PEARL: Preference Extraction with Exemplar Augmentation and
Retrieval with LLM Agents

Vijit Malik
Amazon Al
vijitvm@amazon.com

Vinayak Puranik
Amazon Al
puranikv@amazon.com

Abstract

Identifying preferences of customers in their
shopping journey is a pivotal aspect in provid-
ing product recommendations. The task be-
comes increasingly challenging when there is
a multi-turn conversation between the user and
a shopping assistant chatbot. In this paper, we
address a novel and complex problem of identi-
fying customer preferences in the form of key-
value filters on an e-commerce website in a
multi-turn conversational setting. Existing sys-
tems specialize in extracting customer prefer-
ences from standalone customer queries which
makes them unsuitable to multi-turn setup. We
propose PEARL (Preference Extraction with ICL
Augmentation and Retrieval with LLM Agents)
that leverages collaborative LLM agents, gener-
ates in-context learning exemplars and dynami-
cally retrieves relevant exemplars during infer-
ence time to extract customer preferences as a
combination of key-value filters. Our experi-
ments on proprietary and public datasets show
that PEARL not only improves performance on
exact match by =~ 10% compared to competi-
tive LLM-based baselines but additionally im-
proves inference latency by ~ 110%.

1 Introduction

Large selection, attractive pricing and convenience
have made online shopping very popular in recent
years. However, traditional e-commerce services
still offer search-based interface which is inade-
quate for broad, ambiguous and upper funnel user
queries. Absence of a conversational interface of-
ten leaves customers feeling the need of human-
like assistance to explain their requirements and
navigate towards the right set of products (Abbey,
2023; Cheng et al., 2023; Gumusel et al., 2023; Liu
et al., 2023b; Guo et al., 2023a; Roller et al., 2021;
Liet al., 2021; Liu et al., 2023a). With the emer-
gence of generative artificial intelligence (GenAl)
in recent years, much research efforts have been
devoted on building multi-turn conversational chat-

Akshay Jagatap
Amazon Al
ajjagata@amazon.com

Anirban Majumder
Amazon Al
majumda@amazon.com

bots that can serve as virtual shopping assistant,
akin to the trained sales agents commonly found in
physical stores.

In contrast to traditional search-based e-
commerce services that operate on single-shot
queries, multi-turn conversations require the identi-
fication of an evolving set of user preferences em-
bedded within the dialogue. The primary objective
of the chatbot is to extract customer preferences
from the conversation and map them to preference
filters (e.g. Brand, CPU, Price etc.). Extracting
preference filters from multi-turn conversation is
challenging for several reasons. Firstly, the filter
mentions in user utterance can be non-standardized
(e.g., ram and memory are both surface forms of the
filter key RAM), implicit (e.g., "HP laptop 16GB"
refers to the filter key RAM with a value of 16GB) or
having complex preferences (e.g., “not windows
os”, “16gb or more”). User requirements can be
ambiguous with no clear mention of the require-
ment, e.g., “heavy-duty laptop” may imply a high-
performance laptop or a rugged one. Another layer
of complexity arises from the fact that customers
may modify their preferences over the course of
multiple turns. For instance, a customer utterance
such as “what about MacBooks with M2" would
change their previously stated preference for the
CPU from M1 to M2. Refer to Table 1 for more such
examples.

To address these challenges, we propose a novel
architecture for extracting refinements from multi-
turn conversation history that leverages multiple
large language models (LLMs) as collaborative
agents (Guo et al., 2023b; Gao et al., 2023a; Clarke
et al., 2023). Our system (PEARL- Preference
Extraction with ICL Augmentation and Retrieval
with LLM Agents) dynamically retrieves the most
relevant in-context exemplars from an index dur-
ing inference time. These ICL exemplars (Dong
et al., 2022; Min et al., 2023; Kim and et al., 2023)
are a combination of human-curated and synthet-

1536

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1536-1547
November 12-16, 2024 ©2024 Association for Computational Linguistics

Conversational E-commerce

Why navigating
preferences is a

difficult task?
Current set of preferences: { ‘Price’: ‘$1000 and above’} Complex preference
Next utterance: ‘not windows os’ combinations

Current set of preferences: { ‘Brand’: ‘Dell’, ‘CPU Type’: ‘Intel Core 17’
Next utterance: ‘now can you show apple laptops with m2?’

Preference editing

Current set of preferences: { ‘Brand’: ‘Dell’ }

Next utterance: ‘should be lightweight and good battery’

Ambiguity

Current set of preferences: { ‘Brand’: ‘HP’, ‘HDD-Size’: ‘1 TB & above’}
Next Utterance: ‘HP probook 445 G7 , how much storage’

Complexity in intent

Current set of preferences: { ‘CPU Type’: ‘Intel Core i5lIntel Core i7/Intel Core 19,..
..‘Price’: ‘$700 to $800’, ‘CPU Processor Speed’: ‘1.80 to 1.99 GHz’}

Next Utterance: ‘windows laptop’

Number of preferences
per conversation

Table 1: Examples showing the complexity of the task of preferences navigation in a multi-turn chat scenario. The
examples are shown on an utterance level showing the innate natural language understanding required in handling
this task. Note that we show multiple refinement picker values for same refinement key separated by ‘I’.

ically generated exemplars by PEARL through an
offline process. We compare the performance of
PEARL against existing production systems adapted
to similar tasks, demonstrating its superior accu-
racy and inference latency. Through empirical eval-
uation and analysis, we highlight the efficacy of
our approach and its potential to improve the iden-
tification of customer preferences in conversational
e-commerce settings. Our comprehensive set of ex-
periments shows that PEARL not only improves the
performance of extracting refinements from con-
versational logs by 10% compared to a production
system but also reduces the latency by 110%.

2 Related Works

Large Language Models (LLMs) in Conversa-
tional AI The advent of Large Language Mod-
els (LLMs) has revolutionized conversational chat-
bots by enabling them to comprehend and gener-
ate human-like text (Radford et al., 2019; Roller
et al., 2021). The integration of LLMs in person-
alized product recommendations has emerged as a
promising avenue for enhancing the e-commerce
experience (Gao et al., 2023b; Dong et al., 2022;
Zhao et al., 2023; Gao et al., 2023a) with collab-
orative LLM agents (Cambon et al., 2023; Guo
et al., 2023b; Haslberger et al., 2023) having the po-
tential to enhance productivity further by address-
ing complex challenges. Recently, the problem of
demonstration selection (Xu and Zhang, 2024; S.
et al., 2024; Li et al., 2023) for in-context learning
(ICL) has received a significant attention in the
literature with several works incorporating an ICL
retriever (Li et al., 2023; Wang et al., 2024a) that
augments the LLM by inserting relevant ICLs in
the prompt to improve task level performance.

