
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1245–1254
November 12-16, 2024 ©2024 Association for Computational Linguistics

Neural Search Space in Gboard Decoder

Yanxiang Zhang*, Yuanbo Zhang∗, Haicheng Sun, Yun Wang, Billy Dou,
Gary Sivek, Shumin Zhai

Google Inc
zhangyx,zyb,haicsun,wyun,billydou,gsivek,zhai@google.com

Abstract

Gboard Decoder produces suggestions by
looking for paths that best match input touch
points on the context aware search space,
which is backed by the language Finite State
Transducers (FST). The language FST is cur-
rently an N-gram language model (LM). How-
ever, N-gram LMs, limited in context length,
are known to have sparsity problem under de-
vice model size constraint. In this paper, we
propose Neural Search Space which substi-
tutes the N-gram LM with a Neural Network
LM (NN-LM) and dynamically constructs the
search space during decoding. Specifically, we
integrate the long range context awareness of
NN-LM into the search space by converting its
outputs given context, into the language FST at
runtime. This involves language FST structure
redesign, pruning strategy tuning, and data
structure optimizations. Online experiments
demonstrate improved quality results, reduc-
ing Words Modified Ratio by [0.26%, 1.19%]
on various locales with acceptable latency in-
creases. This work opens new avenues for fur-
ther improving keyboard decoding quality by
enhancing neural LM more directly.

1 Introduction

Gboard is a statistical-decoding-based keyboard
on mobile devices developed by Google. Statisti-
cal decoding is far more necessary than one might
think due to the error-prone process of “fat fin-
ger” touch input on small screens. According to
Azenkot and Zhai (2012), the per-letter error rate is
around 8%-9% without decoding. With decoding,
typos such as substitutions (due to the proximity of
two keys or cognitive misspellings), omissions, in-
sertions, and transpositions could be automatically
corrected by the key-correction and (word) auto-
correction functions in the Gboard decoder, leading
to an error-tolerant user experience. Powered by
language models (LM), the Gboard decoder also

*Equal contribution.

provides rich functionalities such as word comple-
tion, post correction, next word prediction, smart
compose (in-line predictions) to further save users’
physical input effort.

The decoding process involves two phases:
building search space (decoder graph), and per-
forming beam search within the space based on
user touch inputs. Gboard decoder utilizes context,
a lexicon and language transducers - the familiar
C ◦ L ◦G composition (Ouyang et al., 2017; Hell-
sten et al., 2017) - to construct the search space. C
is a bi-key key to key transducer while L is a key to
word transducer, C and L are statically composed
together offline since the size is small. Fig. 1-A
illustrates how gesture typing and tap typing inputs
are converted into bi-keys and Fig. 1-B illustrates a
composed C ◦ L targeting four words. Before this
work, G is a N-gram language FST containing 64k
words for n-grams and 170k words for uni-grams.
Composition between (C ◦ L) and G are dynami-
cally conducted due to the large size of G. Fig. 1-C
shows a simple G containing only four words, and
Fig. 1-D illustrates a composed (C ◦L) ◦G, which
is similar to (C ◦ L) but with weights achieved by
using the look-ahead composition filters proposed
by Allauzen et al. (2009, 2011).

In practice, the whole search space of (C◦L)◦G
like Fig. 1-D can’t be fully expanded due to its huge
size. Only states which are close to users’ bi-key
inputs will be expanded. Specifically, the states are
pruned based on the combination of LM scores and
spatial scores in the decoder graph while the user
is typing.

In this work, the N-gram LM is replaced by the
NN-LM. Due to the framework complexity brought
by the rich functionalities, we propose a runtime
conversion solution to minimize the framework
change. We call the search space built on the NN-
LM the Neural Search Space (NSS), and the orig-
inal one the N-gram Search Space.

Algorithm 1 and Algorithm 2 describe the

1245



Figure 1: Build search space by composing (C ◦ L) ◦G

changes of NSS in initializing and extending the
search space at a high level, in which the codes in
red are for Neural Search Space and the codes in
blue are for N-gram Search Space.

