacks with the
same probability on-the-fly during training. We
also consider a few-shot scenario, where we ex-
tend the cross-model evaluation by fine-tuning the
ADD model with just one minute of target-domain
speech data. This experiment simulates a situation
where only the limited synthetic speech from a TTS
model is available, such as the speech from a demo
website or a single video.

3 Experimental Setups

The training set for the CD-ADD dataset was
generated using the train-clean-100 subset of Lib-
riTTS (Zen et al., 2019), and the dev-clean and test-
clean subsets of LibriTTS, along with the test set
of TEDLium3 (Hernandez et al., 2018), were uti-
lized for the evaluation datasets. The transcriptions
were used as the input text, and the real speech sig-
nals were used as the real samples and the speech
prompts. For dataset construction, we used the five
zero-shot TTS models mentioned in Section 2.1.

Figure 3: Cross-model EER matrix, where the
Wav2Vec2-base model was trained using data generated
from a single TTS model and subsequently evaluated
on data originating from other TTS models.

We adopted a CER threshold of 10% and a max-
imum retry limit of five. For cross-model evalua-
tion, the speech from Seamless Expressive served
as the test set. Appendix A provides comprehen-
sive details on the TTS model checkpoints and the
models used for attacks, and Appendix B presents
the specific statistics of the CD-ADD dataset that
is comprised of over 300 hours of training data and
50 hours of test data.

For the ADD task, we combined our CD-ADD
dataset with the ASVSpoof2019 (Wang et al., 2020)
training set and fine-tuned the base model, which
includes Wav2Vec2 (Baevski et al., 2020) and the
Whisper encoder (Radford et al., 2022), for four
epochs with a learning rate of 3e− 5 and a batch
size of 128. For attack-augmented training, we in-
creased the number of epochs to eight, as the model
converges more slowly due to attacks. The proba-
bility of each attack was 10% and only one attack
type was used for each utterance. For the evalua-
tion metric, we adopted the widely used equal error
rate (EER).

4 Experimental Results

4.1 Pairwise Cross-Model Evaluation

As illustrated in Figure 3, the pairwise evaluation
indicates that the ADD system exhibits optimal per-
formance when both the training and testing sets
are derived from the same TTS model. This trend
holds true irrespective of the speech prompts’ do-
main (whether they originate from the in-domain
LibriTTS dataset or the cross-domain TEDLium
dataset), with the EERs consistently remaining be-
low 1%. However, in the cross-model evaluation,
the EERs vary significantly among different TTS
model combinations. For example, the Wav2Vec2-

4979



Training data Libri TED

In-model CD-ADD 0.11 0.35
CD-ADD + ASVspoof 0.07 0.12

Cross-model CD-ADD 12.14 20.34
CD-ADD + ASVspoof 7.85 21.40

Table 1: Performance of Wav2Vec2-base measured by
EER (%).

Attack
In-model Cross-model

+ Aug. + Aug.

Baseline 0.1 / 0.1 0.0 / 0.1 7.9 / 21.4 5.0 / 10.1
Noise-white 9.4 / 9.1 0.8 / 0.7 34.7 / 45.0 9.9 / 10.3
Noise-env 9.0 / 4.7 0.5 / 0.3 29.2 / 31.1 9.4 / 9.3

Reverb 13.0 / 17.1 1.1 / 1.2 29.6 / 33.1 18.1 / 23.7
LPF 1.3 / 1.2 0.1 / 0.3 14.3 / 23.4 6.6 / 8.9
MP3 0.3 / 0.2 0.0 / 0.1 13.2 / 22.1 5.4 / 8.3

Codec-12 2.9 / 1.4 0.3 / 0.3 21.4 / 31.0 11.4 / 18.3
Codec-6 7.4 / 5.2 0.9 / 1.2 30.5 / 35.2 18.5 / 28.9

Noise-gate 11.8 / 6.5 0.9 / 1.1 33.7 / 27.7 12.3 / 14.5
SepFormer 1.0 / 2.8 0.1 / 0.4 9.2 / 12.6 3.3 / 5.5

Table 2: Performance of Wav2Vec2-base under various
attacks measured by EER (%) on Libri and TED test
sets respectively. "+Aug." indicates all attacks are
included during training.

base model fine-tuned with YourTTS-synthesized
data can generalize to VALL-E-synthesized data,
achieving EERs of 0.14% and 0.61% for the Libri
and TED subsets of the CD-ADD test sets, re-
spectively. However, it struggles to generalize to
the Seamless Expressive model, resulting in much
higher EERs of 29.71% and 44.00%. This indicates
that randomly choosing a test set whose speech
data is generated by a TTS model could result in
overestimated generalizability of the ADD model,
due to shared artifacts between TTS models and
potential overfitting. Therefore, we selected Seam-
less Expressive as the test set as it has notably high
EERs. It is worth noting that the model trained on
the prevalent ASVSpoof dataset fails to generalize
to the zero-shot TTS models. However, combining
ASVspoof with the CD-ADD dataset can slightly
improve the performance (Table 1), so these two
datasets are combined by default in subsequent ex-
periments.

4.2 Comparisons Between Attacks

As shown in Table 2, without augmentation, all
attacks negatively impact the model, with more
noticeable effects in cross-model configurations.
With attack-augmented training, the Wav2Vec2-
base model demonstrates resilience against most
attacks. In the in-model setup, the EERs of the

Figure 4: Few-shot performance of three base models
measured by EER (%).

attacked models are only slightly higher than the
baseline. In the cross-model setup, a significant
decrease in EERs is observed for the augmented
model compared to the non-augmented model. No-
tably, certain attacks improve the ADD model’s
generalizability, as indicated by the reduced EERs
in the TED subset. For example, compared with
the EER of 10.1% for the baseline, the LPF reduces
the EER to 8.9%, the MP3 compression reduces
the EER to 8.3%, and the SepFormer reduces the
EER to 5.5%. All these attacks remove spectral
information and force the ADD model to rely more
on features from the low-frequency band, thus mit-
igating overfitting. However, certain attacks, such
as reverberation and the Encodec, lead to relatively
high EERs. The encoder-decoder architecture and
the vector quantization of the Encodec, especially
at lower bit rates, have the potential to obliterate
essential features for detecting synthetic speeches.

