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Abstract

Recent large language models (LLMs) have en-
abled the development of advanced agentic sys-
tems that can integrate various tools and APIs
to fulfill user queries through function calling.
However, the deployment of these LLMs on the
edge has not been explored since they typically
require cloud-based infrastructure due to their
substantial model size and computational de-
mands. To this end, we present TinyAgent, an
end-to-end framework for training and deploy-
ing task-specific small language model agents
capable of function calling for driving agentic
systems at the edge. We first show how to enable
accurate function calling for open-source mod-
els via the LLMCompiler framework. We then
systematically curate a high-quality dataset for
function calling, which we use to fine-tune two
small language models, TinyAgent-1.1B and
7B. For efficient inference, we introduce a novel
tool retrieval method to reduce the input prompt
length and utilize quantization to further accel-
erate the inference speed. As a driving applica-
tion, we demonstrate a local Siri-like system for
Apple’s MacBook that can execute user com-
mands through text or voice input. Our results
show that our models can achieve, and even sur-
pass, the function-calling capabilities of larger
models like GPT-4-Turbo, while being fully de-
ployed at the edge. We open-source our dataset,
models, and installable package1 and provide a
demo video for our MacBook assistant agent2.

1 Introduction

The ability of LLMs to execute commands
through plain language (e.g. English) has enabled
agentic systems that can complete a user query
by orchestrating the right set of tools (e.g. Tool-
Former (Schick et al., 2024), Gorilla (Patil et al.,
2023)). This, along with the recent multi-modal

*Equal contribution
1https://github.com/SqueezeAILab/TinyAgent
2https://www.youtube.com/watch?v=0GvaGL9IDpQ

efforts such as the GPT-4o (OpenAI, 2024) or
Gemini-1.5 (Google, 2024), has expanded the
realm of possibilities with AI agents. However, the
large model size and computational requirements
of these models often requires their inference
to be performed on the cloud. This can create
several challenges for their widespread adoption.
First, uploading data such as video, audio, or text
documents to a third-party vendor on the cloud,
can result in privacy issues. Second, this requires
cloud/Wi-Fi connectivity which is not always
possible. For instance, a robot deployed in the real
world may not always have a stable connection.
Besides that, latency could also be an issue as
uploading large amounts of data to the cloud and
waiting for the response could slow down response
time, resulting in unacceptable time-to-solution.
These challenges could be solved if we deploy the
LLM models locally at the edge.

Current LLMs like GPT-4o (OpenAI, 2024) or
Gemini-1.5 (Google, 2024) are too large for local
deployment. One contributing factor is that a lot of
the model size ends up memorizing general infor-
mation about the world into its parametric memory
which may not be necessary for a specialized down-
stream application. For instance, if you ask a gen-
eral factual question to these models like a histor-
ical event or well-known figures, they can produce
the results using their parametric memory, even
without having additional context in their prompt.
This implicit memorization of training data into
the parametric memory might be correlated with
“emergent” phenomena in LLMs such as in-context
learning and complex reasoning, which has been
the driving force behind scaling the model size.

This leads to an intriguing research question:

Can a smaller language model with significantly
less parametric memory emulate such emergent
ability of these larger language models?
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In this work, we demonstrate that this is feasible
by training smaller models with specialized, high-
quality data that does not require recalling generic
world knowledge. Our goal is to develop Small
Language Models (SLMs) that can be securely and
privately deployed at the edge while maintaining
the complex reasoning capability to understand
natural language queries and orchestrate tools and
APIs to accomplish user commands.

To achieve this, we first explore enabling small
open-source models to perform accurate function
calling, a key component of agentic systems. Off-
the-shelf SLMs often lack sophisticated function
calling capabilities and require fine-tuning. Next,
we discuss systematically curating high-quality
function calling datasets to train these SLMs, using
a specialized Mac assistant agent as our primary
application. We demonstrate that fine-tuning the
models on this curated dataset can enable SLMs
to exceed GPT-4-Turbo’s function calling perfor-
mance. Finally, we enhance the inference efficiency
of these fine-tuned models using a novel Tool RAG
method and quantization, allowing for efficient
edge deployment with real-time responses.