NL2API The task of translating natural lan-
guage inputs into API calls typically hinges on rule-
based techniques (Woods, 1973) and Deep Neu-
ral Networks (DNNs) (Sun et al., 2016; Yih et al.,
2015) and found applications in databases (Koth-
yari et al., 2023), knowledge graphs (Campélo et al.,
2023) and web tables (Sun et al., 2016). Only re-
cently, there has been successful application of
using LLMs to invoke external tools or APIs (Qin
et al., 2023; Patil et al., 2023). The key challenge
in this space is the lack of domain-specific datasets,
an aspect that we specifically address in PEARL.

3 Problem Formulation

The conversation between user and chatbot is
represented as a sequence of textual utterances
Uy = {ug,u1,--- us—1} where Speaker(u;) €
{USER,BOT} for all j € [t], t being the current
timestamp. We assume that the conversation has
been mapped to a product category C for which
we have access to the set of valid filter preferences
Fe = {(K;,V;)} containing filter schema keys
K; € K¢ where K¢ is the universe of filter keys for
category C (e.g. for “laptop” category, valid filter
keys are RAM, CPU etc) and set V; of corresponding
picker values (e.g. {4GB, 8GB, 16GB, 32GB} for the
filter key RAM). Given the conversation history U4,
our goal is to map the user requirement into a set
of filter key-value pairs. Mathematically, we want
to learn a function f such that,

fU, Fe) = {(kp,vp) } (D

where {k,} C K is a subset of filter keys men-
tioned in U; with corresponding values v, C V,.
Refer to Figure 1 for an example of multi-turn con-
versation and user preference extracted by PEARL.

1537

EXEMPLAR GENERATION MODULE

allil

Filter Distribution

I

Filter
Combination

® ® ®
&

GenerativeAgent PreferencePickerAgent

/ PREFERENCE PREDICTION MODULE N

CUSTOMER: hi need to book a hotel
CUSTOMER: need parking for my car
CUSTOMER: at least 3 star

CUSTOMER: towards south or centre of the town
CUSTOMER: thanks!

Customer
Conversation

Filter Space

D

Augment

Predicted

rrrrr Is?
& Preferences

» Online
——> Offline

Preference
Contextualized
Query

want to book at least 3 star hotel in south
or centre of the town with parking

{

\—'—> ‘parking’: ‘yes’,
Preference . - :
@ [> Dictionary area’: ‘'south|centre’,
| ‘) alR
: > stars’: ‘4|3,
Generated ‘ o ,
>l ! type”: ‘hotel
|
Contextual Query 1\ PreferencePickerAgent }

Figure 1: Schematic flow diagram of PEARLconsisting of three modules: ICL Generation, Dynamic ICL Retrieval
and Preference Prediction module. Steps which are offline and online are marked with differently coloured arrows

in the figure (best viewed in color).

4 Dataset Details

We analyze conversation logs collected from a chat-
bot application where human agents acted as shop-
ping assistant to customers for their purchase in a
specific product category (laptop). We used chat
logs with personally identifiable information (PII)
redacted for privacy and compliance. We conduct
annotations over complete chats and record the set
of preferences of the customer at the end of the
chat session. Due to the complexity and effort in la-
belling these chat transcripts, we use a set of ~ 400
sessions as our test and 100 more labelled chat ses-
sions as our support set for ICL exemplars. During
the annotation process, we consider preferences of
user that can be mapped unambiguously to a com-
bination of filter keys and values (Li et al., 2021;
Zhang et al., 2020; Wang et al., 2020b; Liu et al.,
2019). Refer to Appendix A.1 for more details on
the Internal dataset.

To demonstrate generalization of our techniques,
we report performance of PEARL on the Multi-
WoZ (Zang et al., 2020) dataset. We specifi-
cally choose the ‘Hotel’ domain of MultiWoZ
(MultiWoZ-H) having the largest number of pref-
erence filters, thereby, increasing the complexity
of the task. We curate a dataset of ~ 350 chat ses-
sions as test set and a set of 100 chat sessions as
ICL exemplars. Refer to Appendix A.1 for data
preparation steps and analyses.

5 Methodology

We propose PEARL, a collaborative multi-agent
framework that leverages LL.M-based agents with
diverse functionalities to effectively navigate cus-
tomer preferences in a multi-turn conversational
system. Note that in our experiments, chat conver-
sations have been PII redacted. Figure 1 shows our
framework consisting of the primary component
for preference prediction accompanied by two aux-
iliary components: for dynamic retrieval of ICL
exemplars and ICL generation.

Preference Prediction Module The prefer-
ence prediction module is the core component
that takes the current utterance from customer
and the conversation history as input and gener-
ates a dictionary of filter key-values summarizing
customer preferences (c.f. Figure 1). It lever-
ages two LLM agents: ContextualizationAgent
and PreferencePickerAgent. In the first step,
ContextualizationAgent summarizes the entire
conversation into a contextualized utterance that
captures all preferences of the customer in a singe
sentence. subsequently, PreferencePickerAgent
generates a dictionary of filter key-values from the
contextualized utterance, filter space F¢ and ICL
exemplars. This dual-agent architecture mimics
how a salesperson listens to the customer, summa-
rizes their requirement and then executes a search
based on those preferences.

Dynamic Exemplar Retrieval Recent stud-

1538

ies (Rajapakse, 2023; Jiang et al., 2023; Lewis
et al., 2020; Izacard and Grave, 2021; Hofstatter
et al., 2023) have shown that LLM performance
can be improved by inserting relevant ICL ex-
emplars in the prompt. Guided by this observa-
tion, the dynamic ICL retrieval module in PEARL
stores an index of ICL examplars of input, output
pairs where input is the pre-curated response
from ContextualizationAgent and output is
the preference key-value filters. At inference time,
PreferencePickerAgent obtains the top-k clos-
est exemplar matches from the index based on the
current contextualized query and inserts them in
the LLM prompt.