4.3 Results of Few-Shot Fine-Tuning

Figure 4 compares the cross-model ADD perfor-
mance of three base models: Wav2Vec2-base,
Wav2Vec2-large, and Whisper-medium. The
Wav2Vec2-large and the Whisper-medium mod-
els have similar performance, notably superior to
the Wav2Vec2-base model (Figure 4 (a, b)). With
the most challenging Encodec attack, the Whis-
per model performs significantly better than the
Wav2Vec2 models (Figure 4 (c, d)). We can also ob-
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serve that with only one minute of in-domain data
from Seamless Expressive, the EER can be reduced
significantly. This suggests that our models are ca-
pable of fast adaptation to in-the-wild TTS systems
with just a few samples from a demo website or a
video, which is crucial for real-world deployment.
However, we find that in-domain fine-tuning is less
effective when the audio is compressed with the
Encodec, as the reduction in EER is less significant.

5 Conclusion

In conclusion, our study presents a CD-ADD
dataset, addressing the urgent need for up-to-date
resources to combat the evolving risks of zero-shot
TTS technologies. Our dataset, comprising over
300 hours of data from advanced TTS models,
enhances model generalization and reflects real-
world conditions. This paper highlights the risks
of attacks and the potential of few-shot learning in
ADD, facilitating future research.

6 Limitation

The current CD-ADD dataset is limited to five zero-
shot TTS models. Future expansions are planned
to include a broader range of zero-shot TTS mod-
els, as well as conventional TTS and VC models,
to improve the dataset diversity. Additionally, the
attack-augmented training is constrained to a sin-
gle attack per sample, with separate analysis con-
ducted for each attack. Subsequent research will
focus on investigating the effects of combined at-
tacks. Furthermore, the performance in ADD tasks
with audio compressed by neural codecs is subop-
timal, requiring the development of optimization
strategies and the exploration of more neural codec
models.
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A Appendix: Open Source Tools

Zero-shot TTS models:

• VALL-E: https://github.com/Plachtaa/
VALL-E-X

• YourTTS: https://github.com/coqui-ai/
TTS

• Seamless Expressive: https://github.
com/facebookresearch/seamless_
communication

• WhisperSpeech: https://github.
com/collabora/WhisperSpeech?tab=
readme-ov-file

• OpenVoice: https://github.com/
myshell-ai/OpenVoice

Base models:

• Wav2Vec2-base: https://huggingface.
co/facebook/wav2vec2-base

• Wav2Vec2-large: https://huggingface.
co/facebook/wav2vec2-large

• Whisper-medium: https://huggingface.
co/openai/whisper-medium

ASR model:

• HuBERT-large-CTC: https:
//huggingface.co/facebook/
hubert-large-ls960-ft

Attacks:

• Noise-gate: https://github.com/
timsainb/noisereduce

• SepFormer: https://huggingface.co/
speechbrain/sepformer-whamr

• Codec-6/12: https://github.com/
facebookresearch/encodec
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train-clean dev-clean test-clean test-TED
Num. Total Avg. Num. Total Avg. Num. Total Avg. Num. Total Avg.

Real 18339 49.6 9.7 3111 8.2 9.5 2762 8.0 10.5 899 2.62 10.49

VALL-E 15869 41.0 9.3 2770 7.1 9.2 2275 6.1 9.6 452 1.13 9.01
Seamless Expressive 17829 42.6 8.6 3042 7.7 9.1 2717 8.0 10.6 816 2.11 9.32

YourTTS 18202 49.3 9.8 3093 8.2 9.5 2739 7.9 10.4 868 2.14 8.86
WhisperSpeech 18300 54.8 10.8 3106 9.3 10.8 2760 8.9 11.6 862 2.71 11.33

OpenVoice 18024 40.9 8.2 3099 7.0 8.18 2753 6.7 8.8 883 1.99 8.13

Table 3: The numbers of utterances (Num.), the total duration (Total), and the average duration of each utterance
(Avg.) of the CD-ADD dataset.

WER ↓ Spk. ↑
Real 2.4 1.00

VALL-E 10.1 0.56
Seamless Expressive 5.3 0.52

YourTTS 5.4 0.53
WhisperSpeech 3.2 0.56

OpenVoice 2.6 0.36

Table 4: Zero-shot TTS performance measured by WER
(%) and speaker similarity (Spk.).

B Appendix: CD-ADD Dataset

Table 3 presents the statistics of the CD-ADD
dataset. The average utterance length exceeds
eight seconds, which is longer than that of tradi-
tional ASR datasets. The number of utterances for
TTS models is less than that of real utterances be-
cause some synthetic utterances fail to meet the
CER requirements. Among them, VALL-E has the
fewest utterances due to the decoder-only model’s
relative instability. Table 4 compares five zero-
shot TTS models in terms of the word-error-rate
(WER) and speaker similarity. Speaker similarity
is based on the LibriTTS test-clean subset, where
ECAPA-TDNN is used to extract speaker embed-
dings. VALL-E and WhisperSpeech have the high-
est speaker similarity scores, while OpenVoice
ranks lowest. Conversely, VALL-E achieves the
highest WER, and OpenVoice has the lowest.
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