2 Related Work

2.1 Function Calling LLMs

The sophisticated reasoning capabilities of recent
LLMs have enabled them to call functions (i.e.,
tools), where LLMs determine which function to
invoke among user-provided functions along with
the associated arguments. This allows LLMs to
use external functions (e.g. calculators or search
engines) to provide more accurate answers to user
queries than by responding directly. A pioneering
work in this area is Toolformer (Schick et al.,
2024), which has inspired various tool-calling
frameworks (Ruan et al., 2023; Shen et al., 2024;
Liang et al., 2024). ReAct (Yao et al., 2022)
introduced a reasoning-and-action process that
improved LLMs’ interaction with external environ-
ments, which has become a back-bone for different
open-source frameworks (Liu, 2022; Langchain).
More recently, Gorilla (Patil et al., 2023) and
ToolLLM (Qin et al., 2023) have demonstrated that
an open-source LLM can be fine-tuned to obtain
function-calling capabilities in diverse real-world
use cases. One noticeable work is Octopus (Chen
et al., 2024) which introduces on-device LLMs
that invoke software APIs. TinyAgent pushes this

boundary by enabling efficient inference via paral-
lel function calling (Kim et al., 2023) as well as a
novel tool retrieval method, similar to (Moon et al.,
2024). Furthermore, our method does not require
any architectural changes, making it compatible
with a wider range of open-source models.

2.2 Dataset Synthesis

To address the problem of not having enough data
for finetuning, a popular method has emerged to
use LLMs to synthesize new training datapoints
(Deng et al., 2023; Prasad et al., 2023; Fu et al.,
2023; Dai et al., 2023; Ubani et al., 2023; Fang
et al., 2023; Liu et al., 2023; Yu et al., 2023; Kumar
et al., 2020; Yoo et al., 2021; Wang et al., 2022;
Lee et al., 2024b). While these techniques create
very good results, they often generate a significant
amount of training data. Recent advancements
have shown that by filtering these datasets or
generating smaller, higher quality datasets, one can
achieve similar or better performance (Chen et al.,
2023; Cao et al., 2023; Wei et al., 2023; Zhou
et al., 2023). TinyAgent builds on these works
by constructing a pipeline that systematically gen-
erates high-quality, task-specific function-calling
datasets, ensuring efficient training and robust
performance even with smaller, curated datasets.

2.3 Device Control

Recent advancements in device control have
introduced large-scale benchmarks and datasets
focused on the Android environment (Rawles et al.,
2024b; Zhang et al., 2024b; Rawles et al., 2024a;
Lee et al., 2024a), which explore UI-based agents
with low-level controls such as typing, scrolling,
and tapping. They are primarily concerned with
mobile device interactions in simulated environ-
ments, but they do not address the challenges
of deploying small language models directly
on the device, which is crucial for real-world
applications where cloud resources are unavailable
or impractical. More recently, UFO (Zhang et al.,
2024a) introduced a dual-agent framework that
leverages vision and language to enable UI-focused
agents to operate within Windows OS applications.
However, similar to earlier works, UFO also
focuses on low-level control mechanisms and does
not address the deployment of small language
models directly on the device. TinyAgent pushes
this boundary by formulating device control as
a high-level function-calling problem instead
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of low-level UI actions, utilizing task-specific
abstractions that allow for more robust and efficient
execution of commands. By running fully locally
on MacOS, TinyAgent offers a more realistic and
practical solution for device control, making it
well-suited for real-life scenarios where on-device
deployment is necessary.

3 TinyAgent

3.1 Teaching LLMs to do Function Calling

As mentioned above, our main interest is applica-
tions where the AI agent translates the user query
into a sequence of function calls to complete the
tasks. In such applications, the model does not
need to write the function definition itself since
the functions (or APIs) are mostly pre-defined
and already available. Therefore, what the model
needs to do is to determine (i) which functions
to call, (ii) the corresponding input arguments,
and (iii) the right order of calling these functions
(i.e. function orchestration) based on the required
interdependency across the function calls.