Algorithm 1 Initialize Search Space

Input: Cinput . What users have committed
Output: StateSS . Initial states in search space
SC◦L ← 0
if N-gram LM then

G← Gngram

SG ← FindState(Cinput, Gngram)
else if NN-LM then

GNLM ← UpdateLM(NLM,Cinput)
G← GNLM

SG ← 0
end if
StateSS ← Compose(C ◦ L,G, SC◦L, SG)

Algorithm 1 is called before users start to type
a new word, for example, when users open the
keyboard for an editor box or when users commit
a word by tapping on space. Algorithm 2 is called
when users are typing a word; for tap-typing, it will
be called upon each key tap.

NSS has minor changes in both algorithms, In
Algorithm 1, rather than finding a specific state
in a static N-gram LM given context, UpdateLM
inserts the next words and corresponding proba-
bilities given context at the start state of GNLM

as arcs, thus the start state is always 0. In Al-

gorithm 2, ExtendLM additionally extends the
GNLM which aims to handle the multi-word prob-
lem discussed later.

Algorithm 2 Extend Search Space During typing

Input: Bikeyseq . Bikeys of the typing word
Output: StateSS . States during typing
NewStateSS ← {}
if N-gram LM then

G← Gngram

else if NN-LM then
GNLM ← ExtendLM(NLM,Cinput)
G← GNLM

end if
for SC◦L, SG in StateSS do

S ← Compose(C ◦ L,G, SC◦L, SG)
NewStateSS ← NewStateSS + S

end for
Prune(NewStateSS , Bikeyseq)
StateSS ← NewStateSS

NSS presents three key challenges: handling out-
of-vocabulary words (OOV) given NN-LM symbol
table constraint, preventing search space exploding
caused by assuming word separation at each touch
frame, and controlling latency considering dynamic
NN-LM inference and on-the-fly FST conversion.
We address these through carefully generated FST
structure design, accurate pruning strategies, and
data structure optimizations.

We conducted extensive live experiments on US

1246



English, British English, Spanish in Spain and
the US, Portuguese in Portugal. Our key metrics
are Words Modified Ratio (WMR), approximat-
ing word error rate by reporting the proportion
of words modified by the user after their initial
commit, and typing speed measured by Words Per
Minute (WPM). Online experiment results demon-
strated WMR improvement in [0.26%, 1.19%], at
an acceptable level of latency increase [17%, 28%].

The contributions of this work can be summa-
rized as follows:

• We propose Neural Search Space, integrating
the long context representation ability of NN-
LM into a carefully designed FST.

• We resolve practical problems such as OOV,
word separation hypothesis, and latency prob-
lems through efficient FST structure design,
accurate pruning strategies and data structure
optimizations.

• We demonstrate the effectiveness of NSS un-
der production environment over millions of
users through live experiments, improving the
user experience by reducing WMR and en-
hancing typing speed in a system optimized
over decades.

2 Background

Recent advances of Neural Network LMs(NN-LM),
notably projects such as GPT-4 (OpenAI, 2023),
PaLM 2 (Anil et al., 2023), demonstrate their supe-
rior performance compared to N-gram LMs, partic-
ularly in capturing longer context.

Federated Learning (FL) (McMahan et al., 2017;
Kairouz et al., 2021) with Differential Privacy (DP)
(Dwork et al., 2006, 2014) enables Gboard to im-
prove LM quality with user data while preserving
user privacy by distributing model training across
user devices instead of collecting data centrally.
Prior work employed FL to train LMs for Next
Word Prediction, Smart Compose, and On-The-Fly
rescoring in Gboard following Hard et al. (2018);
Xu et al. (2023). However, these applications either
operate on first pass decoding results produced by
N-gram LMs, or do not affect decoding suggestion
which has the largest impact on typing experience.

To benefit from FL of NN-LM and retain de-
coding efficiency, previous research has explored
projecting or approximating NN-LMs onto N-gram
LMs (Chen et al., 2019; Suresh et al., 2019, 2021),
and making the FST differentiable (Hannun et al.,
2020). However, such conversions inevitably incur

losses due to limited context and back-off smooth-
ing necessitated by sparsity (Chen and Goodman,
1999).

In this work, we replace the N-gram LM within
the search space with an NN-LM trained via FL,
enhancing long context capabilities. The deployed
NN-LM is an LSTM / CIFG model similar to those
in Hard et al. (2018); Xu et al. (2023).

3 Challenges

Ideally, an NN-LM would score all known words
for optimal coverage. However, vocabulary size
is limited due to the high computational cost of
the final dense layer. Our deployed NN-LM has a
30k-word vocabulary (top words from Federated
Counting), while the full lexicon contains 170k
words. Scoring the remaining 140k words in our
generated FST poses a key challenge.

