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Abstract

Deep Learning-based end-to-end Automatic
Speech Recognition (ASR) has made signifi-
cant strides but still struggles with performance
on out-of-domain samples due to domain shifts
in real-world scenarios. Test-Time Adaptation
(TTA) methods address this issue by adapt-
ing models using test samples at inference
time. However, current ASR TTA methods
have largely focused on non-continual TTA,
which limits cross-sample knowledge learning
compared to continual TTA. In this work, we
first propose a Fast-slow TTA framework for
ASR that leverages the advantage of continual
and non-continual TTA. Following this frame-
work, we introduce Dynamic SUTA (DSUTA),
an entropy-minimization-based continual TTA
method for ASR. To enhance DSUTA robust-
ness for time-varying multi-domain data, we de-
sign a dynamic reset strategy to automatically
detect domain shifts and reset the model. Our
method demonstrates superior performance on
various noisy ASR datasets, outperforming
both non-continual and continual TTA base-
lines while maintaining robustness to domain
changes without requiring domain boundary
information'.

1 Introduction

Deep learning-based end-to-end Automatic Speech
Recognition (ASR) has made remarkable progress
in recent years, achieving low recognition error
rates for in-domain samples. However, domain
shifts frequently occur in real-world scenarios. Al-
though recent large-scale ASR models exhibit some
generalization to out-of-domain test samples, their
performance on out-of-domain samples still lags
behind the in-domain performance.

Test-time adaptation (TTA) is an attractive
method to address domain shift issues during in-
ference time. TTA adapts the model using only

!The source code is available at https:/github.com/
hhhaaahhhaa/Dynamic-SUTA
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Figure 1: Illustration of the proposed Fast-slow TTA
framework and dynamic reset strategy with time-
varying speech domains. The Fast-Slow TTA frame-
work includes meta-parameters that update slowly to
capture cross-domain knowledge, while other param-
eters update fast for the incoming test samples. The
Dynamic reset strategy automatically detects domain
shifts and resets the model to the source model.

single or batched test samples without needing the
source training data at testing time. Specifically,
the source model is adapted via unsupervised ob-
jectives like Entropy Minimization (EM) (Wang
et al., 2020) or Pseudo-Labeling (PL) (Goyal et al.,
2022) in inference time. TTA methods can be char-
acterized into two categories: 1) Non-continual
TTA methods adapt the source model for each test
utterance and reset to the original model for subse-
quent samples (Wang et al., 2020), and 2) Contin-
ual TTA (CTTA) continuously adapts the model
for target domains, leveraging knowledge learned
across samples to improve performance (Niu et al.,
2022a,b; Press et al., 2024).

TTA methods initially strive in the field of com-
puter vision (Wang et al., 2020; Niu et al., 2022a,b;
Press et al., 2024). In speech recognition, re-
cent studies have tailored TTA methods with EM-
based optimization (Lin et al., 2022; Kim et al.,
2023; Liu et al., 2023), proposing new training
objectives and demonstrating effectiveness across
datasets. However, existing ASR TTA methods
only focus on non-continual TTA, constraining the
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model to learn knowledge across samples. There
is limited research on CTTA for end-to-end ASR.
Recently, AWMC (Lee et al., 2023) proposed a
pseudo-labeling CTTA method for ASR on a sin-
gle test domain. However, as shown in previous
work (Lin et al., 2022), pseudo-labeling is not as
effective as EM-based methods, and its ability on
long multi-domain testing data is unknown.

In this work, we propose a general Fast-slow
TTA framework that leverages the advantages of
both continual and non-continual TTA. Based on
this framework, we introduce an EM-based CTTA
method named Dynamic SUTA (DSUTA) for ASR.
Furthermore, to enhance the robustness of DSUTA
on time-varying domain data, we propose a dy-
namic reset strategy to automatically detect do-
main shifts and determine when to reset the model
to the original source model. This strategy im-
proves Fast-slow TTA over long sequences of multi-
domain data streams.

We demonstrate the effectiveness of our method
on single-domain and multi-domain time-varying
ASR benchmarks under different acoustic con-
ditions, simulating real-world changing environ-
ments. Our method outperforms the strong single-
utterance baseline SUTA (Lin et al., 2022) and the
CTTA baseline AWMC (Lee et al., 2023), showing
robustness to domain changes even without know-
ing the domain boundaries.

Our contributions can be summarized as follows:

1. Propose the Fast-slow TTA framework to
bridge the gap between continual and non-
continual TTA.

2. Introduce a specific version of the Fast-slow
TTA method named DSUTA with a novel dy-
namic reset strategy to stabilize CTTA over
multi-domain and long test data streams.

3. Demonstrate significant improvement over
both non-continual and continual baselines
on single-domain and time-varying data.