Exemplar Generation Module Manually cu-
rating relevant and diverse pool of ICL exemplars
is a time-consuming and error-prone process. To
reduce dependency on human effort, PEARL uses
the exemplar generation module to generate syn-
thetic but plausible ICL exemplars. To promote
diversity, we leverage the large filter space present
in F¢ to sample a preference combination Psamp1ed-
To avoid sampling invalid combinations ! we fit
a distribution over filter pairs based on filter com-
binations observed in catalog of existing products.
PEARL uses a generative model GenerativeAgent
to generate potential exemplar Zsy, from Psanpied
which is verified by PreferencePickerAgent to
generate a set of filters Pgenerated. Only when
Pgenerated = Psampled, the exemplar Zg, is added
to the index.

6 Experiments and Results

To the best of our knowledge, there is no known
published work on user preference extraction
from multi-turn conversation logs. Therefore,
we explore strong baselines as mentioned below
to evaluate PEARL. Experiments are performed
on LLMs hosted on AWS Bedrock and unless
specified otherwise all results are reported for
Claude-instance-v1 (c.f. Section 6.2 for results
on different choices of LLMs). Refer to Appendix
A.3 for prompt details.

NL2API For this baseline, an LLM takes the
conversation history and the filter space as input
and identifies the preferences as a combination of
filters in a single-step prompting approach. Three
setups are explored: 1) Basic (no ICL), 2) 10-shot
ICL with static exemplars, and 3) 10-shot ICL

! An invalid preference pair could be Apple branded laptop
with Nvidia GeForce GTX graphics card.

with step-by-step chain-of-thoughts reasoning. Ad-
ditionally, NL2API-2s is proposed as a two-step
stronger baseline, where the first step determines
the filter keys in the conversation, and the second
step determines the filter picker values for each key.

OperatorLLLM This approach navigates cus-
tomer preferences through the conversation by it-
eratively editing the preference set based on each
user utterance, using operations like adding, re-
moving, or updating filter key-value pairs. Results
are reported for three setups: 1) Basic (no ICL),
2) 10-shot ICL and 2) 10-shot ICL with chain-of-
thoughts reasoning.

PEARL In our ©proposed approach,
ContextualizationAgent uses 10 static
ICL exemplars constructed from real conversa-
tion logs and GenerativeAgent augments the
initial index of 100 ICLs with 1.2k synthetic
exemplars. For dynamic exemplar retrieval, we
use neural representations (refer to Table 4) to
obtain contextual query embeddings. During
inference, the top 10 (k = 10) exemplars are
retrieved from the augmented exemplar set for the
PreferencePickerAgent agent based on cosine
similarity.

6.1 Results

Metrics Our primary metric is exact match (EM)
which is defined as + .1 I(P; = G;), where
P; is the predicted set of filters, G; is the ground
truth for chat session 7 and I(+) is the indicator func-
tion. Note that while we also report microF1, exact
match is a stricter metric: for example, predicting
8GB in place of 8GB|16GB gives us exact match of
0 but F1 of 0.67. We define another metric “Fil-
ter Edit Distance” (FED) (Zhu et al., 2023; Kaji,
2023), which measures the edit distance between
the predicted set of filters to the ground-truth value.
An interpretation of this metric is the number of op-
erations (delete/add) that need to be applied on the
predicted filters to obtain the true values. We also
report inference latency of each approach which is
averaged over all the chat sessions in our evaluation
dataset.

Due to confidentiality reason, we report only
relative improvements of PEARL over baselines on
Internal test set; however absolute numbers are
reported on MultiWoZ-H. Note that during evalu-
ation, we execute each approach 6 times on the
test set and report metrics with mean and standard
error. Also, for MultiWoZ-H, filter values for some
keys can be unbounded, due to which we use fuzzy

1539

. Internal \ MultiwOZ-H
Setup Paradigm
EM% 1 F11 FED | Latency (s)) \ EM% 1 F11 FED | Latency (s)|

NL2API Basic _ _ _ _ 9.200.24 0.74050.0049 2.60 1.14
NL2API ICL@10 +8.340.14 40.05050.0028 —0.34 +0.38 18.100.16 0.81050.0031 2.15 4.25
NL2API ICL@10+CoT +11.000.14 40.06690.0022 —0.60 +3.67 26.410.12 0.83680.0052 1.84 5.89
NL2API-2s Basic 794080_17 *0.10590,0048 +0490 +1.10 6.820,25 0.69120,0037 2.73 2.11
NL2API-2s ICL@10 —6.210.20 —0.07630.0024 +0.78 +1.53 15.130.10 0.77610.0027 2.31 5.42
NL2API-2s ICL@10+CoT —1.620.15 —0.05790.0018 +0.65 +3.97 18.690.26 0.80050.0028 2.16 6.23
OperatorLLM Basic —6.620.20 —0.04280.0050 +0.51 +1.61 8.600.14 0.71820.0034 2.66 2.63
OperatorLLM ICL@10 —2.570.17 —0.02410.0052 +0.17 +2.94 19.580.16 0.81130.0051 2.08 3.82
OperatorLLM ICL@10+CoT +9.340.13 +0.04810.0038 —0.82 +4.94 28.480.26 0.84260.0041 1.73 5.58
PEARL DynICL@10 w. Aug. 420.310.11 +0.1209¢.0023 —1.47 +1.38 \ 36.790.10 0.8672¢.003s 1.55 2.76

Table 2: Comparison of PEARL against baselines. In addition to performance metrics, we also report mean latency
per chat conversation of each method. Standard error is reported across 6 runs. Note that for our Internal dataset,

we report relative numbers w.r.t. NL2API-Basic.

