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Abstract

Is it always necessary to compute tokens from
shallow to deep layers in Transformers? The
continued success of vanilla Transformers and
their variants suggests an undoubted “yes”.
In this work, however, we attempt to break
the depth-ordered convention by proposing a
novel architecture dubbed mixture-of-modules
(MoM), which is motivated by an intuition that
any layer, regardless of its position, can be
used to compute a token as long as it possesses
the needed processing capabilities. The con-
struction of MoM starts from a finite set of
modules defined by multi-head attention and
feed-forward networks, each distinguished by
its unique parameterization. Two routers then
iteratively select attention modules and feed-
forward modules from the set to process a to-
ken. The selection dynamically expands the
computation graph in the forward pass of the
token, culminating in an assembly of modules.
We show that MoM provides not only a unified
framework for Transformers and their numer-
ous variants but also a flexible and learnable
approach for reducing redundancy in Trans-
former parameterization. We pre-train vari-
ous MoMs using OpenWebText. Empirical
results demonstrate that MoMs, of different pa-
rameter counts, consistently outperform vanilla
transformers on both GLUE and XSUM bench-
marks. More interestingly, with a fixed pa-
rameter budget, MoM-large enables an over
38% increase in depth for computation graphs
compared to GPT-2-large, resulting in absolute
gains of 1.4 on GLUE and 1 on XSUM. On the
other hand, MoM-large also enables an over
60% reduction in depth while involving more
modules per layer, yielding a 16% reduction in
TFLOPs and a 43% decrease in memory usage
compared to GPT-2-large, while maintaining
comparable performance. 1

*Equal Contributions.
†Corresponding authors.
1Code is available at https://github.com/gzhch/Mixture-of-

Modules

1 Introduction

Transformer-based language models (Vaswani
et al., 2017) have demonstrated remarkable abilities
across a wide range of challenging natural language
tasks (Bubeck et al., 2023). In addition, the suc-
cess of Transformer in natural language processing
(NLP) is also inspiring innovations in other fields
such as computer vision (Peebles and Xie, 2023;
Agostinelli et al., 2023) and biomedicine (Singhal
et al., 2023; Madani et al., 2023). A Transformer
architecture typically consists of stacked layers that
are identical in structure, whereby layers are orga-
nized in the order of depth, using the output of the
previous layer as the input for the next. While this
design convention has been widely accepted as a
matter of course in the Transformer era, we seek
to challenge it by reconsidering whether the static
and depth-ordered organization can fully unleash
the potential of Transformers, given their well-
known issues with over-parameterization (Zeng
et al., 2023) and efficiency (Raposo et al., 2024).

Before us, some rudimentary studies have
touched on the question–they dissect Transformer
into modules such as attention heads and feed-
forward networks (FFNs) and allow relatively flex-
ible module call order. For example, Mixture-
of-Experts (MoE) (Shazeer et al., 2017)) sets up
multiple FFNs within the same layer and acti-
vates a specific subset during inference. Early-
exiting (Zhou et al., 2020; Xin et al., 2020; Schus-
ter et al., 2022) and Mixture-of-Depths (MoD) (Ra-
poso et al., 2024)) bypass certain layers when com-
puting each token. On the one hand, these efforts
indeed lead to improvements in terms of either
efficacy or efficiency through the introduction of
dynamic mechanisms into the vanilla structure of
Transformers, and thus corroborate our questioning
regarding the established convention; on the other
hand, they still follow the depth-ordered paradigm
(i.e., tokens are passed from shallow layers to deep
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layers), leaving significant room for better architec-
tures.

In this work, we completely disrupt the tradi-
tional practice in the design of Transformers by
breaking down the depth-ordered organization. Nu-
merous studies have indicated that knowledge in
Transformers is often dispersed across multiple
FFNs in different layers (Geva et al., 2021; McGrath
et al., 2023; Lv et al., 2024), and many attention
heads serve similar or identical functions, such as
copying specific token information towards the end
position of the input (Olsson et al., 2022; Wang
et al., 2023). Encouraged by this evidence, we pose
the question of whether the computation of a token
can “move” freely across layers, that is the token
can be computed by flowing to modules in deeper
layers, sticking to modules of the same layer, or
even going back to modules in previous layers. To
answer the question, we propose a novel architec-
ture dubbed Mixture-of-Modules (MoM) in which
the core idea is to define a neural network as dy-
namic assemblies of modules derived from vanilla
Transformer, as depicted in Figure 1.

The basis of MoM is a finite set of modules.
Each module is defined by multi-head attention
(MHA), a feed-forward network (FFN) (including
Add & Norm), or a specialized module labeled
“SKIP”. Each MHA or FFN module is identical in
structure and different in parameterization. SKIP
enables skip operations for arbitrary tokens at ar-
bitrary time steps. Given a token, each time two
routers select modules from the set and integrate
the modules into the computation graph during the
forward pass. Hence, the whole computation graph
of the token is formed as an assembly of modules,
and the routers learn to optimize the organization
of the modules in the assembly. We introduce a
two-phase approach for training MoM models. In
the first phase, we pre-train a vanilla Transformer
on a large-scale corpus. Then, in the second phase,
we decompose the pre-trained Transformer into
modules as a warm-up of MoM, randomly initial-
ize the routers, and further update both the modules
and the routers under the mechanism of dynamic
assembly.