2 Related Works
2.1 Non-continual TTA for ASR

Non-continual TTA methods adapt the source
model for each test utterance and reset to the orig-
inal model for subsequent samples. SUTA (Lin
et al., 2022) introduces the first TTA approach
for non-autoregressive ASR, based on entropy
minimization and minimum class confusion.

SGEM (Kim et al., 2023) extends TTA to autore-
gressive ASR models by introducing a general
form of entropy minimization. Liu et al. (2023)
enhances TTA with confidence-enhanced entropy
minimization and short-term consistency regular-
ization. However, these non-continual TTA meth-
ods view each utterance independently, which only
relies on a single utterance and fails to leverage
the knowledge across a stream of test samples to
improve the adaptation.

2.2 Continual TTA

Unlike non-continual TTA, which resets to the
source model for each sample, continual TTA en-
ables the online model to use learned knowledge to
handle gradual changes in the target domain. How-
ever, it may suffer from model collapse if adapta-
tion is unstable when the data stream is too long.
To improve the performance and stability of CTTA,
studies in the computer vision field have developed
solutions like stochastic model restoring (Wang
et al., 2022), sample-efficiency entropy minimiza-
tion (Niu et al., 2022a), sharpness-aware reliable
entropy minimization (Niu et al., 2022b), and fixed
frequency model reset (Press et al., 2024).

In the ASR research, there are limited stud-
ies on CTTA ASR. Recently, AWMC (Lee et al.,
2023) attempts continual TTA on ASR using
a pseudo-labeling approach with an extra an-
chor model to prevent model collapse. However,
AWMC (Lee et al., 2023) only measures the per-
formance on single-domain data with the pseudo-
labeling method. This work focuses on multi-
domain time-varying long data streams. We pro-
pose a fast-slow TTA framework and dynamic reset
strategy based on an entropy minimization-based
CTTA method, which achieves better performance
and stability.

3 Methodology

Section 3.1 describes the proposed Fast-slow TTA
framework. Following this framework, Sec-
tion 3.2 extends SUTA into Dynamic SUTA. To
handle multi-domain scenarios better, we propose
a dynamic reset strategy in Section 3.3.

3.1 Fast-slow TTA Framework

Non-continual TTA treats each sample as an inde-
pendent learning event. The adaptation process can
fit the current sample without affecting future sam-
ples; however, the learned knowledge cannot be
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Figure 2: Illustration of the 3 different TTA approaches.

transferred to future samples. In contrast, contin-
ual TTA utilizes learned knowledge, but overfitting
the current sample can adversarially degrade per-
formance on future samples. For instance, if the
model overly fits the current sample and (model
collapse), the performance on future samples will
significantly degrade with continual TTA, whereas
in non-continual TTA, the performance remains
unaffected.

We propose Fast-slow TTA, a new CTTA frame-
work that leverages learned knowledge while retain-
ing the benefits of non-continual TTA, as shown
in Figure 2. Fast-slow TTA aims to learn meta-
parameters ¢; which evolve slowly over time. In-
stead of always starting the adaptation process from
the pre-trained parameters, as in non-continual
TTA, we start from ¢, at time step ¢. Specifically,

b0 = Ppre;

o = Ay, 1),

U = at(ﬂﬁt),
Pr+1 = U(dt, 1),

where ¢y, are the pre-trained parameters, and A
and U represent an adaptation algorithm and an
update algorithm, respectively. The evaluation is
based on the online predictions ;.

The meta-parameters ¢, can leverage knowledge
across samples. These parameters are slowly up-
dated by U, and the final prediction is made after a
fast adaptation A. This allows the parameters to fit
the current sample for greater improvement while
mitigating the risk of model collapse over time.

Fast-slow TTA generalizes to continual and non-
continual TTA. If U (¢, x¢) = ¢, i.e., ¢, remains
constant over time, the framework degenerates to
non-continual TTA. On the other hand, if A =
U,ie. ¢ty1 = qgt, the framework degenerates to
continual TTA.

Algorithm 1 Dynamic SUTA

Input: Data stream {z;}7_,, buffer B with size
M, adaptation step N, pre-trained param ¢y
Output: Predictions {7;}2_,
L B, g1 {}7¢pre
2: Results « {}
3: fort =1to T do
4 q?t — Py > Adapt parameters
5 forn =1to N do
6: é — ['suta((bta w)/\
7 ¢¢ < Optimizer(¢y, L)
8 Ur gt(xt) > Save prediction
9: Results < Results U {7}
10: B < BU{x}
11: if 1% M = 0 then > Update meta-param

12: L+ ﬁ ZmGB ﬁsum((ﬁt, J))
13: ¢i11 < Optimizer(¢yz, L)
14: B+ {}

15: else

16: Der1 < Ot

17: return Results

3.2 Dynamic SUTA

We propose Dynamic SUTA (DSUTA), a fast-slow
TTA method based on SUTA (Lin et al., 2022).
Specifically, given pre-trained parameters ¢y, for
every incoming sample x;, SUTA adapts ¢y, for
N steps with the objective Lsytq. Lsyte CONSists
of entropy loss and minimum class confusion loss.
Entropy minimization aims to sharpen class dis-
tribution, and minimum class confusion aims to
reduce the correlation between different prediction
classes. See Appendix A.4 for the detailed loss
function. Model parameters are reset to ¢, when
the next sample arrives.