. Internal | MultiwOZ-H
Setup Paradigm
EM% 1 F11 FED | \ EM% 1 F11 FED |
NL2API ICL@10 + CoT +11.000.14 +0.06690.0022 —0.60 \ 26.410.12 0.83680.0052 1.84
PEARL w. SummaryContextualization +13.479.19 +0.07830.0027 —1.04 ‘ 25.390.13 0.81720.0030 1.98
PEARL w. PreferenceContextualization +16.390.16 +0.09760.0034 —1.15 ‘ 33.820.17 0.8511¢.0043 1.68
. Pref Contextualizati
PEARL ri.eﬁﬁﬁim?ﬁé’igféa O 419.09015 40120400052 —1.31 ‘ 34.93051 0.85980.00a1 1.61
w. PreferenceContextualization
PEARL w. DynamicICL@ 10 +20.310.11 —+0.12090.0023 —1.47 | 36.790.19 0.86720.0038 1.55
w. ExemplarGeneration

Table 3: Impact of each module in PEARL. NL2API results are provided for reference. We report mean performance
and standard error across 6 runs. For our Internal dataset, we report relative performance w.r.t. NL2API-Basic.

matching to calculate the evaluation metrics (refer
to Appendix A.2).

Baseline Comparison Table 2 reports the per-
formance of PEARL in comparison to baselines on
both Internal and MultiWoZ-H datasets. In sum-
mary, PEARL outperforms all baselines by signif-
icant margin across all metrics in extracting the
user preference accurately. In particular, PEARL
obtains a lift of 10% in exact match, 5% in Mi-
cro F-1 and 47% reduction in FED over NL2API
(with ICL and CoT) which is the prior production
model for preference extraction. We notice similar
trend on MultiWoZ-H, where we obtain improve-
ment of 10% in exact match and 3% in F1. In
addition to performance, PEARL reduces inference
latency by 110% on Internal test set over the
production model. Similarly, we see reduction in
latency from 5.89s to 2.76s on MultiWoZ-H. This
reduction in latency primarily comes from having
no chain-of-thoughts reasoning steps for any LLM
agent in PEARL. OperatorLLLM is precise but slow at
utterance-level, however, it still lags behind PEARL
in performance.

PEARL Ablation: To study the effect of each
component in PEARL towards the task of navigat-

ing customer preferences, we perform a detailed
ablation study. Table 3 shows that the proposed
ContextualizationAgent agent outperforms a
simpler summary-based approach, as summarizing
conversations loses preference details amidst noisy
information. Adding dynamic in-context learning
and exemplar augmentation further improves re-
sults, highlighting the value each PEARL module
provides.

6.2 Analysis

Latency: In comparison with competitive base-
lines like NL2API, PEARL has much lower in la-
tency which is primarily because no step-by-step
Chain-of-Thought is involved in PEARL. Our pro-
posed approach relies solely on the quality of re-
trieved set of ICL exemplars (the retrieval is an
embedding match, hence it takes negligible time to
retrieve). Unlike NL2API, which generated several
CoT steps to arrive at the answer, PEARL generates
the answer without generating any thoughts.
Number of Preferences: As the number of pref-
erences of the customer increases, the generated
set of preferences also explodes. To analyze the
performance of PEARL in depth, we conduct a study

1540

Setup Encoder Internal | MultiwOZ-H
EM% 1 F11 RED | ‘ EM% 1t F11 RED |
PEARLwW/0 Exem.G. MiniLM-L6 +13.000.15 +0.0894.0031 —0.76 29.350.13 0.84020.0040 2.52
PEARLw/0 Exem.G. Instructor +18.340.17 +0.0935¢.0012 —1.11 33.890.22 0.86470.0059 1.77
PEARLw/0 Exem.G. UDR +16.710.19 +0.09090.0034 —1.02 | 34.930.31 0.85980.0041 1.61
PEARLwW/0 Exem.G. Internal* +19.230,11 —|—0.11140,0027 —1.31 _ _ _

Table 4: Impact of different text encoders in Dynamic Exemplar Retrieval on performance. We report metrics
and standard error across 6 runs. On internal dataset, we report performance relative to NL2API-Basic. Notation:
Exem.G. is ExemplarGenerationModule and w/o is ‘without’. Also ‘Internal*’ is the proprietary deep embedding

model we only used on our Internal dataset.

Percentage of Exact Matches

PEARL

m OperatorLLM

NL2API

Z1

PEARL

Exact Match (%)

k\‘ OperatorLLM

NL2API

sadualasald Jo JaquinN
7€

PEARL

m OperatorLLM

NL2API
PEARL

anoqe pue g

Figure 2: PEARLvs baselines w.r.t. number of
preferences per chat session on MultiWoZ-H.

where, we divide our evaluation set into different
bins based on the number of preferences in the
ground truth (see Figure 2). We observe that PEARL
is comparable on the subset of data having zero
refinement preferences, and outperforms each base-
line significantly when at least 1 preference is men-
tioned.

Choice of LLM: In order to see the effect of
choice of LLM for PEARL, we choose different
LLMs to be used in PreferencePickerAgent. In
addition to Claude-instant-v1, we also bench-
mark Mistral-7b, Claude-v2.1, Claude-Haiku
and Claude-Sonnet. Refer to Figure 3
for performance and latency of each model.
We observe that among the Claude family,
Claude-Haiku under-performs compared to other
models. Mistral-7B also provides comparable
performance to Claude-Haiku. We also note that
Claude-instant-v1 not only delivers comparable
performance to Claude-v2.1 and Claude-Sonnet
but it also has the least latency among them.

Impact of Exemplar encoder: We experiment
with several different encoders in Dynamic Exem-

= N N w w 2 & o
& S & 8 & 38 & 3

=
S

PEARL performance variation with choice of LLM

10
772 Performance
NN Latency 9

39.8%
36.8%

19.6%

—

Mistral-78 Claude-instant-vl Claude-Sonnet Claude-v2.1

Figure 3: Effect of choice of LLM in PEARL. The results are
presented on MultiWoZ-H.

plar Retrieval. Specifically, we try out public deep
models MiniLM-L6 (Wang et al., 2020a), Instruc-
tor (Su et al., 2023) and UDR (Li et al., 2023) (Uni-
versal Demonstration Retriever which specializes
in ICL retrieval) as the encoder S in the module.
For our Internal test set, we use our Internal/pro-
prietary deep model to obtain text representations.
This deep model is specifically trained on the filter
keys and values of ecommerce domain. We record
our findings in Table 4 and notice that UDR pro-
vides the best performance on MultiWoZ-H. For
Internal test set, we see that our proprietary model
provides the best performance since the neural net-
work is trained on in-domain filter keys and values.