Missing the space key and mistyping it with the
“cvbn” keys are the two common and consequen-
tial mistakes in mobile typing, turning multiple
words into one single string (See Appendix A.1
for demo cases). Converting <word, probability>
pairs to an FST for the current context would only
provide NN-LM scores for the first word in such
cases, with subsequent words receiving context-
less unigram scores. This penalizes and perhaps
suppresses multi-word candidates. We address this
using dynamic inference in Section 4.3.

Gboard operates under strict latency constraints.
Key presses should trigger visible feedback within
20ms as highlighted in Ouyang et al. (2017). NSS
inevitably increases latency due to NN-LM infer-
ence and FST conversion. Dynamic inference, em-
ployed to address space substitution issues, signifi-
cantly expands the search space by hypothesizing
word separations at each frame, further exacerbates
this challenge.

4 Methods

We detail the UpdateLM and ExtendLM de-
scribed in Algorithm 1 and Algorithm 2 respec-
tively below.

4.1 Algorithms

The pseudocode for UpdateLM and ExtendLM
is provided in Algorithm 3 and Algorithm 4.

In UpdateLM , GNLM is first set to the initial
structure Gbase (Fig. 2), either by direct reset in
decoder initialization or via ResetFST . As Gbase

is as large as the full 170k-word vocabulary, and

1247



the modified FST will have thousands of new states
and arcs on top of that, in-place reset is more effi-
cient than copy. We propose a more compact data
structure for efficient reset in Section 4.4.3.

Algorithm 3 UpdateLM

Input: Cinput . Committed words
Input: NLM . Neural Network LM
Output: GNLM . Runtime generated FST

if GNLM = null then
GNLM ← Gbase

else
ResetFST (GNLM )

end if
Sstart ← 0
ModifyFST (GNLM , Cinput, Sstart, NLM)

Next, ModifyFST inserts the NLM outputs
into GNLM as arcs attached on the start state 0 (
Fig. 3).

Algorithm 4 ExtendLM
Input: Cinput . Committed words
Input: NLM . Neural Network LM
Output: GNLM . Runtime generated FST
Sextend ← FindStatesToExpand()
DynamicInferencePruning(Sextend)
for S in Sextend do

W ← FindAdditionalContext(S)
Cextend ← Cinputs +W
ModifyFST (GNLM , Cextend, S,NLM)

end for

Similarly, ExtendLM modifies GNLM at other
states chosen dynamically based on context and
scores (discussed in Section 4.4.2). An example
FST structure after ExtendLM is shown in Fig. 4.

4.2 FST Structure

The initial structure of the FST in NSS is shown
in Fig. 2. State 0 is the start state and state 1 is
the unigram state. Unigrams are attached to the
unigram state as arcs with format “word/weight”,
where weight is the negative log probability. This
example only has 5 unigrams. For clarity, we de-
couple the self-loop on the unigram state by dupli-
cating the unigram state in the graph. Only one
zero weight epsilon arc is attached to the start state
before any modification.

Given new context, UpdateLM inserts NLM
outputs into GNLM as arcs (Fig. 3). Three words

and weights are attached to the start state as arcs,
each leading to a new state with an epsilon arc
to the unigram state. The NN-LM contains fewer
words than the total unigrams. The epsilon arc from
the start state has the <UNK> probability from the
NN-LM.

Figure 2: Initial FST Structure

Figure 3: FST Structure after UpdateLM , three words
are in the NN-LM vocab

The epsilon arc plays a key role in handling OOV:
if a word is not in the vocabulary of the NN-LM,
the search traverses the epsilon arc to the larger
unigram state. Here "OOV" means words in the un-
igrams but not in the NN-LM; real OOV words are
handled by literal decoding and dynamic models
following Ouyang et al. (2017), which is the same
for N-gram LMs as for NN-LM.

This structure also handles the words with space
substitution errors: the first word of the contiguous
multi-word candidate is scored by the NN-LM, and
the rest receive unigram scores. For example, in
Fig. 3, the path of “how many” from state 0 to state
4 to state 1 is highlighted in red.

To provide NN-LM scores for all words in con-
tiguous multi-word candidates, we introduce Dy-
namic Inference below.