For DSUTA, the adaptation algorithm A is set
exactly the same as SUTA, which iteratively adapts
¢ for N steps with L4, on z;. To construct the
update algorithm U, we introduce a small buffer
B with size M. For every M step, the buffer is
filled and we calculate L4, from these M samples
to update the meta-parameters ¢; with gradient
descent. The buffer is then cleared. Thus, the
meta-parameters ¢; gradually evolve by mini-batch
gradient descent with batch size M. DSUTA can
be viewed as a variant of SUTA, which starts the
adaptation from dynamically changing ¢; instead
of the fixed ¢p... Denote Lsuta(, x) as the loss of
sample  on model ¢. Algorithm 1 describes the
pseudo code of DSUTA.
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3.3 DSUTA with Dynamic Reset Strategy

As time progresses and the testing domain changes,
multiple domain shifts significantly challenge the
robustness of continual TTA methods. Recently,
Press et al. (2024) has shown that model reset at a
fixed frequency, which resets the current parame-
ters to the pre-trained ones at regular intervals, is a
simple yet effective strategy. Therefore, we attempt
to utilize model reset strategy to update the meta-
parameters ¢; in DSUTA?. However, determining
the optimal reset frequency in reality is challenging.
To automatically determine when to apply model
reset to ¢;, we propose a dynamic reset strategy
that actively detects large distribution shifts and
dynamically resets ¢ 11 = @pre.

Figure 3 provides an illustration of DSUTA with
the dynamic reset strategy. Since distribution shift
is a relative concept that is well-defined only af-
ter a base domain is constructed, we designed a
domain construction stage and a shift detection
stage. Our proposed method alternates between
these two stages over time. The domain construc-
tion stage first constructs a base domain D with K
samples. No model reset will be applied during this
stage. In the subsequent shift detection stage, a de-
tection algorithm checks each incoming sample to
determine if there is a significant distribution shift.
If a large shift is detected, we apply model reset
and switch to a new domain construction stage.

The following subsections describe the strategy
in detail. We first introduce the Loss Improvement
Index in Section 3.3.1, which measures the extent
of the distribution shift. Then we define the domain
construction stage and the shift detection stage in
Section 3.3.2.

3.3.1 Loss Improvement Index (LII)

We aim to find an indicator that measures the extent
of the distribution shift from the base domain D.
To identify an appropriate indicator, we observed
that given a model ¢p trained on domain D, L1,
for in-domain samples is empirically lower than
that for out-of-domain samples. This suggests that
Lsuta(¢p, ) might be a good indicator. Addi-
tionally, we found that subtracting the loss from
the pre-trained model, Lgytq(¢pre, z¢), is benefi-
cial to normalize the inherent difficulty introduced
by the data sample itself>. Overall, we define Loss

2Non-continual TTA can be viewed as the case where we
apply model reset at every time step.
3See Section 5.1 for more discussion on indicator choice.

Improvement Index (LII) as our indicator:

LI = L(¢p, wt) — L(Ppre, Tt),

where £ = L4ytq. The construction of ¢p will be
described in the next section.

3.3.2 Domain Construction Stage and Shift
Detection Stage

We integrate DSUTA with the dynamic reset strat-
egy as follows. Assume the model has been reset
at time step r.

(1) Domain Construction Stage:

1. Letk = L%J, construct ¢p = ¢y 1.
2. Collect LII; fort € [r+k+1,r + K]J.

3. At the end of the stage (i.e., t = r + K),
compute Gp = N (u, 0?) from the collected
LIIs.

The goal is to estimate the distribution of LII. We
construct ¢p = ¢, 4k as the meta-parameters after
observing k samples since the last reset. Calculat-
ing the LII requires ¢p, and since TTA is an online
process, K — k is the number of LIIs we can collect
for statistical estimation. A smaller £ might not
suffice for ¢p to adequately represent the domain,
while a larger k reduces the number of data points
we can gather for estimation. Therefore, we empir-
ically set k = | & |.

(2) Shift Detection Stage:

¢t+1 — {épre:

Upsura(de, xt),

o LIT—
if ==t=8 > 2,

otherwise,

where Upsyr 4 is the update algorithm of DSUTA.

During the domain construction stage, we de-
velop a statistical model Gp using K — k samples
to estimate the distribution of LII. In the shift de-
tection stage, we trigger a reset operation if the LII
exceeds a certain threshold, indicating an abnor-
mally large shift. To determine whether the LII
indicates such a shift, we conduct a right-tailed
hypothesis test.