Scale of Synthetic Exemplars: In order to study
the effect of the scale of synthetic exemplars, we
study PEARL as we increase the synthetic data gener-
ated from Exemplar Generation Module. To make
the study more transparent and indicative of the im-
pact of generated synthetic data, we do not consider
the 100 hand-labelled ICL-set. We vary the number
of generated exemplars from [10, 50, 500, 1000]
and note the performance of PEARL on our task.

1541

w
o

—e— Internal
-#- MultiWoZ-H

N
w

N
o
\

+18.28

=
w

Exact Match (%)

iy
o

w

0 10 50 500 1000
Number of synthetic exemplars

Figure 4: Scaling synthetic exemplars generated by
GenerativeAgent module. Here, we only use synthet-
ically generated exemplar set. For internal dataset, we
report relative improvements over NL2API-Basic.

As shown in Figure 4, we see that the number of
generated exemplars does indeed affect the perfor-
mance of PEARLpositively (over 10% improvement
on EM as we scale from 10 to 1000 exemplars
(Nguyen and Wong, 2023; Agarwal et al., 2024;
Wang et al., 2024b)).

Number of retrieved exemplars: Table 2 shows
that PEARL outperforming baselines with 10 dynam-
ically retrieved in-context learning (ICL) examples.
Evaluating PEARL by varying ICL examples (c.f.
Fig 5) from 0 to 50 reveals a positive correlation
between performance and example count, align-
ing with prior work (Nguyen and Wong, 2023;
Agarwal et al., 2024; Wang et al., 2024b). No-
tably, increasing examples from 2 to 50 only added
around 0.5s latency, suggesting potential for further
performance gains. Comparing against randomly
sampled ICL examples shows higher variability
but confirms the significant contribution of dynami-
cally retrieved examples in enhancing PEARL’s per-
formance. The dynamic retrieval of relevant exam-
ples clearly outperforms random sampling, with
minimal latency impact from increasing example
count.

7 Conclusion

In this work, we address a novel challenge of nav-
igating customer preferences in a conversational
setting. We proposed PEARLwhich is a collabora-
tive multi-agent way of handling this problem. We
show that our proposed approach not only outper-
forms the current production systems, but also has
lower latency. We learn that exemplar retrieval
and breaking down complex tasks into simpler sub-
tasks during inference is an effective approach to
achieve promising results. However, retrieving top-

B
o

—e— Internal (dyn-ICL)

-4~ Internal (no-dyn-ICL)
—#— MultiWoZ-H (dyn-ICL)
=¥~ MultiWoZ-H (no-dyn-ICL)

w
w

Exact Match (%)
- - N N w
w o w o wv o

o

0 2 5 10 25 50
Number of in-context exemplars

Figure 5: Effect of number dynamic ICL exemplars in
PEARL. We also compare against PEARL with randomly
sampled exemplars. For internal dataset, we report
relative improvements over NL2API-Basic.

k exemplars might not always be the best idea since
diversity and even negative exemplars are helpful to
large language models. In future, we would like to
study a smarter way of retrieving exemplars during
inference to assist our prediction module complete
the task with better performance.

8 Limitations

Reliance on Exemplars: Effectiveness of PEARL
hinges on the quality of its ICL exemplars. Vari-
ability in data quality or coverage may hinder the
system’s ability to generalize effectively across dif-
ferent user preferences and conversational styles.

Domain Generalization: While PEARL demon-
strates robust performance in the e-commerce do-
main, its applicability may vary in domains with
distinct conversational dynamics or less structured
data. Adapting the framework to diverse domains
would necessitate customization efforts.

Language Adaptation: While components of
PEARL are theoretically capable of supporting mul-
tiple languages, our study predominantly focused
on English-language support. Evaluating perfor-
mance and adapting the framework for non-English
languages would require additional datasets and
language-specific optimization.

LLM Dependence: PEARL involves multiple
stages that rely on invoking an LLM, with cur-
rent prompts optimized specifically for models like
Claude. Future exploration with different LLMs
would require automating prompt optimization to
ensure consistent performance across various mod-
els.

1542

References

Eve Abbey. 2023. Developing multi-turn conversational
chatbots for e-commerce.

Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd
Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D. Co-Reyes, Eric Chu,
Feryal Behbahani, Aleksandra Faust, and Hugo
Larochelle. 2024. Many-shot in-context learning.
arXiv preprint arXiv:2404.11018.

A. Cambon et al. 2023. Early llm-based tools for enter-
prise information workers likely provide meaningful
boosts to productivity.

Robson A. Campélo, Alberto H. F. Laender, and Al-
tigran S. da Silva. 2023. Using knowledge graphs
tonbsp;generate sql queries fromnbsp;textual speci-
fications. In Advances in Conceptual Modeling: ER
2023 Workshops, CMLS, CMOMMA4FAIR, EmpER,
JUSMOD, OntoCom, QUAMES, and SmartFood, Lis-
bon, Portugal, November 69, 2023, Proceedings,
page 85-94, Berlin, Heidelberg. Springer-Verlag.

Xusen Cheng, Ying Bao, Alex Zarifis, Wankun Gong,
and Jian Mou. 2023. Exploring consumers’ response
to text-based chatbots in e-commerce. arXiv preprint
arXiv:2401.12247.

Christopher Clarke, Karthik Krishnamurthy, Walter Ta-
lamonti, Yiping Kang, Lingjia Tang, and Jason Mars.
2023. One agent too many: User perspectives on
approaches to multi-agent conversational ai. arXiv
preprint arXiv:2401.07123.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Xiang Gao, Lei Wang, Jingjing Xu, Yangjun Hou,
Zheng Dong, Dawei Yin, and Ji-Rong Wen. 2023a.
A survey on large language model based autonomous
agents. arXiv preprint arXiv:2308.11432.

Xiang Gao, Kaiquan Zhou, Jie Li, Tianyi Tang, Xi-
aoyang Wang, Yangjun Hou, Yuxiang Min, Baorui
Zhang, Jiaxin Zhang, Zheng Dong, et al. 2023b. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Ece Gumusel, Kyrie Zhixuan Zhou, and Made-
lyn Rose Sanfilippo. 2023. Conversational ai for
personalized shopping assistance. arXiv preprint
arXiv:2402.09716.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi-
angliang Zhang. 2023a. Unlocking the potential of
chatgpt. arXiv preprint arXiv:2304.02017.

Taicheng Guo, Xiuying Chen, et al. 2023b. Large
language model based multi-agents: A survey
of progress and challenges. arXiv preprint
arXiv:2403.02164.