MoM has three major advantages over existing
Transformer-based architectures: (1) it provides a
unified framework for various Transformer variants,
incorporating popular methods such as mixture-
of-experts, early-exiting, and mixture-of-depths as
special cases. The framework sheds light on ar-
chitecture design for future works; (2) it brings

unprecedented flexibility in forward computation.
With the dynamic assembly mechanism, the con-
ventional concept of “depth” now has a new in-
terpretation: it refers to the number of routings
performed per token. Useful modules such as spe-
cific attention heads can be repeatedly utilized as
long as they are capable of processing. Hence,
MoM offers a dynamic and learnable approach to
reducing redundant parameters in Transformers;
and (3) it offers efficient structures that achieve per-
formance comparable to vanilla Transformers but
require significantly fewer FLOPs and less memory
in forward computation.

We pre-train MoM in three sizes–122M (small),
346M (medium), and 774M (large)– using Open-
WebText (Gokaslan and Cohen, 2019), and assess
their performance with GLUE benchmark (Wang
et al., 2018a) and XSUM (Narayan et al., 2018b).
Empirical results indicate that (1) MoMs consis-
tently outperform vanilla GPT-2 models on both
text understanding and generation tasks; (2) param-
eters are quite redundant in vanilla Transformers.
MoM can hold the comparable performance after
removing 50% of the MHA modules and 25% of the
FFN modules; and (3) for those concerned with ef-
ficiency, MoM-large can reduce TFLOPs by 16%
and memory usage by 42% in forward computa-
tion, while maintaining comparable performance to
GPT-2 (774M), via properly increasing the number
of modules and compressing the model depth.

Our contributions are three-fold: (1) proposal of
Mixture-of-Modules to disrupt the depth-ordered
convention in Transformer construction, and rein-
vent Transformers as dynamic assemblies of mod-
ules; (2) empirical verification of the efficacy of
Mixture-of-Modules on GLUE benchmark and
XSUM; and (3) a series of new insights into the
over-parameterization issue of vanilla Transform-
ers, and their implications for future architecture
design.

2 Related works

MoM owns a dynamic mechanism of module selec-
tion and combination, and thus is related to condi-
tional computation techniques (Bengio et al., 2013;
Davis and Arel, 2014; Cho and Bengio, 2014). Ex-
isting work on conditional computation can be cat-
egorized into two groups: dynamic depth and dy-
namic width. In these fields, terms such as gating
and routing are used interchangeably, hereafter re-
ferred to as “routers” for clarity in presentation.
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Figure 1: Mixture-of-Modules reinvents Transformers as dynamic assemblies of modules. In Figure (b), we illustrate
the ongoing construction of an MoM model during the forward computation. The assembly lasts H rounds, with
the current illustration showcasing progress in the third round. For each token, routers select the best K attention
modules, denoted as mA

k , and the best K feed-forward network modules, denoted as mF
k, from a module set M

(including “SKIP” modules). These selected modules collectively constitute assembled modules FA and FF, which
are then appended to the existing computation graph. Detailed notations are presented in §3.

As a typical approach in dynamic depth, Early-
exiting (Graves, 2016; Figurnov et al., 2017;
Schuster et al., 2022) accelerates model inference
through terminating forward computation at in-
termediate layers. The decision to exit often re-
lies on confidence-based metrics (Elbayad et al.,
2020; Varshney et al., 2023; Xin et al., 2020) or
pre-determined strategies (Liu et al., 2020; Corro
et al., 2023). With some degree of generalization,
Layer-skip (Srivastava et al., 2015; Wang et al.,
2018b; Bapna et al., 2020) represents a more adap-
tive variant of early-exiting, enabling certain layers
to be skipped without terminating the entire for-
ward computation. Existing works mainly facilitate
it by training a router (Zeng et al., 2023; Raposo
et al., 2024) or layer pruning (Yang et al., 2024;
Kim et al., 2024). Finally, if we view parameter
copying as a particular way to increase network
depth with controlled model size, then some pa-
rameter sharing methods (Dehghani et al., 2019;
Lan et al., 2020), wherein certain modules or lay-
ers share parameters, also fall in the dynamic depth
group.

In terms of dynamic width, Mixture-of-Experts
(MoE, (Shazeer et al., 2017; Lepikhin et al., 2021;
Fedus et al., 2022)) is a representative method. An
MoE model conceptualizes an FFN module as an
“expert” for storing knowledge. Comprising mul-
tiple such experts, an MoE layer replaces the tra-
ditional FFN layer within Transformers, aiming
for superior performance in handling knowledge-
related tasks. During forward computation, a router
network dynamically assigns each token to the top
K experts out of a total of N experts, thereby in-
creasing the maximum network width by K times.

Other dynamic width methods, such as CODA (Lei
et al., 2024) and CoLT5 (Ainslie et al., 2023), use
similar routing mechanism to select whether a to-
ken passes through a heavy or light pathway for not
only each FFN layer but also each attention layer.

MoM breaks the depth-ordered paradigm fol-
lowed by existing approaches when performing for-
ward computation. It not only unifies a number of
approaches described above but also offers a more
flexible and learnable way to achieve conditional
computation.