For the right-tailed hypothesis test, the common
practice with a significance level of 0.05 corre-
sponds to a Z-score of 1.64. Here, we use a Z-score
of 2 for simplicity, which makes the condition for
resetting slightly stricter.

Additionally, using the LII of a single sample for
the hypothesis test is too sensitive. The averaged
LII from multiple samples reduces variance and
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Figure 3: Sketch of DSUTA with the dynamic reset strategy. The domain construction stage and the shift detection

stage alternate over time. When a large shift is detected, apply model reset to DSUTA, i.e., update ¢, 1

yields more reliable results. With DSUTA, we
perform the hypothesis test every M step, using
the M samples in DSUTA’s buffer to calculate
the averaged LII. The final shift detection stage is
defined as follows:

¢t+1 — {¢p7‘67

Upsura(ér, xt),

e 1 LII;,—
lfﬂzzlmzeb’ 0_/\/M'u > 2,M‘t,

otherwise.

Here, BB represents the buffer containing the most
recent M samples. In our implementation, we fur-
ther introduce a patience parameter P to enhance
the stability. Please refer to the Appendix Algo-
rithm 2 for details.

4 Experiments

4.1 Dataset

4.1.1 Single-domain Simulated Noisy Data

Corrupted Librispeech (L.S-C): we follow pre-
vious works (Kim et al., 2023) by adding back-
ground noises from MS-SNSD (Reddy et al., 2019)
into Librispeech test set (Panayotov et al., 2015).
The noises include air conditioner (AC), airport
announcement (AA), babble (BA), copy machine
(CM), munching (MU), neighbors (NB), shutting
door (SD), typing (TP), and vacuum cleaner (VC).
We also apply Gaussian noise (GS) as in (Lin et al.,
2022), resulting in 10 different noises in total. The
Signal-to-Noise Ratio (SNR) is set to 5 dB.*

4.1.2 Multi-domain Time-varying Data

We create three time-changing multi-domain test
data streams by concatenating different corruptions
from LS-C.

*(Kim et al., 2023) reported using 10dB noise but their
source code and results show that they use 5 dB.

= ¢pre~

(a) MD-Easy: Noises in MD-Easy are determined
by the relatively well-performed noises of the pre-
trained model (See Table 1). Five background
noises, in the order AC—CM—TP—AA—SD,
were used, with 500 samples for each noise, mak-
ing a total of 2500 samples.

(b) MD-Hard: Noises in MD-Hard are determined
by the relatively poor-performed noises of the pre-
trained model (See Table 1). Five background
noises, in the order GS—-MU—VC—BA—NB,
were used, with 500 samples for each noise, mak-
ing a total of 2500 samples.

(c) MD-Long: We first sample a background noise
from the 10 available background noises, then sam-
ple a data sequence with this noise, with a random
length ranging from 20 to 500. We repeat this pro-
cess until the total length reaches 10,000.

4.1.3 Multi-domain Real Noisy Data

CHiME-3 (Barker et al., 2017): a noisy version
of WSJ corpus mixed with real speech recorded in
four noisy environments (Cafe, Bus, Street, Pedes-
trian Area). In this work, different types of noisy
speech are randomly distributed in a sequence
across time.

4.2 Baselines

4.2.1 Non-continual TTA Baselines

1) SUTA (Lin et al., 2022) leverages unsupervised
objectives (entropy minimization and minimum
class confusion) to reduce uncertainty and mini-
mize class correlations. Temperature smoothing
is applied to flatten the output probability distribu-
tions, addressing issues with over-confident predic-
tions. The adaptation process involves iteratively
optimizing the objective of entropy minimization
and minimal class correlation. 2) SGEM (Kim
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et al., 2023) propose a general form of entropy
minimization with negative sampling.

4.2.2 Continual TTA Baselines

3) CSUTA is a straightforward continual ver-
sion of SUTA without resetting parameters. 4)
AWMC (Lee et al., 2023) utilizes the anchor
model to generate initial pseudo labels, the
chaser model updates itself using these pseudo
labels for self-training, and the leader model
refines predictions through an exponential moving
average.

4.3 Implementation Details

We use the wav2vec 2.0-base model fine-tuned on
Librispeech 960 hours® as the source ASR model.
For SUTA, we follow the official implementation6,
where an additional reweighting trick is applied
on the minimum class confusion loss. The default
adaptation step of SUTA is N = 10, as specified in
the original paper. For SGEM, we follow the offi-
cial implementation’. For CSUTA, we set the adap-
tation step to /N = 1 since we found that any higher
value would cause severe model collapse. We re-
implemented AWMC with wav2vec 2.0, as there
is no official code, and all hyperparameters follow
the original paper. For the proposed DSUTA, the
default buffer size is M = 5, and the adaptation
step is N = 10. To reduce GPU memory usage,
we exclude samples with raw lengths longer than
20 seconds in all experiments. This removes about
1% of the data.