4.3 Dynamic Inference

To be able to provide NN-LM scores for all words
in contiguous multi-word candidates, the FST struc-
ture is expanded dynamically based on the most
likely target words users are typing. Inference will
run on the concatenation of the base context and the

1248



Figure 4: FST structure after one-time dynamic infer-
ence

possible target words, and the result probability dis-
tribution will be merged into the runtime generated
GNLM . This process is named Dynamic Inference,
which is exactly the ExtendLM in Algorithm 4.

Fig. 4 illustrates an example of dynamic in-
ference. Assuming FindStatesToExpand() re-
turns state 4, then “how” is the target word, NN-LM
inference is conducted on context + “how”, and the
outputs are converted to the arcs attached to state
4, which is very similar to the operations on state 0.
Dynamic inference will keep updating the FST at
the newly-added states in a recursive manner.

After expansion, there are two paths for “how
many”, 0 → 4 → 5 and 0 → 4 → 1 → 1, the
former path can provide pure NN-LM scores for the
candidate while the latter still provides the mixed
scores. The search phase will return the path with
higher score, for this case, 0→ 4→ 5 path will be
returned.

Each state expansion necessitates both NN-LM
inference and FST structure updates, leading to
a substantial latency increase. Section 4.4.2 miti-
gates the number of expansions while Section 4.4.3
adapts the FST data structure to frequent modifica-
tions efficiently.

4.4 Latency Optimization

Various optimizations are explored to meet
Gboard’s latency requirements. The most effec-
tive methods are listed below.

4.4.1 Arc Pruning
Each GNLM modification involves inserting 30k
<word, score> pairs. However, since lower scores
are unlikely to survive in beam search phase, words
with probabilities less than a fixed Tarc are omitted
from the FST. Tarc is set to e−15 for UpdateLM
and e−12 for ExtendLM . This generally keeps

only 1k to 5k words, which reduced the tap typing
latency increment from +211.54% to +81.51% in
offline evaluation.

Settings and detailed results of the offline eval-
uation can be seen in Appendix A.2 and Ap-
pendix A.3 respectively.

4.4.2 Dynamic Inference Pruning
Ideally, we should expand GNLM at all states if
possible, however, the time complexity is an un-
bearable O(NL), where N is the number of words
in NN-LM and L is the length of the candidate.

Dynamic Inference Pruning is applied in Al-
gorithm 4 to reduce the complexity. We adopt
two rules simultaneously to decide whether a state
should be expanded.

• Only states with scores larger than a threshold
Textend are eligible for expansion.

• Only the top N states with eligible scores may
be expanded.

We explored various thresholds in offline evalu-
ation, empirically choosing Textend = e−12 and
N = 1, which increases tap typing latency by
79.92%.

4.4.3 Frequently Modified FST
The default mutable FST implementation we use is
OpenFST (Allauzen et al., 2007), in which arcs are
stored independently per state to offer flexibility
to add and remove arcs and states. However, it’s
inefficient when the FST is incrementally updated
and frequently reset. Using reset as an example,
we would need to delete the arcs of each state first
and then delete the states, which is expensive.

Based on this requirement for incremental up-
dates and frequent resets, we propose a customized
FST implementation. The arcs of all states are
stored in the same array, and the FST maintains a
map from states to the indices of their correspond-
ing arcs in the large array. When resetting the FST,
we only need to clear the single array of arcs and
then delete the map of states; the arc array can be
reused instead of reallocated each time.

The FST structures are illusrated in figures in
Appendix A.5.

5 Evaluation

We conducted live experiments on uniform random
samples of the eligible Gboard populations (Sivek
and Riley, 2022) for US English (en-US), GB En-
glish (en-GB), ES Spanish (es-ES), PT Portuguese
(pt-PT) and US Spanish (es-US).

1249



Language Devices WMR(%) WPM(%) Latency(%) Total Users(M)
en-US ALL -0.26 +0.06 +24.13 14.00
es-ES ALL -0.77 +0.40 +23.13 3.30
pt-PT ALL -0.99 +0.59 +28.34 0.85

en-GB
ALL -1.19 +0.40 +17.92 1.99

3+ GB -1.31 +0.48 +13.98 1.43
6+ GB -1.13 +0.30 +7.36 0.64

es-US
ALL -1.03 +0.39 +17.43 14.37

3+ GB -1.24 +0.43 +15.14 8.86
6+ GB -1.24 +0.52 +12.89 1.46

Table 1: Live Experiment results for en-US, es-ES, pt-PT, en-GB and es-US.