3 Methodology

The idea of Mixture-of-Modules (MoM) is inspired
by the “society of mind” theory by Marvin Min-
sky (Minsky, 1986), which explains the true intel-
ligence as certain and very special ways of combi-
nations of simple and modular units (in the book,
they are termed “agents”). In §3.1, we first provide
an overview of MoM. Then, we detail the assembly
of modules and the routers in §3.2 and §3.3. After
that, we present the training procedure of MoM
in §3.4. Finally in §3.5, we show that MoM uni-
fies various techniques of dynamic computation
allocation within Transformers as special cases.

3.1 Mixture-of-Modules (MoM)

Before delving into the details, we first give a brief
description of the workflow of MoM. MoM views
the construction of an H-depth transformer as an
H-step iterative assembly process. In each assem-
bly step, router R dynamically selects K modules
from a module set M for each token. Then these
selected modules are assembled guided by the as-
sembling function ϕ. Formally, MoM can be de-
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fined by a 5-tuple < M,R, ϕ,K,H >.
M is the set that contains all possible modules,

where modules are defined as atomic units that
could be assembled. There are two types of mod-
ules in a Transformer model, i.e., the multi-head
self-attention module (MHA) and the feed-forward
network module (FFN), denoted as mA and mF, re-
spectively. In addition, denote the input hidden
state of a Transformer layer as x ∈ Rd, we include
a special module mS : x 7→ x in M, which means
the absence of an operation applied to the token,
allowing for skipping one round of computation.
Therefore, in MoM, we have:

M = {mA
i }NA

i=1 ∪ {mF
i }NF

i=1 ∪ {mS}, (1)

where NA are NF refer to numbers of MHAs and
FFNs, respectively.
R is a router responsible for dynamically select-

ing appropriate modules from M and assembling
them into the computation graph. We use distinct
routers for MHAs and FFNs, denoted as RA and RF

respectively. The output of the router RX is an
(NX + 1)-dimensional distribution wherein each
item represents the weight assigned to each module
mX

i as well as mS. Formally:

RX : x 7→ rX ,

x ∈ Rd, rX ∈ RNX+1, X ∈ {A,F}.
(2)

An MoM model is dynamically assembled step
by step. In each step, based on the output of
RX , KX modules are selected from M and as-
sembled together. The assembly process lasts H
steps, as detailed in §3.2. Further elaboration on
these routers, including their architecture and the
working pipeline, is deferred to §3.3. Notably, in
MoM, dynamic assembly occurs at the token level,
wherein each token is independently and dynam-
ically assigned by routers to appropriate modules
for processing.

3.2 Dynamic assembly of modules

We delve into how an MoM model is dynamically
assembled. The construction is an iterative process
where in the h-th step (i.e., the h-th layer of the
model being constructed), we have the input xh.
The subscript h is omitted when there’s no ambi-
guity. The router R selects K modules with the
largest routing weight. We denote the indices of
the selected modules as KX = {i|ri ∈ TopK(rX )}.
Then the selected modules are assembled together

through the assembling function ϕ. Formally,

ϕ : < M,RX ,xh > 7→ FX
h , X ∈ {A,F},

(3)
where FX

h represents the assembled modules.
These assembled modules transform the input xh

into the output xh+1. We hope the role of the h-th
step of MoM assembly is somewhat akin to the
h-th Transformer block in the conventional sense.
Therefore, we establish two rounds of routing and
assembling in each assembly step: one for MHA
and the other for FFN. The forward computation
of MoM models at the h-th step assembly can be
represented as:

uh = FA
h (xh) + xh,

xh+1 = FF
h(uh) + uh.

(4)

We employ Pre-norm in MoM, which normalizes
the input before feeding to assembled modules FX .
The dynamic assembly process is depicted in Fig-
ure 1(b). We now introduce the detailed formaliza-
tion for FA and FF, respectively.

Assembly of attention modules (FA). We
begin by considering the scenario where the mS

module is not selected by routers. Suppose that an
MHA module contains Z individual heads, then the
assembly of KA MHA modules (i.e., the computation
process of o = FA(x)) is defined as:

o = a
∑

k∈KA

rA
k ·WO

k ,

rA = RA(x) =
(
rA
1 , . . . , r

A
k , . . . , r

A
KA

)
,

a =


x

∑

k∈KA

WV
k,z


 ·

softmax

(
(X
∑

k∈KA
WQ

k,z)(X
∑

k∈KA
WK

k,z)
⊤

√
dhead

)
,

(5)

where X ∈ RL×d is the input representation
of the sequence, WQ

k,z,W
K
k,z,W

V
k,z ∈ Rd×dhead ,

and WO
k ∈ Rdhead×d are weight matrices with

dhead = d/Z. When the mS module is selected,
the operation of FA only involves the remaining
KA − 1 attention modules. It is worth noting that
our modification to the standard attention mecha-
nism does not affect the KV-cache technique.

Assembly of feed-forward networks (FF).
The assembly of FF is more modular, where the
outputs of KF modules are simply weighted and
aggregated. When the mS module is not selected,
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FF can be formalized as follows:

FF(u) :=
∑

k∈KF

rF
k ·mF

k(u),

rF = RF(x) =
(
rF
1 , . . . , r

F
k, . . . , r

F
KF

)
.

(6)

When mS is chosen, likewise, only KF − 1 FFNs
form the FF.