M. Haslberger et al. 2023. No great equalizer: Experi-
mental evidence on ai in the uk labor market. SSRN
Working Paper 4594466.

Sebastian Hofstitter, Jiecao Chen, Karthik Raman, and
Hamed Zamani. 2023. Fid-light: Efficient and ef-
fective retrieval-augmented text generation. arXiv
preprint arXiv:2304.14619.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 874-880.

Guochao Jiang, Zepeng Ding, Yuchen Shi, and De-
qing Yang. 2024. P-icl: Point in-context learning for
named entity recognition with large language models.
Preprint, arXiv:2405.04960.

Haiyun Jiang, Zhaochun Ren, Yangjun Hou, Wayne Xin
Zhao, and Ji-Rong Wen. 2023. Retrieval-augmented
generation for large language models. arXiv preprint
arXiv:2312.10997.

Nobuhiro Kaji. 2023. Lattice path edit distance:
A romanization-aware edit distance for extracting
misspelling-correction pairs from japanese search
query logs. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing: Industry Track, pages 233-242.

Y. Kim and et al. 2023. Techniques for generat-
ing in-context learning exemplars. arXiv preprint
arXiv:2311.06668.

Mayank Kothyari, Dhruva Dhingra, Sunita Sarawagi,
and Soumen Chakrabarti. 2023. CRUSH4SQL.:
Collective retrieval using schema hallucination for
Text2SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 14054—-14066, Singapore. Association for
Computational Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Xiaolin Li, Yue Zhang, Xiaohui Zhang, and Xiaolin
Zhang. 2021. Customer preference modeling and
personalized recommendation in chatbots. IEEE Ac-
cess, 9:166861-166868.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023. Unified demonstration retriever for in-
context learning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4644—4668,
Toronto, Canada. Association for Computational Lin-
guistics.

1543

https://static1.squarespace.com/static/5bc720d5f8135a16b1e9608c/t/5f04b1ecd58051483921db93/1594143288602/eve_abbey-eve_abbey-final_major_project
https://static1.squarespace.com/static/5bc720d5f8135a16b1e9608c/t/5f04b1ecd58051483921db93/1594143288602/eve_abbey-eve_abbey-final_major_project
https://arxiv.org/pdf/2404.11018
https://www.microsoft.com/en-us/research/publication/early-llm-based-tools-for-enterprise-information-workers-likely-provide-meaningful-boosts-to-productivity/
https://www.microsoft.com/en-us/research/publication/early-llm-based-tools-for-enterprise-information-workers-likely-provide-meaningful-boosts-to-productivity/
https://www.microsoft.com/en-us/research/publication/early-llm-based-tools-for-enterprise-information-workers-likely-provide-meaningful-boosts-to-productivity/
https://doi.org/10.1007/978-3-031-47112-4_8
https://doi.org/10.1007/978-3-031-47112-4_8
https://doi.org/10.1007/978-3-031-47112-4_8
https://arxiv.org/html/2402.09716.pdf
https://arxiv.org/html/2402.09716.pdf
https://arxiv.org/pdf/2304.02017
https://arxiv.org/pdf/2304.02017
https://arxiv.org/pdf/2404.10981
https://arxiv.org/pdf/2404.10981
https://arxiv.org/pdf/2404.10981
https://arxiv.org/abs/2405.04960
https://arxiv.org/abs/2405.04960
https://aclanthology.org/2023.emnlp-industry.24.pdf
https://aclanthology.org/2023.emnlp-industry.24.pdf
https://aclanthology.org/2023.emnlp-industry.24.pdf
https://aclanthology.org/2023.emnlp-industry.24.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://arxiv.org/pdf/2404.10981
https://arxiv.org/pdf/2404.10981
https://doi.org/10.1109/ACCESS.2021.3105823
https://doi.org/10.1109/ACCESS.2021.3105823
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256

Jiajia Liu, Mengyuan Yang, Yankai Yu, Haixia Xu,
Kang Li, and Xiaobo Zhou. 2023a. Enhancing
customer experience with ai-driven conversational
agents. arXiv preprint arXiv:2306.04325.

Jiajia Liu, Mengyuan Yang, Yankai Yu, Haixia Xu,
Kang Li, and Xiaobo Zhou. 2023b. A study on
chinese social perspective regarding chatgpt. arXiv
preprint arXiv:2306.04325.

Xia Liu, Xiaolin Li, Xiaohui Zhang, and Xiaolin Zhang.
2019. A deep learning model for chatbot preference
modeling and personalized recommendation. /EEE

Transactions on Systems, Man, and Cybernetics: Sys-
tems, 49(11):3725-3733.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2023. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2304.14619.

Tai Nguyen and Eric Wong. 2023.
ample selection with influences.
arXiv:2302.11042.

In-context ex-
arXiv preprint

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. Preprint, arXiv:2307.16789.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog.

Thilina C Rajapakse. 2023. Dense passage retrieval:
Architectures and augmentation methods. arXiv
preprint arXiv:2304.14619.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume.

Vinay M. S., Minh-Hao Van, and Xintao Wu. 2024.
In-context learning demonstration selection via influ-
ence analysis. Preprint, arXiv:2402.11750.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
embedder, any task: Instruction-finetuned text em-
beddings. Preprint, arXiv:2212.09741.

Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su,
and Xifeng Yan. 2016. Table cell search for question
answering. In Proceedings of the 25th International
Conference on World Wide Web, WWW ’16, page
771-782, Republic and Canton of Geneva, CHE. In-
ternational World Wide Web Conferences Steering
Committee.

Liang Wang, Nan Yang, and Furu Wei. 2024a. Learning
to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1752-1767, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Liang Wang, Nan Yang, and Furu Wei. 2024b. Learn-
ing to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 1752-1767.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020a. Minilm:
Deep self-attention distillation for task-agnostic com-
pression of pre-trained transformers. Preprint,
arXiv:2002.10957.

Xiaolin Wang, Xiaolin Zhang, Xiaohui Zhang, and Xi-
aolin Zhang. 2020b. A deep learning approach for
chatbot sentiment analysis and personalized response
generation. IEEE Transactions on Intelligent Trans-
portation Systems, 21(11):5728-5737.