5.1 A/B Metrics

Metrics in the A/B experiments to measure the
quality and latency are:

• Words Modified Ratio (WMR): The ratio of
words being modified during typing or after
committed; improvement is shown by reduc-
tion.

• Words Per Minute (WPM): The number of
committed words per minute.

• Latency: The average time for decoding.
• Total Users: The number of users partici-

pating in the experiments with the target lan-
guages.

5.2 Experiment Setup

There are two arms in the live experiments:

• Control Arm: the LM is a N-gram FST
which is obtained by approximating the NN-
LM trained via Federated Learning or count-
ing from server corpus.

• NSS Arm: the LM is a simple FST generated
by one-layer LSTM at runtime.

The NN-LM in live experiment is a one-layer
LSTM model with the following configuration:

• vocab_size = 30k
• embedding_dim = 96
• lstm_size = 670
• total_parameters = 6.4M
• training_loss: cross entropy of next word

prediction.

We hypothesize that the quality of NSS is limited
by the latency. To verify this, we also report metrics
restricted to high-end devices with memory larger
than 3G / 6G for en-GB and es-US.

5.3 Result Analysis
The online live experiment results are listed in Ta-
ble 1. All metrics other than Total Users are re-
ported as percent changes relative to the control
arm. All latency changes and all bolded WMR and
WPM changes are significant at a 0.05 level (null
hypothesis: the metric change is 0).

It’s observed in Table 1 that:
• The NSS arm reduces WMR with a 95% con-

fidence interval of [0.26%, 1.19%] on vari-
ous languages while increasing latency in the
[17%, 28%] range.

• Higher-end devices exhibits marginally
greater improvements in WMR and WPM
with smaller latency increases. Specifically
for example, for es-US, the latency increment
on 6G+ devices is 12.89%, 5% less than the
increment in ALL devices, while the WMR
and WPM improvement are larger. The
metrics of en-GB on 6G+ devices are not
better than the other settings, which we argue
is potentially caused by the small population
attending the live experiments.

• WPM is consistently improved, suggesting
that the latency cost does not adversely affect
user experience.

From the perspective of production, as a well op-
timized system, WMR of Gboard decoder ranges
within [4.5%, 7%] for locales studied in this pa-
per, the relative improvement larger than 0.1% is
deemed significant. Additionally, the observed la-
tency increase fell below the sensitive threshold,
allowing us to achieve both WMR/WPM optimiza-
tion and latency control. Specifically, the Gboard
decoder consists of a series of modules, with NSS
positioned upstream. Any latency increase in NSS
can potentially impact downstream modules like
key correction and auto-corrections, negatively af-

1250



fecting key metrics. Our experimental findings
indicate that if the latency increase remains below
a certain level, downstream modules are unaffected,
and users do not perceive the latency change.

The confirmation on the hypothesis regarding
higher-end devices empowers us to deploy more
powerful models on devices with greater capabili-
ties, further enhancing the user experience.

It’s expected that the quality improvement on en-
US is much smaller than the other locales. Due to
the high product priority, the baseline of en-US is
much stronger than other locales, which adopts the
FST approximated from a FL trained LM (Chen
et al., 2019) and a specialized N-gram model for
the search domain.

6 Discussions

This work successfully bridged the gap between
the long range context awareness power of NN-
LMs and the efficiency requirements of Gboard’s
decoder. By creatively adapting NN-LMs to an FST
structure and implementing latency optimizations,
we deployed the Neural Search Space in production.
Experiments demonstrated that NSS significantly
improves decoding quality, particularly on higher-
end devices, with an acceptable latency trade-off.
This direct integration unlocks potential for future
enhancements driven by NN-LM advancements,
promising further gains in keyboard decoding and
overall user experience.

Building upon NSS, we identify several promis-
ing directions for future research:

• Integrating Transformer models: Trans-
former models are known for their superior
quality and training efficiency. Exploring their
integration within NSS presents an exciting
opportunity. However, a key challenge here
is maintaining system performance, given the
substantial computational resources and mem-
ory required by the Transformer model to
handle long contexts. Further investigation
is needed to assess the quality gains achiev-
able with models constrained to fewer than 10
million parameters due to these system limita-
tions.