The first question is to find an effective way to
equip SLMs to perform function calling. Large
models such as GPT-4 are able to perform function
calling, but how can this be achieved with open
source models? LLMCompiler (Kim et al., 2023)
is a recent framework that enables this by instruct-
ing the LLM to output a function calling plan that
includes the set of functions that it needs to call
along with the input arguments and their depen-
dencies (see the example in Figure 1). Once this
function calling plan is generated, we can parse it
and call each function based on the dependencies.

The critical part here is how to teach the model
to create this function calling plan with the right
syntax and dependency . The original LLMCom-
piler (Kim et al., 2023) only considered large
models, such as LLaMA-2 70B (Touvron et al.,
2023), which have complex reasoning capabilities
to create the plan when provided with sufficient
instructions in their prompts. Unfortunately,
our initial experiments showed that off-the-shelf
small models such as TinyLlama-1.1B (Zhang
et al., 2024c) (or even the larger Wizard-2-7B
model (Vince, 2024)) are not able to output the
correct plans when prompted the same way. The
errors ranged from problems such as using the
wrong set of functions, hallucinated names, wrong
dependencies, and inconsistent syntax.

This is rather expected because these small
models have been trained on generic datasets and
primarily targeted to achieve good accuracy on
general benchmarks which mostly test the model’s
world knowledge and general reasoning or basic
instruction following capability. To address this,
we explored if fine-tuning these models on a
high-quality dataset specially curated for function
calling and planning can improve the accuracy
of these small language models for a targeted
task, potentially outperforming larger models. In
Section 3.2, we first discuss how we generated
such a dataset, and then we discuss the fine-tuning
approach in Section 3.3.

3.2 Dataset Generation

As a driving application, we consider a local
agentic system for Apple’s Macbook that solves
user’s day-to-day tasks. Particularly, the agent
is equipped with 16 different functions that can
interact with different applications on Mac, which
includes:

• Email: Compose a new email or reply to/forward
emails

• Contacts: Retrieve phone numbers or email
addresses from the contacts database

• SMS: Send text messages to contact(s)
• Calendar: Create calendar events with details

such as title, time, attendees, etc.
• Notes: Create, open, or append content to notes

in various folders
• Reminder: Set reminders for various activities

and tasks
• File management: Open, read, or summarize

documents in various file paths
• Zoom meetings: Schedule and organize Zoom

meetings

Predefined Apple scripts exist for each of these
functions/tools, and all that the model needs to
do is to take advantage of the predefined APIs
and determine the right function calling plan
to accomplish a given task, such as in Figure 1.
However, as discussed previously, we need a
dataset for training and evaluating SLMs since their
off-the-shelf function calling capability is subpar.

Creating handcrafted data with diverse function
calling plans is both challenging and not scalable.
However, we can curate synthetic data using
a powerful LLM like GPT-4-Turbo. Such an
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User Input

“Create a calendar invite 
with Lutfi and Sid at 2pm 

tomorrow to discuss 
TinyAgent” 

$1 = get_email_address(“Lutfi”)

$2 = get_email_address(“Sid”)

$3 = create_calendar_event(

     [$1, $2], “4/24 2PM”, “TinyAgent Discussion”)

$4 = join()

Function Calling Planner

DAG of Function Calling Tasks

Figure 1: Overview of the LLMCompiler Function Calling Planner. The Planner understands the user query and
generates a sequence of tasks with their inter-dependencies. These tasks are then dispatched by the LLMCompiler
framework to accomplish the user command. In this example, Task $1 and $2 are fetched together to retrieve the
email addresses of Sid and Lutfi independently. After each task is performed, the results are forwarded to Task $3
which creates the calendar event. Before executing Task $3, LLMCompiler replaces the placeholder variables (e.g.,
the variable $1 and $2 in Task $3) with actual values.