3.3 MoM router (R)
In prior approaches, routing occurs as a one-step
decision-making process within a layer. How-
ever, in MoM which possesses a dynamically con-
structed computation graph, each decision is in-
terdependent with the preceding ones, influencing
the entire forward computation. Consequently, the
router in MoM necessitates an awareness of past
decisions. To model such dependency, we employ
a gated recurrent unit (GRU, (Cho et al., 2014))
as the backbone of routers. Two routers in MoM
are identical in structure. At each assembly step,
the GRU in the RX maintains an sXh as the hidden
state of the GRU network. This state is recurrently
updated as follows:

sA
h = GRUA(xh, s

A
h−1),

sF
h = GRUF(uh, s

F
h−1).

(7)

The weights assigned to each module by RX are
computed as:

rX = WX sXh ,

WX ∈ R(NX+1)×d, X ∈ {A, F}.
(8)

3.4 Training approach
A straightforward approach is to pre-train an MoM
model initialized from scratch. This approach,
however, suffers from a degeneration issue, as
the learned functions of modules become homo-
geneous, making router training challenging. To
address the issue, we propose a two-phase training
approach. In the first phase, we pre-train a vanilla
Transformer where modules acquire distinct func-
tionalities. Then, in the second phase, we initialize
the module set M with the pre-trained modules and
initialize the routers from scratch. Subsequently,
we continue training both modules and routers us-
ing the same data and objective as in the first phase.

3.5 MoM as a unified framework
A compelling property of MoM is that it unifies a
wide range of Transformer-based dynamic compu-

tation allocation architectures. With specific con-
figurations, layer-skip (e.g., early-exiting, mixture-
of-depths, etc.), parameter sharing, and mixture-of-
experts can be viewed as special cases.

Layer-skip. The key idea is to skip layers ac-
cording to certain criteria which can either be de-
fined heuristically (Liu et al., 2024) or learned
from data (Zeng et al., 2023; Raposo et al., 2024).
Within the MoM framework, layer-skip can be for-
mulated as a special cluster of assembly functions
ϕ, namely:

ϕlayer-skip(M,RX ,xh) =

{
mX

h if cskip(h) = 1

mS if cskip(h) = 0
,

(9)
where cskip(·) is the criterion that decides whether
to skip the h-th layer or not. Note that the technique
of early-exiting (Graves, 2016; Figurnov et al.,
2017) can be viewed as a special case of layer-
skip, where once a layer is skipped, all subsequent
layers will be skipped too.

Parameter sharing. We consider parameter shar-
ing that shares weights across modules and does
not involve reparameterization techniques. Under
this restriction, the sharing paradigm can be defined
as a criterion function cshare : i 7→ j (j ≤ i), rep-
resenting using the same weights for module mX

i

and module mX
j . Within MoM, parameter sharing

can be formulated as:

ϕparameter-sharing(M,RX ,xh) = mX
cshare(h)

. (10)

Mixture-of-Experts. MoE splits FFN into ex-
perts, and the experts are not shared across different
layers. In MoE, routing is only performed on FFN
modules, thus the computation of MHA is the same
as that of a vanilla Transformer. The assembly
function for MoE can be written as:

ϕMoE(M,RX ,xh) =

{
mA

h if X = A
ϕMoM(Mh,RF,xh) if X = F

,

(11)

where Mh = {mF
h,i}NF

i=1 is the collection of ex-
perts for layer h.

Figure 2 illustrates the forward computation pro-
cess across different methods, offering an intuitive
presentation of the versatility and universality in
MoM.
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Figure 2: Visualization of forward computation of five models, where each consists of only two layers just for
demonstration purposes. The switch icon symbolizes the selective execution of one (in Layer-skip) or more (in
MoE and MoM) subsequent computation pathways.

4 Experiments

4.1 Experimental setup

We implement language models with MoM since
language modeling is a challenging task requiring
both language understanding and generation ability,
thereby effectively evaluating MoM and baselines.
Below, we elaborate on the implementation details
of MoM, baselines, and evaluation setups.

Implementation details. We conduct experi-
ments on three model scales, which we denote
as MoM-small, MoM-medium, and MoM-large.
These models contain 112M, 346M, and 774M pa-
rameters respectively. Detailed configurations can
be found in Appendix A. The vanilla transformer
used for initializing MoM are official GPT2 check-
points downloaded from HuggingFace2. K and
H represent two hyper-parameters of MoM. We
denote a configuration where K = a,H = b as
KaHb. If the skip module is included in M, we
append the suffix S to KaHb.

In the two-phase training, we exploit Open-
WebText (Gokaslan and Cohen, 2019) as the pre-
training dataset, and pre-process the data with the
same pipeline as nanoGPT (karpathy, 2023). Open-
WebText contains 9 billion tokens after tokeniza-
tion, from which 4 million tokens are randomly
sampled as the validation set. The training se-
quence length for every input is 1, 024. We set the
learning rate to 1e-3 with a warm-up ratio of 0.1
throughout the two phases, and do not use dropout.
All models are trained on 8 × A100 GPUs with a
total batch size of 8 × 64. Two training phases re-
quire 20k and 10k optimization steps, respectively.

In practice, considering the large search space
characterized by H and K, we confine the architec-

2https://huggingface.co/openai-community/gpt2

ture search space to a practical scale with a “chunk-
ing” strategy. An MoM is divided into several
chunks. Each chunk is independent and param-
eterized with identical H and K. We present a
detailed description and specific configuration in
Appendix A, and an empirical analysis of the effi-
cacy of chunking in Appendix B.