For hyperparameter search, we investigate batch
sizes (M=3, 5, 10) and domain construction steps
(K=50, 100, 200), and find out that our method is
robust across different setups. For more details,
please see the Appendix A.2 section.

4.4 Results
4.4.1 Single Domain

We compare TTA performance on LS-C by Word
Error Rate (WER) in Table 1. DSUTA shows signif-
icant improvement compared to the baseline meth-
ods. It outperforms both non-continual and con-
tinual baseline methods by a large margin, except
for the SD domain, where it still achieves a 15.5%

Shttps://huggingface.co/facebook/wav2vec2-base-960h

®https://github.com/DanielLin94144/Test-time-
adaptation-ASR-SUTA

"https://github.com/drumpt/SGEM
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Figure 4: WER difference compared to the pre-trained
model on CM domain over time. Data is smoothed by a
window with a size of 100.

WER, close to SGEM’s performance (14.9%). No-
tably, on the NB domain, DSUTA achieves a 36.3%
WER compared to SUTA, which has a WER greater
than 100%, demonstrating the effectiveness of our
method.

The key success factor of DSUTA is its ability
to leverage learned knowledge from past samples.
Figure 4 plots the WER difference compared to the
pre-trained model on the CM domain over time.
We compare three methods: SUTA with N = 10,
DSUTA with (M, N) = (5,10), and DSUTA with
(M,N) = (5,0), i.e., the learned ¢; itself. The
WER of ¢, is lower than that of the pre-trained
model, and DSUTA with 10-step adaptation out-
performs SUTA with 10-step adaptation. In other
words, DSUTA adaptation has a “better start" com-
pared to non-continual TTA methods due to the
learned knowledge, resulting in superior perfor-
mance.

Table 1 also compares other continual TTA meth-
ods. Naive continual training, such as CSUTA, re-
sults in unsatisfactory performance and is some-
times even worse than the original pre-trained
model due to its instability. Although AWMC
is designed to increase stability, its performance
sometimes lags behind SUTA, particularly in cases
where the original pre-trained model has an ex-
tremely high error rate (BA and NB). This is not
surprising since AWMC relies on a pseudo-label
approach. In contrast, DSUTA uses mini-batch
gradient descent to enhance stability without the
use of pseudo labels. Furthermore, the fast-slow
approach allows DSUTA to inherit SUTA’s ability
to better fit a single utterance, improving overall
performance while avoiding the meta-parameters
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Method AA AC BA CM GS MU NB SD TP VC ‘ CHIiME-3
Source model 40.6 27.7 669 49.7 756 514 120.1 194 258 49.7 ‘ 30.0
Non-continual

SUTA 30.6 174 537 387 545 390 1123 150 174 393 233
SGEM 309 17.8 545 392 563 392 113.0 149 175 403 23.5
Continual

CSUTA 30.8 22.6 634 534 584 547 68.1 232 23.0 509 27.6
AWMC 31.6 18.0 61.6 377 485 362 1319 17.0 18.0 36.1 22.4
Fast-slow

DSUTA 259 154 332 335 37.0 284 363 155 156 299 ‘ 21.7

Table 1: WER (%) of different TTA methods on LS-C with 10 types of noises and CHiME-3. Reported WER is

averaged over 3 runs.

Method MD-Easy MD-Hard MD-Long
Source model 32.7 74.6 61.0

Non-continual

SUTA 24.0 60.4 53.3
SGEM 25.0 61.0 53.4
Continual

CSUTA 37.3 83.6 100.3

AWMC 25.8 66.1 60.6

Fast-slow

DSUTA 24.0 45.6 432
w/ Dynamic reset 22.7 39.8 35.8
w/ Fixed reset 22.8 494 452
w/ Oracle boundary 21.7 36.9 39.5

Table 2: WER (%) of different TTA methods on multi-
domain time-varying data. Reported WER is averaged
over 3 runs.

overfitting.

4.4.2 Time-varying Multiple Domains

In the following experiment, we set DSUTA with
(M,N) = (5,5) and compare DSUTA with
dynamic reset strategy where (M, N,K,P) =
(5,5,100,2) on multi-domain time-varying data.
We also experiment DSUTA with two baseline re-
set strategies. 1) Oracle boundary resets the model
at the ground truth domain boundary, and 2) Fixed
reset is the simple fixed-frequency reset strategy,
where the reset frequency is set to 50.

Table 2 summarizes the results. DSUTA is com-
parable to or better than other baseline methods,
and applying Dynamic reset further boosts the per-
formance. Since we set DSUTA with fewer adapta-
tion steps, our proposed method is both better and
faster than SUTA in the multi-domain scenario.

For the non-continual TTA baselines, WER is
improved in all cases but remains very high on

MD-Hard and MD-Long. For the continual TTA
baselines, CSUTA performs worse than the pre-
trained model due to its instability. For AWMC,
the original paper does not test in the multi-domain
scenario, and our results show that AWMC is infe-
rior to SUTA in this context.