• Leveraging richer context: Compared to tra-
ditional n-gram models, NN-LMs offer a more
flexible framework for incorporating diverse
contextual information. Integrating signals
like application domain, country, time, and
extended user history holds the potential to

further enhance model quality.
• Exploring SentencePiece LMs: The current

NSS utilizes word-level LMs, which can be
limited by OOV issues. Employing Sentence-
Piece(Kudo, 2018) LMs could improve perfor-
mance by providing better word coverage and
a more nuanced representation of language.

Beyond enhancing NSS, another avenue for ex-
ploration is replacing the FST-based decoder with
a neural decoder. While we have investigated this
approach, certain challenges hinder its immediate
adoption as a full replacement:

• Quality Gap: The current system, refined
over a decade by numerous engineers, incor-
porates extensive prior knowledge about er-
ror patterns, which is difficult to encapsulate
within a single neural model.

• Debugging Challenges: The current system
allows for straightforward debugging and cor-
rection of errors by adjusting weights in
FSTs. Transitioning to a purely neural de-
coder would sacrifice this flexibility..

However, we recognize the inherent advantages
of neural models, such as superior semantic under-
standing and context capture. Therefore, we con-
tinue to experiment with end-to-end approaches.
One promising avenue is to run neural models in
parallel with the existing system and merge their
candidate suggestions, leveraging the strengths of
both FSTs and neural approaches. This hybrid ap-
proach allows us to benefit from the precision and
debuggability of the FST-based system while capi-
talizing on the advanced contextual understanding
of neural models.

References
Cyril Allauzen, Michael Riley, and Johan Schalkwyk.

2009. A generalized composition algorithm for
weighted finite-state transducers. In Interspeech,
pages 1203–1206.

Cyril Allauzen, Michael Riley, and Johan Schalk-
wyk. 2011. A filter-based algorithm for efficient
composition of finite-state transducers. Interna-
tional Journal of Foundations of Computer Science,
22(08):1781–1795.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. Openfst: A
general and efficient weighted finite-state transducer
library: (extended abstract of an invited talk). In Im-
plementation and Application of Automata: 12th In-
ternational Conference, CIAA 2007, Praque, Czech

1251



Republic, July 16-18, 2007, Revised Selected Papers
12, pages 11–23. Springer.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Shiri Azenkot and Shumin Zhai. 2012. Touch be-
havior with different postures on soft smartphone
keyboards. In Proceedings of the 14th interna-
tional conference on Human-computer interaction
with mobile devices and services, pages 251–260.

Mingqing Chen, Ananda Theertha Suresh, Rajiv Math-
ews, Adeline Wong, Cyril Allauzen, Françoise Bea-
ufays, and Michael Riley. 2019. Federated learn-
ing of n-gram language models. arXiv preprint
arXiv:1910.03432.

Stanley F Chen and Joshua Goodman. 1999. An
empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language,
13(4):359–394.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006. Calibrating noise to sensitiv-
ity in private data analysis. In Theory of Cryptog-
raphy: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006.
Proceedings 3, pages 265–284. Springer.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorith-
mic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–
4):211–407.

Awni Hannun, Vineel Pratap, Jacob Kahn, and Wei-
Ning Hsu. 2020. Differentiable weighted finite-state
transducers. arXiv preprint arXiv:2010.01003.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
2018. Federated learning for mobile keyboard pre-
diction. arXiv preprint arXiv:1811.03604.

Lars Hellsten, Brian Roark, Prasoon Goyal, Cyril Al-
lauzen, Françoise Beaufays, Tom Ouyang, Michael
Riley, and David Rybach. 2017. Transliterated mo-
bile keyboard input via weighted finite-state trans-
ducers. In Proceedings of the 13th International
Conference on Finite State Methods and Natural
Language Processing (FSMNLP 2017), pages 10–
19.

Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2021. Advances and
open problems in federated learning. Foundations
and trends® in machine learning, 14(1–2):1–210.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence
and statistics, pages 1273–1282. PMLR.

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

Tom Ouyang, David Rybach, Françoise Beaufays, and
Michael Riley. 2017. Mobile keyboard input de-
coding with finite-state transducers. arXiv preprint
arXiv:1704.03987.

Gary Sivek and Michael Riley. 2022. Spatial model
personalization in gboard. Proceedings of the ACM
on Human-Computer Interaction, 6(MHCI):1–17.