W. A. Woods. 1973. Progress in natural language un-
derstanding: An application to lunar geology. In
Proceedings of the June 4-8, 1973, National Com-
puter Conference and Exposition, AFIPS *73, page
441-450, New York, NY, USA. Association for Com-
puting Machinery.

Shangqing Xu and Chao Zhang. 2024. Misconfidence-
based demonstration selection for llm in-context
learning. Preprint, arXiv:2401.06301.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321-1331, Beijing, China. Association for
Computational Linguistics.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,
Raghav Gupta, Jianguo Zhang, and Jindong Chen.
2020. Multiwoz 2.2: A dialogue dataset with addi-
tional annotation corrections and state tracking base-
lines. In Proceedings of the 2nd Workshop on Natu-
ral Language Processing for Conversational AI, ACL
2020, pages 109-117.

Xiaofei Zhang, Xiaolin Li, Xiaohui Zhang, and Xiaolin
Zhang. 2020. A deep learning framework for chatbot

1544

https://arxiv.org/html/2306.04325.pdf
https://arxiv.org/html/2306.04325.pdf
https://arxiv.org/html/2306.04325.pdf
https://arxiv.org/html/2306.04325.pdf
https://arxiv.org/html/2306.04325.pdf
https://doi.org/10.1109/TSMC.2019.2933532
https://doi.org/10.1109/TSMC.2019.2933532
https://arxiv.org/pdf/2302.11042
https://arxiv.org/pdf/2302.11042
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://aclanthology.org/2021.eacl-main.24
https://aclanthology.org/2021.eacl-main.24
https://arxiv.org/abs/2402.11750
https://arxiv.org/abs/2402.11750
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://arxiv.org/abs/2212.09741
https://doi.org/10.1145/2872427.2883080
https://doi.org/10.1145/2872427.2883080
https://aclanthology.org/2024.eacl-long.105
https://aclanthology.org/2024.eacl-long.105
https://aclanthology.org/2024.eacl-long.105
https://aclanthology.org/2024.eacl-long.105.pdf
https://aclanthology.org/2024.eacl-long.105.pdf
https://aclanthology.org/2024.eacl-long.105.pdf
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2002.10957
https://doi.org/10.1109/TITS.2019.2945335
https://doi.org/10.1109/TITS.2019.2945335
https://doi.org/10.1109/TITS.2019.2945335
https://doi.org/10.1145/1499586.1499695
https://doi.org/10.1145/1499586.1499695
https://arxiv.org/abs/2401.06301
https://arxiv.org/abs/2401.06301
https://arxiv.org/abs/2401.06301
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.1109/TNNLS.2019.2930455

preference modeling and personalized recommenda-
tion. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):167—-178.

Wayne Xin Zhao, Yangjun Hou, Zhaochun Ren, Yaliang
Ding, Dawei Yin, and Ji-Rong Wen. 2023. When
large language models meet personalization. arXiv
preprint arXiv:2307.16376.

Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang,
and Xing Xie. 2023. Pctoolkit: A unified
toolkit for prompt compression. arXiv preprint
arXiv:2403.17411.

A Appendix

A.1 Dataset and annotation details

We only consider explicit preferences which can be
mapped/quantified to a combination of filter keys
and values. For example, "intel processors" can be
mapped to CPU Type filter values like Intel Core
i3, 15, 17, 19, Celeron, and Pentium. Consequently,
subjective preferences like "lightweight" or "good
battery" are not considered as explicit preferences
due to their ambiguity. Further, we note that high-
ambiguity preferences related to use-cases, such
as "laptop for stock trading" are ignored as they
cannot be directly mapped to known filters.

MultiWoZ-H : For MultiWoZ dataset, we pro-
cess the annotated data at chat session level. We
note that the filter value of ‘dontcare’ was ambigu-
ous for our usecase. We reason that if a filter value
is ‘dontcare’, it suggests that the customer has no
preference for this particular filter. Thus, we dis-
card such keys from the gold preference dictionar-
ies that have ‘dontcare’ as filter value.

A.2 Evaluation Details

In all our experiments, we calculate Micro F1 at
a key-value pair level. We consider a key-value
pair to be true positive if the same key-value pair
exists in the gold preference dictionary. However,
if the key does not exist in the gold dictionary, we
consider it to be false positive. If the key exists
in gold dictionary but not in predicted dictionary,
we consider it as false negative. Finally, if the key
exists in both the dictionaries but the values are
different, we consider it a false negative as well as
false positive.

Given the unbounded nature of some filter key
values in MultiWoZ-H dataset (for example ‘Hotel
Name’ can be any string), we resort to a fuzzy
matching based logic. For this, we use ‘thefuzz’
library? for Levenshtein distance. Specifically, we

Zhttps://github.com/seatgeek/thefuzz

consider {k, Vpreq } to be the same as {k, vgoq} if
and only if, the distance ratio is at least e. Note
that we use e = 0.75 in all our experiments (on
MultiWoZ-H).

Error Computation for Internal dataset: Note
that we calculate standard error metrics across 6
runs. However, in case of our Internal dataset,
since we are providing relative performance against
NL2API-Basic, we make sure to follow the best
practices of error computation. Specifically, for
the 6 runs of NL2API-Basic, and 6 runs of any
other approach, we calculate average all-pair error
and report that as the standard error in case of our
Internal dataset.

A.3 Prompting Details

As we will see in the prompts in Appendix A.4,
we need the exhaustive filter space to provide sig-
nal to the LLM that the filter keys and values are
bounded in this space. However, for MultiWoZ-H,
as we said in Appendix A.2, the filter values are un-
bounded for some filter keys. Therefore, we follow
a strategy similar to P-ICL work for NER (Jiang
et al., 2024). We obtain the unique set of values
for each filter key in our ICL set. Using the set
of all values (observed in ICL set) for filter key £,
we obtain their deep representations using SBERT.
Further, we use K-Means clustering method and
nearest neighbor decoding strategy are to identify
the point filter values for each filter key.

A4 Prompts

We provide exact prompts we used for our exper-
imentation on MultiWoZ-H dataset. The prompts
used for Internal dataset were similar.