Regarding the model reset strategy, the proposed
Dynamic reset outperforms Fixed reset. Fixed re-
set performs worse than DSUTA without reset on
MD-Hard and MD-Long, suggesting that resetting
too frequently might hinder the model from utiliz-
ing knowledge from past samples, thereby harming
overall performance. Compared to Oracle bound-
ary (upper bound), Dynamic reset achieves slightly
worse performance on MD-Easy and MD-Hard.
However, on MD-Long, Dynamic reset surprisingly
achieves a 35.8% WER, which is even better than
the 39.5% WER using Oracle boundary. Since Dy-
namic reset automatically determines when to reset,
it can further utilize the knowledge from other noise
domains when it is beneficial, rather than relying
solely on single-domain data for adaptation.

Lastly, DSUTA demonstrates superior perfor-
mance on real multi-domain noisy data, as shown
in Table 1 column “CHiME-3". DSUTA achieves
21.7% WER, while the baseline SUTA and AWMC
only yield 23.3% and 22.4% WER, respectively.
This result further validates the proposed DSUTA
can be generalized to real multi-domain noisy
speech data stream.

5 Discussion
5.1 Why Choosing Averaged LII as an
Indicator?

A good indicator should separate in-domain and
out-of-domain samples into two clusters. To visu-
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Figure 6: Distributions of other possible indicators. (a):
original LII, (b): averaged LII for 20 samples, (c): with-
out subtraction of pre-trained model loss, and (d): with
the adapted parameters.

alize the indicator, we selected 500 samples from
the GS domain as the source domain and randomly
sampled 2000 samples from other domains as out-
of-domain samples. ¢p is then trained on 100
samples from the GS domain using Lg,. We
randomly sampled 500 averaged LIIs. Figure 5
visualizes the distributions of averaged LIIs (over
5 samples) of the remaining in-domain and out-of-
domain samples. By using the averaged LII, two
distributions are well separated.

Figure 6 visualizes the distributions of other pos-
sible choices of the indicator. Figure 6a, b shows
the distribution of averaged LII over 1 sample (i.e.,
the original LII) and 20 samples, respectively. Us-
ing a single sample is not sufficient to distinguish
the distributions while considering more samples
makes the detection more accurate. Figure 6c¢ il-
lustrates the case without subtracting the loss from
the pre-trained model, namely £(¢p, z¢). The dis-
tributions are not well separated. In Figure 6d, we

MD-Easy s=20 s=100 s =500
DSUTA 24.1 23.9 24.0
w/ dynamic reset 23.8 23.7 22.7
w/ fixed reset 24.6 23.1 22.8
w/ oracle boundary — 23.7 22.8 21.7
MD-Hard s=20 s=100 s =500
DSUTA 45.6 44.7 45.6
w/ dynamic reset 42.3 44.5 39.8
w/ fixed reset 53.3 49.9 49.4
w/ oracle boundary — 57.3 46.6 36.9

Table 3: WER (%) of different reset strategies on MD-
Easy and MD-Hard with different transition rates. Re-
ported WER is averaged over 3 runs. s is the domain
transition rate.

also tried using the parameters after adaptation A
instead of the meta-parameters, namely

E(A(¢D> l't)a xt) - £(A(¢pr67 xt), l‘t)~

However, it resulted in more overlap between the
two distributions than the proposed method.

5.2 Different Domain Transition Rates

In this section, we investigate how different do-
main transition rates affect the performance of
reset strategies. The original transition rate (s)
of MD-Easy and MD-Hard is 500. We com-
pare different reset strategies in 3 transition rates:
s = 20,100,500. To maintain a total length of
the data stream to 2500, for s = 100, the domain
order sequence is repeated 5 times, and for s = 20,
the domain order sequence is repeated 25 times.
We follow the hyperparameter settings described
in Section 4.4.2.

The results are presented in Table 3. Oracle
Boundary and Fixed Reset show that as the tran-
sition rate increases, resetting too often deterio-
rates performance. This phenomenon is more pro-
nounced in MD-Hard, where DSUTA outperforms
SUTA by a large margin, suggesting that continual
learning is more effective in this context. Oracle
Boundary severely deteriorates performance when
s = 20 and s = 100, implying that learning from
samples from other noise domains might be benefi-
cial. Since Dynamic Reset automatically handles
when to reset, it can utilize the knowledge from
other noise domains, and reset is not triggered as
frequently as in Oracle Boundary or Fixed reset
under fast transitions, leading to better results.
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Steps Runtime (s)

Method
#Forward #Backward Total Avg

Non-continual
SUTA 100000 100000 5040 0.080
SGEM 100000 100000 11620 0.186
Continual
AWMC 300000 100000 11704 0.187
Fast-slow
DSUTA 52000 52000 3885 0.062

w/ Dynamic reset 72000 52000 4149  0.066

Table 4: Comparison of Forward/Backward steps and
Runtime for different TTA methods on MD-Long. Avg
is the averaged runtime (s) for a 1-second utterance. The
result is averaged over 3 runs.