Ananda Theertha Suresh, Brian Roark, Michael Riley,
and Vlad Schogol. 2019. Distilling weighted finite
automata from arbitrary probabilistic models. In
Proceedings of the 14th International Conference
on Finite-State Methods and Natural Language Pro-
cessing, pages 87–97.

Ananda Theertha Suresh, Brian Roark, Michael Riley,
and Vlad Schogol. 2021. Approximating probabilis-
tic models as weighted finite automata. Computa-
tional Linguistics, 47(2):221–254.

Zheng Xu, Yanxiang Zhang, Galen Andrew, Christo-
pher Choquette, Peter Kairouz, Brendan Mcmahan,
Jesse Rosenstock, and Yuanbo Zhang. 2023. [indus-
try] federated learning of gboard language models
with differential privacy. In The 61st Annual Meet-
ing Of The Association For Computational Linguis-
tics.

A Appendix

A.1 Multi-word Demo

The two frequently multi-word typos described in
Section 3 can be seen in Fig. 5.

A.2 Offline Evaluation Setting

TypingTester is the tool used for offline evaluation.
It’s a testing framework for the Gboard decoder and
related C++ code. It repeatedly runs the decoder
over a sequence of touch points, compares the out-
put text to expected text, and estimates metrics
like word error rate, next word prediction accuracy,
decode time, and more.

The dataset used for offline evaluation contains
touch points for 2500 sentences, which is gath-
ered from 50 volunteers by typing the same 50
sentences.

In this paper, typingtester is used to report the
relative decoding latency change, the tests run on a
workstation with 3.7Ghz, 6 core Intel CPU.

1252



Figure 5: Word with Space Substitution Errors. Left: misses the space key. Right: mistypes the space with "n"
("cvbn")

A.3 Arc Pruning Latency Impact

The latency impact of arc pruning with different
thresholds is shown in Table 2. We report the rela-
tive change of latency over the prod N-gram search
space, the latencies for tap-typing and gesture typ-
ing are reported separately.

TUpdate TExtend Tap (%) Gesture (%)
e−15 e−12 +81.51 -9.28
e−10 e−10 +57.96 -36.03
e−12 e−12 +79.85 -25.37
e−15 e−15 +138.36 -3.21
0 0 +211.54 +15.59

Table 2: Latency change on various arc threshold com-
binations

The chosen thresholds for Neural Search
Space are e−15 for UpdateLM and e−12 for
ExtendLM . The latency increase of tap typing is
81.51%, which is larger than the latency increment
online due to the reasons listed below.

• The optimization gap between workstation
and phone devices, eg: tflite inference is faster
on device.

• Not all modules are involved in the offline
evaluation.

The gesture latency is reduced by 9.28%, which
benefits from the inherent property that gesture
typing is free of the missing/mistyping space key
problem, such that the dynamic inference defined
in Algorithm 4 is not required.

No pruning happens when the thresholds are set
to 0, and 130.03% and 24.87% latency savings on
tap typing and gesture typing are observed respec-
tively comparing to the chosen thresholds.

A.4 Dynamic Inference Pruning Latency
Impact

Dynamic Inference pruning strategy contains two
thresholds, N controls how many states could be
expanded at most per char and Texpand controls
whether a state is eligible to be expanded, which
are set to be 1 and e−12 respectively after verifying
on live experiments.

Table 3 displays the latency impact of various
thresholds. Gesture latency is not affected signif-
icantly as it doesn’t have dynamic inference. Tap
latency is affected by the range from 10% to 20%
when changing the thresholds. The latency increase
is reduced from 79.92% to 40.86% if cancelling
the dynamic inference, which defines the loose up-
per bound of latency increase in dynamic inference
optimization.

N Textend Tap (%) Gesture (%)
1 e−12 +79.92 -7.60
2 e−12 +94.51 -8.23
3 e−12 +99.31 -8.35
1 e−15 +91.17 -6.19
1 e−10 +69.21 -7.07
No Dynamic Inference +40.86 -8.45

Table 3: Latency change on various dynamic inference
thresholds

A.5 Customized FST structure
As described in Section 4.4.3, the default modified
FST implementation in OpenFST is illustrated in
Fig. 6. while the customized implementation of a
frequently updated FST is illustrated in Fig. 7.

1253



Figure 6: Default Modifiable FST

Figure 7: Optimized Modifiable FST in incremental up-
date scenarios

1254