1545

https://doi.org/10.1109/TNNLS.2019.2930455
https://doi.org/10.1109/TNNLS.2019.2930455
https://arxiv.org/pdf/2403.17411
https://arxiv.org/pdf/2403.17411

Prompt 1: NL2API Prompt 2: PEARL-PreferencePrediction

Prompt:

“Human:

<purpose>

You are an expert in detecting filters or customer
preferences from a chatbot conversation between a bot and
a user about recommendations for hotels. The user might
specify information regarding their preferences for such
places.

</purpose>

<filterdetails>Each row in filter table consists of a
filter key and example possible list of values it can
take.</filterdetails>

<filters>

area’: ['north’, ’east’, ’south’, *west’, "centre’],
’bookday’: ['tuesday’, ‘thursday’, 'wednesday’, "'monday’,
*friday’, ’saturday’, ’sunday’],

’bookpeople’: ['4°,°6°,°5°,°3,°7°,°2°,°1°,°8’],
’bookstay’: ['4°,°3,°2°,°5,°T’],

’internet’: ['yes’, 'no’],

’name’: [’archway house’, acorn guest house’, *aylesbray
lodge guest house’, "ashley hotel’,

arbury lodge guesthouse’, "hobsons house’, ’alexander
bed and breakfast’, autumn house’,

“hamilton lodge’, "bridge guest house’],

’parking’: ['yes’, 'no’],

’pricerange’: ['moderate’, cheap’, ’expensive’],

‘stars’: [’4°,°37,°2°,°07],

“type’: [’guesthouse’, hotel’]

</filters>

<instruction>Given the information in the above
table, and the chat conversation tourist location prefer-
ences. Your task is to identify the filters that the customer
has specified and construct JSON with filter key as key
and filter values as value.</instruction>

<rules>

<rule>In the conversation, a customer might ask other
non-preferential related questions to the bot. Make sure to
only include a filter if the customer SPECIFIES it.</rule>
<rule>Select a filter ONLY if it is mentioned and preferred
by the customer. You need to be highly precise about
which filters are being specified by the customer and not
assume a filter.</rule>

<rule>If there are multiple mentions of the same filter,
choose the latest specified filter value for that filter.</rule>
</rules>

£

In-context example:
“<example>
<conversation>
{icl_conversation}
</conversation>

Assistant:

<thinking>

{icl_cot_steps}

</thinking>

<response> {icl_ground_truth} </response>
</example>

tH)

Prompt:

“Human:

<purpose>

You are an expert in detecting filters or customer prefer-
ences from a customer query about recommendations for
hotels. The user might specity information regarding their
preferences for such places.

</purpose>

<filterdetails>Each row in filter table consists of a
filter key and example possible list of values it can
take.</filterdetails>

<filters>

area’: ['north’, ’east’, ’south’, *west’, *centre’],
bookday’: ['tuesday’, 'thursday’, wednesday’, "'monday’,
“friday’, ’saturday’, ’sunday’],

bookpeople’: [’4°,°6°,°5°,°3",°7°,°2°,°17,°8’],
“bookstay’: ['4°,°3’,°2°,°5’,°T’],

“internet’: [’yes’, 'no’],

‘name’: ["archway house’, "acorn guest house’, "aylesbray
lodge guest house’, "ashley hotel’,

“arbury lodge guesthouse’, "hobsons house’, ’alexander
bed and breakfast’, ’autumn house’,

“hamilton lodge’, "bridge guest house’],

"parking’: [’yes’, 'no’],

‘pricerange’: ['moderate’, *cheap’, ’expensive’],

stars’: [’4°,°3°,°2°,°0°],

‘type’: ['guesthouse’, "hotel’]

</filters>

<instruction>Given the information in the above
table, and the customer query about their preferences.
Your task is to identify the filters that the customer has
specified and construct JSON with filter key as key and
filter values as value.</instruction>

<rules>

<rule>Select a filter ONLY if it is mentioned and preferred
by the customer. You need to be highly precise about
which filters are being specified by the customer and not
assume a filter.</rule>

<rule>If there are multiple mentions of the same filter,
choose the latest specified filter value for that filter.</rule>
</rules>

2

In-context example:
“<example>
<query> {icl_preference_contextualized_query} </query>

Assistant:
<response> {icl_ground_truth} </1‘eSpOIlSC>
</example>

2

1546

Prompt 3: PEARL-PreferenceContextualization Prompt 4: PEARL-ExemplarGeneration

Prompt:

“Human:

<purpose>

You are given a chatbot conversation between a bot and a
user about recommendations for hotel recommendations.
You need to read the conversation and specify the
preferences of the customer in a single sentence.
</purpose>

<rules>

<rule>You will be given a conversation between a chatbot
(system) and the user.</rule> <rule>Read the customer
utterances in the conversation step by step and determine
the LATEST preferences of the customer and summarize
them in a single sentence.</rule>

<rule>Some preferences of the customer might be
overriden in the later part of the chat. Hence, make
sure to summarize the LATEST preference of the
customer.</rule>

<rule>In the conversation, a customer might ask other
non-preferential related questions to the bot. Make sure to
only include a preference in the summary if the customer
actually SPECIFIES it.</rule>

<rule>In the conversation, a customer might be interested
in a preference in the start of the conversation, but replaces
it with another preference later. Only include the new
preference and not the old one.</rule>

<rule>If the customer provides conflicting preferences,
pick the one that customer has suggested more recently.
The most recent preferences are at the end of the chat
session.</rule>

</rules>

”

In-context example:

“<example>

<conversation>

{icl_conversation}

</conversation>

Assistant:

<response> {icl_preference_contextualized_query} </re-
sponse>

</example>

L)

Prompt:

“Human:

<purpose>

You are given a summary of the preferences of a
customer who wants to search for accomodations like
hotel/guesthouses. Read the preference dictionary of the
customer and write a single line customer query that
corresponds to the same preferences as mentioned in the
dictionary.

</purpose>

<instruction>Look at the preference dictionary provided
in between the <preference-dictionary></preference-
dictionary> tags and generate query which encompasses
ALL the preferences in the dictionary.</instruction>

<rules>

<rule>Include ALL the preferences mentioned in
the dictionary and write the query in between the
<query></query> tags.</rule>

<rule>Make sure that the generated query is about
hotels/guesthouses.</rule>

</rules>

”

In-context example:
“<example>
<preference-dictionary>
{icl_preference_dictionary}
</preference-dictionary>

<query> {icl_generated_query} </query>
</example>

1547