In summary, the proposed Dynamic reset offers
good performance across diverse scenarios due to
its flexibility. Dynamic reset minimizes unneces-
sary resets and utilizes learned knowledge more
effectively, consistently outperforming other reset
strategies, making it a versatile solution.

5.3 Efficiency of the Proposed Method

DSUTA is more efficient in adaptation steps than
SUTA. Appendix Figure 7 compares SUTA and
DSUTA on 10 domains of LS-C under different
adaptation steps N = 0,1, 3,5,10. DSUTA can
use fewer adaptation steps to achieve better perfor-
mance than SUTA with more adaptation steps.

To assess the efficiency of different TTA meth-
ods, we run them on MD-Long and compare the
required forward/backward steps and runtime in
Table 4. CSUTA is excluded due to its poor perfor-
mance. We follow the hyperparameter settings de-
scribed in Section 4.4.2. All experiments were con-
ducted on an Nvidia GeForce RTX 3080Ti GPU.
Note that the results are for reference only, as val-
ues can slightly differ depending on the implemen-
tation. DSUTA is more efficient in the adaptation
step and overall faster than SUTA, SGEM, and
AWMC. Although adding the dynamic reset strat-
egy slightly increases runtime, it remains faster
overall. In conclusion, our method is not only su-
perior in performance but also more efficient than
existing approaches.

5.4 Resets Frequency and Occurrence

We propose a dynamic model reset strategy to de-
tect domain shifts, improving both performance
and efficiency. However, the frequency of model
resets and their positions within the data stream
remain unclear. In Table 5, we present the reset

3 runs Automatic reset step
MD-Easy-1 540, 1530, 2010
MD-Easy-2 565, 1635, 2025
MD-Easy-3 560, 1530, 2010
MD-Hard-1 155, 555, 790, 1045
MD-Hard-2 510, 1510, 2010
MD-Hard-3 155,510, 1165, 1510, 2010

Table 5: Reset times and Automatic reset steps for MD-
Easy and MD-Hard tasks over 3 runs. The ground truth
task boundaries at steps equal to 500, 1000, 1500, and
2000.

timings of our method across three runs. The ora-
cle boundaries occur at steps 500, 1000, 1500, and
2000. The results indicate that the reset timings are
close to, but not exactly aligned with, the oracle
boundaries.

6 Conclusion

In this work, we advance the non-continual Test-
Time Adaptation (TTA) method for ASR into a
continual learning framework using a novel ap-
proach to stabilize adaptation and improve perfor-
mance. Specifically, we introduce Dynamic SUTA
(DSUTA), a fast-slow method that combines non-
continual and continual TTA, demonstrating sig-
nificant improvements on single-domain test data.
Additionally, we propose a statistical dynamic re-
set strategy to enhance robustness and performance
on time-varying test data streams. Experimental
results indicate that our proposed method outper-
forms the non-continual SUTA baseline and previ-
ous continual TTA methods using pseudo labeling.

Limitations

The primary limitations of this paper are as follows:
Domain Shift with Background Noises: In this
work, we use noise corruptions to simulate chang-
ing domains and control domain shifts. However,
there are various other speech domains to study,
such as accents, speaker characteristics, and speak-
ing styles. We will consider these domains in future
research.

Different Types of End-to-End ASR Models:
This work follows SUTA with a CTC-based ASR
model, but there are different kinds of end-to-end
ASR models available. As shown in (Kim et al.,
2023), entropy minimization-based TTA methods
can be extended to other end-to-end ASR models.
We encourage future research to extend our DSUTA
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method to these other end-to-end ASR models.
Not Addressing Model Forgetting: This work
focuses on adaptation to testing samples during
inference time, rather than memorizing all past
knowledge. Consequently, the proposed method
might experience catastrophic forgetting as the do-
main changes. However, given a new test sample,
the method can instantly adapt to that instance, en-
suring that the final performance remains strong.
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A Appendix

A.1 Different noise levels

From Table 1 and Table 2, we observe a trend that
DSUTA has a larger advantage over other methods
under severe domain shift where the pre-trained
model performs poorly. To investigate how dif-
ferent levels of domain shift affect the proposed
method, we compare the pre-trained model, SUTA,
and DSUTA with noise levels of 0dB, 5dB, and
10dB on the AC, SD, and TP domains from LS-
C, which are the top 3 well-performing domains
for the pre-trained model. We set N = 5 for both
SUTA and DSUTA. Table 6 summarizes the results.