≠
$1 = get_phone_number(“Lutfi”)

$3 = create_calendar_event([$1, $2], “4/24 2PM”)

$2 = get_email_address(“Sid”)

$1 = get_email_address(“Lutfi”)

$3 = create_calendar_event([$1, $2], “4/24 2PM”)

$2 = get_email_address(“Sid”)

=
$2 = get_email_address(“Lutfi”)

$3 = create_calendar_event([$1, $2], “4/24 2PM”)

$1 = get_email_address(“Sid”)

Ground Truth DAG

Correctly Generated DAG (Score: 1)

Incorrectly Generated DAG (Score: 0)

Figure 2: Graph Isomorphism Success Rate. The model scores a success rate of 1 only if the DAG of its generated
plan is isomorphic to the DAG of the ground truth plan; and 0 otherwise. In the above example, for the top case,
although the order of the get_email_address calls are different from the ground truth plan (the ground truth plan
gets the email address of Lutfi before Sid, and the generated plan gets the email address of Sid before Lutfi), since
the two DAGs are isomorphic to each other, the plan gets 1 success rate. For the bottom case, since the predicted
DAG contains a wrong node, corresponding to a wrong function call, the plan gets 0 success rate.

approach is becoming a common method where a
capable LLM is instructed to generate data similar
to a given set of sample examples or templates. In
our work, we used a similar approach, but instead
of providing the LLM with generic user queries
as templates, we provide it with various sets of
functions and instruct it to generate realistic user
queries that require those functions to accomplish
the task, along with the associated function calling
plan and input arguments, like the example shown
in Figure 1. To verify the validity of the generated
data, we incorporated sanity checks on the function
calling plan to make sure that they form a feasible
graph, and that the function names and input
argument types are correct. With this approach, we
created 80K training data, 1K validation data, and
1K testing data, with a total cost of only ∼$500.

3.3 Fine-tuning
for Improved Function Calling Reasoning

With our dataset in place, we can now proceed
to fine-tune off-the-shelf SLMs to enhance their
function calling capability. We started with two
base small models: TinyLlama-1.1B (instruct-32k)
and Wizard-2-7B. For fine-tuning these models, we
first need to define a metric to evaluate their perfor-
mance. Our objective is for these models to accu-
rately generate the right plan, i.e., to select the right
set of functions and to orchestrate them in the right
order. Therefore, we define a success rate metric
that assigns 1 if both criteria are met, and 0 other-
wise. Checking whether the model has selected the
right set function calls is straightforward. To addi-
tionally ensure that the orchestration of these func-
tions is correct, we construct a Directed Acyclic
Graph (DAG) of the function calls based on the de-
pendencies, as shown in Figure 2, where each node
represents a function call and a directed edge from
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“Create a calendar invite 
with Lutfi and Sid at 2pm 

tomorrow” 

User Input
DeBERTa

…

C
la
ssifica

tio
n

H
ea

d

Laye
r 1

Laye
r N

… …

create_calendar_event

compose_new_email 

get_email_address

summarize_pdf

reply_to_email

Figure 3: Overview of our Tool RAG scheme. We formulate tool retrieval as a multi-label classification problem.
The user query is given as input to the fine-tuned DeBERTa-v3-small model, which outputs a 16-dimensional vector
indicating tool probabilities. Tools with probabilities higher than 50% are selected, averaging 3.97 tools per query
compared to 6 tools in basic RAG.

ICE: Create a calendar invite with Nick at noon today
$1 = get_email_address(“Nick”)
$2 = create_calendar_event([$1], “4/21 12PM”)

Tools:  get_email_address, create_calendar_event

Tools

Relevant in-context examples and tools

Retrieval

LM

“Create a calendar invite 
with Lutfi and Sid at 2pm 

tomorrow” 

User Input

create_calendar_event
compose_new_email 
summarize_pdf
reply_to_email
get_zoom_meeting_link
maps_show_direction
create_note
forward_email
get_phone_number
send_sms
open_note
web_search
create_reminder
append_note_content
open_and_get_file_path
maps_open_location
get_email_address

Which Tools 
are Needed?

Figure 4: Efficient tool selection based on a user input.
Not all user inputs require all available tools; hence, it is
imperative to select the right set of tools to minimize the
prompt size and increase performance. In this case, the
LLM only needs the functions that get email addresses
and create a calendar event to accomplish its task.

node A to B represents their interdependency (i.e.
function B can only be executed after the execution
of function A). Then we compare if this DAG is
identical to that of the ground truth plan to verify
the accuracy of the dependencies.