Baselines. In addition to the vanilla Transformer
model (Radford et al., 2019), the following models
(or methods) are also employed as baselines: (1)
MoD (Raposo et al., 2024): a layer-skip method
proposed recently that dynamically routes around
Transformer blocks.3 (2) MoE: the mixture-of-
experts architecture utilized by Mixtral. We imple-
ment the model with the open-sourced code.4 (3)
MoE (share): a variant of MoE in which all lay-
ers share the same set of experts. We involve this
model as a baseline because unlike the standard
MoE that has more parameters, MoE-share has the
same number of parameters with the vanilla Trans-
former model, making the comparison more fair.
Moreover, it also sheds light on how well the MoE
architecture can utilize a fixed budget of modules.

Note that all the above-mentioned methods are
special cases within the MoM framework with var-
ious configurations. Furthermore, we explore a
wide range of MoM instances defined by KaHbS,
where a ≤ 4 and b ≤ 6. We examine all MoM in-
stances within the search space (as detailed in §4.3),
and spotlight three distinct models for comparison
against other baselines:
• MoMP (K2H6S) represents a Performant

MoM model after tuning K and H .

3As official code is unavailable until the submission, we
follow the paper to implement MoD ourselves.

4https://github.com/huggingface/transformers/
blob/v4.36.1/src/transformers/models/mixtral/
modeling_mixtral.py
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Methods MoM Config Parameter Computation Memory Validation Validation GLUE XSUM
ϕ (KaHb) Count Cost (TFLOPs) Cost (Gb) Loss Perplexity (Average) (Average)

small

GPT2 K1H4 122M 2.92 2.98 3.10 22.22 75.32 14.26
MoD K1H4S 122M - - 3.22 25.11 72.24 9.71
MoE K2H4 283M 3.81 (+30.5%) 2.98 (+0.0%) 3.07 21.18 77.25 14.18
MoE (share) K2H4 122M 3.81 (+30.5%) 2.98 (+0.0%) 3.14 23.41 75.82 14.15
MoME K3H1S 122M 2.45 (-16.1%) 2.45 (-17.8%) 3.16 23.59 75.92 14.17
MoMI K3H2S 122M 3.49 (+19.5%) 2.63 (-11.7%) 3.03 20.79 77.81 14.24
MoMP K2H6S 122M 5.04 (+72.6%) 3.34 (+12.1%) 2.98 19.59 78.22 15.19

medium

GPT2 K1H4 346M 8.28 4.74 2.81 16.69 80.49 18.14
MoD K1H4S 346M - - 2.99 19.82 76.17 14.81
MoE K2H4 921M 11.37 (+37.3%) 4.74 (+0.0%) 2.80 16.53 80.47 17.75
MoE (share) K2H4 346M 11.37 (+37.3%) 4.74 (+0.0%) 2.82 16.81 80.35 17.59
MoME K3H1S 346M 6.80 (-17.9%) 3.33 (-29.7%) 2.83 16.91 80.41 17.11
MoMI K3H2S 346M 10.20 (+23.2%) 3.80 (-19.8%) 2.77 15.89 81.03 18.66
MoMP K2H6S 346M 16.23 (+96.0%) 5.69 (+20.0%) 2.72 15.18 81.93 19.30

large

GPT2 K1H4 774M 17.76 7.20 2.66 14.33 84.47 20.35
MoD K1H4S 774M - - 2.81 16.62 81.49 18.62
MoE K2H4 2100M 25.43 (+43.2%) 7.20 (+0.0%) 2.64 14.17 84.43 20.63
MoE (share) K2H4 774M 25.43 (+43.2%) 7.20 (+0.0%) 2.65 14.22 83.83 20.39
MoME K3H1S 774M 14.84 (-16.4%) 4.13 (-42.6%) 2.66 14.50 83.39 20.46
MoMI K3H2S 774M 20.31 (+14.5%) 5.15 (-28.5%) 2.64 13.92 84.49 21.73
MoMP K2H6S 774M 36.07 (+103.1%) 9.24 (+28.3%) 2.60 13.21 85.90 22.36

Table 1: Comprehensive comparison between MoMs and baselines. We highlight the best results in bold and
underline the second-best results. Appendix C includes the detailed performance on GLUE and XSUM.

• MoME (K3H1S) significantly enhances
Efficiency compared to vanilla Transformers, while
maintaining acceptable performance.
• MoMI (K3H2S) serves as a midpoint in config-

urations between the two preceding models. This
model is positioned between the efficiency and the
performance. We aim to highlight MoM’s fea-
ture of performance and efficiency Interpolation
through configuration interpolation.

Evaluation settings. We employ GLUE bench-
mark (Wang et al., 2018a) to evaluate the language
understanding ability of MoMand XSUM (Narayan
et al., 2018a) to evaluate the text generation ability.
All models are fine-tuned with a learning rate of
2e-5. The sequence is 128 for GLUE and 1024 for
XSUM. For smaller GLUE sub-datasets (CoLA,
STS-B, MRPC, and RTE), we set the batch size
to 32 and train for 3 epochs. For larger datasets
(MNLI, QNLI, QQP, and SST-2), we utilize a batch
size of 64 and perform training for a total of 8, 000
gradient steps. For XSUM, we set the batch size to
64 and train for 3 epochs. For efficiency evaluation,
we report inference TFLOPs and memory usage.
TFLOPs are calculated using DeepSpeed FLOPs

profiler (DeepSpeed, 2023) and memory consump-
tion is calculated with PyTorch toolkits (pytorch,
2023).