The results show that DSUTA is more effec-
tive under severe corruption. As the noise level
decreases, although DSUTA outperforms the pre-
trained model, SUTA becomes better than DSUTA.
We hypothesize that while DSUTA is quite effec-
tive in noisy speech, its performance gain over the
non-continual version (SUTA) is limited to rela-
tively clean speech. Improving DSUTA’s perfor-
mance over SUTA on clean speech remains an area
for future work.
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Figure 7: WER (%) of different number of adaptation steps on 10 noise domains of LS-C.
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Domain Method 0dB 5dB 10dB
Pre-trained 63.7 27.7 14.2

AC SUTA 395 174 10.6
DSUTA 27.6 160 11.5

Pre-trained 29.7 194 13.6

SD SUTA 23.6 15.0 10.8
DSUTA 224 155 120

Pre-trained 424 25.8 16.6

TP SUTA 288 174 121
DSUTA 224 163 124

Table 6: WER(%) comparison for different noise levels.
Reported WER is averaged over 3 runs.

A.2 Hyper-parameter Tuning

We explore different hyper-parameters for DSUTA
with the dynamic reset strategy. We use MD-Long
as the data sequence. Table 7 presents the re-
sults for various buffer sizes M. Our proposed
method performs well overall. A smaller buffer
size can make the update of meta-parameters un-
stable, while a larger buffer increases latency in
triggering model reset after a domain shift since
the shift is detected once every M steps. Therefore,
a medium buffer size is preferred.

Table 7 also presents the results for different K
values during the domain construction stage. Again,
our proposed method performs well overall. The
performance of K = 50 is worse than K = 100
and K = 200, suggesting that domain construction
benefits from having enough steps to collect LII
statistics and train a domain-specialized model ¢p.

A.3 Generalization to Different Source ASR
Models

To test the generalization of the proposed method,
we adopt other source ASR models with DSUTA
and dynamic reset strategy. Table 8 reports
the results with the ASR model fine-tuned from
wav2vec 2.0-base, data2vec-base®, and HuBERT-
large’ model. All the ASR models are trained
with Librispeech 960 hours. Results show that
both DSUTA and DSUTA with the dynamic reset
strategy perform effectively across different mod-
els, yielding significantly better WER than the pre-
trained model and the SUTA.

8https://huggingface.co/facebook/data2vec-audio-base-
960h
*https://huggingface.co/facebook/hubert-large-1s960-ft

Setup WER
M =3 36.8
M=5 35.8
M=10 370
K =50 385
K =100 358
K =200 355

Table 7: WER(%) comparison of different hyperparam-
eters on MD-Long. Reported WER is averaged over 3
runs.

Method wav2vec2-base data2vec-base hubert-large
Pre-trained 61.0 59.6 433
SUTA 53.3 533 39.3
DSUTA 432 52.0 17.8
w/ Dynamic reset 358 46.3 19.0

Table 8: WER(%) comparison of different CTC-based
ASR models on MD-Long. Reported WER is averaged
over 3 runs.

A4 Objective of SUTA (Lsyt0)

Assume C' is the number of output classes and L is
the number of frames in the utterance. P € RE
denotes the output probabilities of the j-th class of
the L frames.

Entropy Minimization (EM):

Z?—L = —% ZZPlJlogPU
i=1 j=1
Minimum Class Confusion (MCC):
c C
=2 > Pj

J=1j'#j

The final SUTA objective is defined as a mixture
of Loy, and Lcc:

Esuta - aﬁem + (1 - a>£mcc~

We follow the settings in the original paper, which
set « = 0.3 and apply temperature smoothing on
logits with a temperature of 2.5.
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Algorithm 2 Dynamic SUTA with the dynamic reset strategy

Input: Data Sequence {z;}._;, buffer B with size M, adaptation step N, number of samples for

construction /', patience I°, pre-trained parameters ¢y

Output: Predictions {7;}7_,
1: B, ¢1 {}a¢pre
2: k,last_reset, stats < | K/2],0,{}
3: Results « {}
4: fort =1toT do

R A

Ot < Py
forn=1to N (10
;C\ — [fsuta (¢ta x)/\
¢ + Optimizer(¢y, L)
Ui < Pi(e)
Results <— Results U {y:}
B+ BU {.%'t}
if t%M = 0 then
if ¢t > last_reset + K and IsReset(G, B, P) then
(bt—‘rl — (z)pre
last_reset <t
else
L+ ﬁ Zageg Esuta(¢t7 .’L’)
¢t+1 — Optimizer(@, E)
B+ {}
else
ry1 < Dt
if t = last_reset + k then
Op — Pt
else if last_reset + k < t < last_reset + K then
stats < stats U {LII;}

if t = last_reset + K then
g «— N(Hstats; O—.ztats)

28: return Results

> SUTA as adapt algorithm

> Inference and save the prediction

> Update meta-parameter every M steps

> Dynamic reset

> Save the domain-specialized model

> Collect LII stats

> Generate distribution
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