4.2 Main results

Table 1 reports the evaluation results. Our analysis
yields the following conclusions:

MoM unleashes the potential of Transformers
and our initial motivation is confirmed. When
maintaining the number of parameters, MoMP is
characterized by the deepest computation graph
(H). Across all model scales, MoMP consis-
tently outperforms all baselines on both GLUE
and XSUM by significant margins. The enhanced
performance of MoMP validates our initial moti-
vations: (1) the traditional depth-ordered layer or-
ganization is sub-optimal; (2) improvements can
be realized through two key modifications to the
computation graph, including dynamic module or-
ganization and improved parameter utilization.

MoME is characterized by its minimum depth
(H). By strategically selecting appropriate mod-
ules at each assembly step, MoME strives to re-
duce memory and computation costs while main-

20930



taining performance. Although on medium and
large scales, MoME is slightly surpassed by a
vanilla Transformer, it outperforms MoD, another
efficiency-driven method by a large margin.

Besides, we observe that MoMI archives a de-
cent performance by slightly outperforming vanilla
GPT2. Comparing to vanilla GPT2, MoMI con-
sumes no more than 25% extra computation but
save at most 28.5% memory across all scales, indi-
cating that MoMI achieves a good balance between
performance and efficiency.

1 2 3 4
NA

1
2

3
4

N
F

+0.384 +0.555 +0.254 +0.254

+0.218 +0.169 +0.116 +0.096

+0.107 +0.065 +0.058 +0.056

+0.031 -0.005 +0.001 +0.000

Figure 3: How validation loss varies with respect to
NA and NF, comparing to MoM (medium) with NA =
NF = 4.

MoM models provide insights into the over-
parameterization issue quantitatively. We de-
velop a series of MoM models, each defined by
different pairs of (NA, NF), with both values not
exceeding 4. We assess the validation loss increase
for each model relative to the benchmark model
where NA = 4 and NF = 4, as illustrated in Fig-
ure 3. In this experiment, we set K equal to the
number of modules to make full use of the module
parameters. Interestingly, the FFN and MHA modules
exhibit different degrees of redundancy. Specifi-
cally, when NF is fixed and the number of MHAs
is gradually reduced, a significant increase in loss
is not observed until NA is reduced from 2 to 1,
suggesting considerable redundancy in the MHAs
of Transformers. In contrast, when fixing NA and
reducing the number of FFNs gradually, each time
of removing an FFN leads to evident loss increase,
indicating FFNs are less over-parameterized. These
quantitative findings align with previous research
suggesting that the parameterization of attention
can be simplified to enhance efficiency while main-
taining performance (DeepSeek-AI, 2024; Shazeer,
2019).

As the parameter size scales up, MoM mod-
els enjoy consistent gains in both performance
and efficiency. When we look into the differ-
ence across different scales, we observe that (1)
the performance gain of MoM is stable; (2) MoME-
medium and MoME-large exhibit more significant
reductions in resource costs comparing to MoME-
small. These observations across different scales
reinforce our previous motivation: Transformers
are over-parameterized, which becomes more evi-
dent as the model size increases.

4.3 Insights from hyper-parameter search

Figure 4 shows how the validation loss for MoM-
small and MoM-medium varies with respect to
different settings of K and H (K ∈ {1, 2, 3, 4},
H ∈ {1, 2, 3, 4, 5, 6}). From this experiment, we
have the following observations and insights: (1) al-
lowing more modules to be assembled at each step
(i.e., larger K) and more rounds of assembling ac-
tions (i.e., larger H) generally leads to better perfor-
mance, indicating that Transformer-based models
benefit from a larger computation graph even if the
parameter size remains the same. However, (2) the
benefits of increasing K and H become marginal
when K > 2 and H > 1. Comparing K3H1 to
K2H6, we can see that the validation loss is com-
parable, while K3H1 performs slightly worse on
downstream tasks as discussed in §4.2. However,
K3H2 improves efficiency by flattening the depth,
making it a good choice that balances performance
and efficiency. Flattening modules from different
depths to the same depth cancels computation de-
pendencies of each other. This characteristic brings
an extra benefit because the computation of mod-
ules from the same depth can be parallelized. This
technique has been validated and adopted in MoE
applications (Fedus et al., 2022; Lepikhin et al.,
2021) (called expert parallelism) and can be easily
extended to further accelerate MoM (K3H2).
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Figure 4: Validation loss for MoM-small and MoM-
medium under different settings of K and H .
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5 Conclusions

In this work, we propose Mixture-of-Modules
(MoM), a novel architecture that reinvents trans-
formers as a collection of individual modules and
the dynamic assembly process conducted with
these modules. This novel view offers us an oppor-
tunity to explore a wide range of different configu-
rations of model architecture and unify a series of
transformer variants. With exhaustive experiments,
we not only validate the effectiveness of MoM by
both significant efficiency and performance gains
but also reach new insights about Transformers.

Limitations

Our current design of the router still has room
for improvement. Unlike MoE wherein the router
makes one-time decisions about which experts to
select, the router of MoM is responsible for con-
ducting multi-step decision-making. In this sce-
nario, instructing the router to make correct deci-
sions continuously is a hard question since the de-
cision space grows exponentially with the increase
of assembly steps. The current implementation has
not considered this question and has not explic-
itly encouraged or discouraged the router to make
some choices, thus, we are not sure whether the
learned routing decisions are optimal or not. In the
future, we will explore using techniques like rein-
forcement learning or neural architecture search to
design more sophisticated routers.
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A More implementation details

Table 2 lists the configuration of MoM-
small/medium/large.

In practice, we segment MoM into equally-sized
chunks, each containing 4 MHA modules and 4 FFN
modules, namely N = 4. Within each chunk, we
execute the MoM assembly process as presented
in §3. We restrict the search space of each chunk
by setting K ≤ 4 and H ≤ 6, which results in
4× 6 = 24 combinations in total.

Then we elaborate on the initialization of chun-
ked MoM. We take the 8-layer vanilla trans-
former as an example. We slice it this way:
the bottom/top 2 layers remain the same, and
modules in the middle 4 layers form a MoM
block, wherein we conduct the iterative assem-
bly process. We denote this chunking strategy
as [1-1-4-1-1] where “1" represents the stan-
dard Transformer block and “4" represents a chunk
whose N equals to 4. Empirically, we find this
setting to be stable across various choices of
KaHb. A detailed experimental analysis of differ-
ent chunking strategies can be found in Appendix B.
Similarly, for MoM-small, MoM-medium and
MoM-large, we use the chunking strategies of
[1-1-4-1-4-1], [1-1-1-4-1-4-1-4-1-4-1-1],
and [1-4-1-4-1-4-1-4-1-4-1-4-1-4-1], re-
spectively.

B Chunks

In this section, we study the impact of different
chunking strategies on MoM performance. This ex-
periment is conducted on an 8-layer MoM. Except
for [1-1-4-1-1], we include several alternatives:
[4-4] (two successive MoM block with N = 4),
[1-6-1] (the top and bottom one layer unchanged,
modules in the middle 6 layers form a MoM with
N = 6), and [8] (all modules forms a big MoM
with N = 8). Table 3 shows the results of differ-
ent chunking strategies. When K = 1, strategies
other than [1-1-4-1-1] exhibit unstable training
curves and bad performance. This is because the
routers need to make multi-step decisions in the
search space. A larger search space (the increase
of N ) and more assembly steps (the increase of H)
all lead to a harder task for the routers to find the
correct path in the search space. Things are much
better when K = 2, where all strategies converge
quite well. This experiment demonstrates the ne-
cessity of manually restricting the search space of
MoM so that the decision-making burden for the

routers would be relieved.

C More downstream evaluation results

Table 4 presents the evaluation results for each
subtask of GLUE across different models and Table
5 presents the detailed results on XSUM dataset.

Table 6 presents the zero-shot evaluation results
for each subtask of SuperGLUE (Wang et al., 2019).

D Router analysis

D.1 Architecture design
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Figure 5: Training curves of MoM-small (K1H4) with
{GRU, MLP} routers.

We study the implementation of a key com-
ponent in MoM: the routers. We substitute the
GRU within the router with a simple two-layer
MLP, eliminating the interaction among router de-
cision states. Our exploration of the router’s impact
involves two setups: (a) initializing MoM from
scratch, and (b) employing the two-phase training
approach. Here are some intriguing results. As de-
picted in Figure 5, when initializing from scratch,
both router structures exhibit nearly identical loss
curves. However, under setting (b), training MoM
with the MLP router becomes unstable marked by
spikes in gradient magnitude throughout the train-
ing. This instability suggests the router’s inability
to establish a consistent assembly plan for tokens.
When initializing from scratch, the required ca-
pability may not be learned efficiently by these
modules, as they often develop homogeneous func-
tionalities that waste the parameters. Conversely,
in setting (b), where modules are initialized with
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MoM-small MoM-medium MoM-large

Initialization model GPT2-small GPT2-medium GPT2-large
Hidden size 768 1024 1280

Total number of FFN/MHA modules 12 24 36
Number of attention heads 12 16 20

Max sequence length 1204 1024 1024
Vocabulary size 50257 50257 50257

Table 2: Model configurations for MoM-small/medium/large.

Chunking Strategies MoM Config Val. Loss

[1-1-4-1-1] K1H4S 3.27
[1-1-4-1-1] K2H4S 3.22
[1-6-1] K1H6S 3.45
[1-6-1] K2H6S 3.21
[8] K1H8S 4.63
[8] K2H8S 3.23
[4-4] K1H4S 5.59
[4-4] K2H4S 3.22

Table 3: Applying different chunking strategies on an
8-layer MoM. These models follow the same two-phase
training procedure and the total training steps of the
second phase is 5k.

specialized functions, the optimization progresses
smoothly and converges quickly.

D.2 Learned router patterns

We are curious whether the router follows spe-
cific patterns when choosing and assembling mod-
ules. We visualize the transition probabilities be-
tween modules (Figure 6) to answer this. The
first observation is that the router does not de-
grade into simply memorizing the original shallow-
to-deep order but jumps across modules as ex-
pected. For example, a common routing path in
Figure 6 is (2, 2, 1, 3, 4, 2) for FFN modules and
(3, 1, 3, 2, S, 4) for MHA modules (number repre-
sents the module index). Another observation is
that the loads of different modules are imbalanced.
In some cases, specific modules are hardly used.
Unlike MoE, which uses an auxiliary loss to bal-
ance the loads across different experts (Fedus et al.,
2022), we do not see a positive effect by adding a
balance loss to MoM. Adding regularization allevi-
ates the imbalance issue at the cost of performance
degradation (by increasing validation perplexity
by 1.8 points). We posit an intuitive explanation:
within the language model framework, tasks that
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Figure 6: Routing patterns of MoM-medium.

can be decomposed into numerous subtasks may
exhibit various levels of difficulty. Consequently,
some subtasks necessitate more engagement of
modules with specific processing capabilities, thus
contributing to the observed imbalance.
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Method SST-2 COLA MRPC QQP QNLI RTE MNLI-(m/mm) STS-B average

small

GPT2 92.09 26.27 85.11 83.09 87.55 62.45 79.90/78.74 82.67 75.32
MoD 87.73 21.66 81.43 82.01 81.79 64.62 75.96/75.22 79.76 72.24
MoE 89.68 45.87 82.05 84.09 85.94 65.52 79.46/78.74 83.87 77.25
MoE (share) 89.53 37.29 82.01 83.49 85.21 64.94 78.49/77.99 83.43 75.82
MoME 90.83 31.83 82.92 83.49 84.79 69.68 78.52/77.40 83.84 75.92
MoMI 90.02 47.21 82.90 84.07 85.34 66.43 79.82/79.72 84.79 77.81
MoMP 91.40 46.16 82.68 84.62 86.49 67.51 80.85/80.18 84.06 78.22

medium

GPT2 94.15 48.18 86.00 85.94 90.41 64.98 84.02/83.92 86.77 80.49
MoD 89.45 37.43 84.97 84.21 84.88 64.26 78.94/77.94 83.47 76.17
MoE 91.86 49.20 85.51 86.39 89.09 68.12 84.44/83.49 86.17 80.47
MoE (share) 92.78 49.44 84.56 86.40 89.35 66.79 84.00/83.39 86.42 80.35
MoME 91.40 48.48 87.48 86.92 89.11 67.51 83.73/83.01 86.06 80.41
MoMI 92.46 50.19 87.31 86.43 89.35 68.94 84.44/83.46 86.66 81.03
MoMP 92.88 53.61 87.64 86.64 89.75 71.06 84.69/83.98 87.14 81.93

large

GPT2 94.15 60.04 88.74 87.88 91.89 75.45 86.80/85.98 89.30 84.47
MoD 91.51 52.86 87.29 87.20 89.57 67.87 85.07/84.38 87.66 81.49
MoE 94.32 61.19 88.54 88.36 92.04 71.68 87.38/86.94 89.45 84.43
MoE (share) 93.88 61.43 88.12 88.17 91.56 68.31 87.01/86.73 89.28 83.83
MoME 93.64 59.26 88.25 87.59 91.29 72.23 85.20/84.78 88.26 83.39
MoMI 93.69 62.25 89.19 88.12 92.36 74.98 87.22/86.78 89.90 84.94
MoMP 94.42 64.49 89.56 88.68 92.94 77.69 87.68/86.98 90.70 85.90

Table 4: Detailed evaluation on the GLUE benchmark. We follow the previous evaluation setting (Radford et al.,
2018), for SST-2, QNLI, RTE, and MNLI, we report accuracy as the metric. For MRPC and QQP, we report the F1
score. For STS-b, we report the combined score of Pearson correlation and Spearman correlation.

20937



Method ROUGE-1 ROUGE-2 ROUGE-L ROUGE-AVG

small

GPT2 20.8 5.05 16.92 14.26
MoD 14.45 2.89 11.80 9.71
MoE 20.56 5.26 16.71 14.18
MoE (share) 20.64 5.17 16.64 14.15
MoME 20.62 4.98 16.91 14.17
MoMI 20.50 5.31 16.90 14.24
MoMP 21.73 6.14 17.72 15.19

medium

GPT2 25.07 8.35 21.00 18.14
MoD 20.89 6.04 17.52 14.81
MoE 24.58 8.20 20.49 17.75
MoE (share) 24.36 8.19 20.22 17.59
MoME 24.56 7.04 19.72 17.11
MoMI 26.29 8.21 21.47 18.66
MoMP 26.61 9.05 22.24 19.30

large

GPT2 28.16 9.92 22.98 20.35
MoD 26.08 8.38 21.41 18.62
MoE 28.54 9.89 23.47 20.63
MoE (share) 28.47 9.47 23.23 20.39
MoME 28.48 9.65 23.24 20.46
MoMI 30.91 10.21 24.08 21.73
MoMP 31.38 10.77 24.93 22.36

Table 5: Detailed evaluation on the XSUM dataset. ROUGE is employed as the evaluation metrics.

Method BoolQ CB COPA MultiRC ReCoRD WiC WSC average

small

GPT2 48.72 41.07 62.00 53.01 70.93 49.22 43.27 52.60
MoME 59.91 41.07 62.00 57.30 59.46 50.00 36.54 52.32
MoMP 57.80 42.86 66.00 55.88 61.61 51.41 36.54 53.16

medium

GPT2 58.59 42.86 69.00 52.29 79.38 50.00 41.35 56.21
MoME 57.74 39.29 68.00 52.56 73.86 50.00 36.54 54.00
MoMP 59.36 44.64 70.00 55.32 77.36 50.00 36.54 56.17

Table 6: Detailed evaluation on the SuperGLUE benchmark. For this evaluation, we use the Language Model
Evaluation Harness library (Gao et al., 2024) with default hyperparameters and evaluation settings.
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