After defining our evaluation metric, we applied
LoRA (Hu et al., 2021) to fine-tune the models for
3 epochs using a learning rate of 7e-5 over the 80K
training examples, and selected the best checkpoint
based on validation performance. For fine-tuning,
our prompt included not only the descriptions of
the ground truth functions (i.e. functions used in
the ground truth plan) but also other irrelevant func-
tions as negative samples. We found the negative
samples to be particularly effective for teaching
the model how to select appropriate tools for a
given query, hence improving the post-training
performance. Furthermore, we also include several
in-context examples demonstrating how queries are
translated into a function calling plans. These in-
context examples are selected through a Retrieval
Augmented Generation (RAG) process based on
the user query from the data in the training dataset.

Using the above settings, we fine-tuned
TinyLlama-1.1B/Wizard-2-7B models. After
fine-tuning, the 1.1B model improved the success
rate from 12.71% to 78.89%, and the 7B model
performance improved from 41.25% to 83.09%,
which is ∼4% higher than GPT-4-Turbo.

3.4 Efficient Inference with Tool RAG

Our primary goal is to be able to deploy the TinyA-
gent model locally on a Macbook, which has lim-
ited computational and memory resources available
as compared to the GPUs that closed-source mod-
els like GPT are deployed on. To achieve efficient
performance with low latency we need to ensure
that not only is the model size small, but that the
input prompt is as concise as possible. The latter
is an important contributor to latency and compu-
tational resource consumption due to the quadratic
complexity of attention on sequence length.

The fine-tuned TinyAgent model discussed pre-
viously was fine-tuned with the description of all
available tools in its prompt. However, we can sig-
nificantly reduce the prompt size by only including
the description of relevant tools based on the user
query. For instance, consider the example shown in
Figure 4 above, where the user is asking to create
a calendar invite with two people. In this case,
the LLM only needs the functions that get email
addresses and create a calendar event in its prompt.

To take advantage of this observation, we need
to determine which functions are required to
accomplish the user’s command, which we refer
to as Tool RAG given its similarity with how RAG
works. However, the model performs poorly when
we use a basic RAG method where we retrieve the
relevant tools based on the embedding similarity
of the user query and the tools. This is because
completing a user’s query often requires using
several auxiliary tools which may be missed with
a simple RAG method if the embedding of the
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Table 1: Comparison of TinyAgent performance with DeBERTa to Basic RAG and no RAG settings. For Basic
RAG, we retrieved top-3 most relevant tools. For our fine-tuned DeBERTa-v3-small model, we retrieved tools with
a probability greater than 50%, which retrieves ∼3.97 tools per query.

Tool RAG Method Tool Recall Prompt Size TinyAgent 1.1B TinyAgent 7B
(Tokens) Success Rate (%) Success Rate (%)

No RAG (all tools in the prompt) 1 2762 78.89 83.09
Basic RAG 0.949 1674 74.88 78.50

Fine-tuned DeBERTa-v3-small (Ours) 0.998 1397 80.06 84.95

Table 2: Latency, size, and success rate of TinyAgent models before and after quantization. Latency is the end-to-end
latency of the function calling planner, including the prompt processing time and generation.

Model Weight Precision Latency (seconds) Model Size (GB) Success Rate (%)

GPT-3.5 Unknown 3.2 Unknown 65.04
GPT-4-Turbo Unknown 3.9 Unknown 79.08

TinyAgent-1.1B 16 3.9 2.2 80.06
4 2.9 0.68 80.35

TinyAgent-7B 16 19.5 14.5 84.95
4 13.1 4.37 85.14

auxiliary tool is not similar to the user query. For
instance, the example shown in Figure 4 requires
calling get_email_address function even though
the user query is just asking about creating a
calendar invitation.

This can be addressed by treating the problem as
a classification of which tools are needed. To that
end, we fine-tuned a DeBERTa-v3-small (He et al.,
2021) model on the training data to perform a 16-
way classification as shown in Figure 3. The user
query is given as an input to this model, and then we
pass the CLS token at the end through a simple fully
connected layer of size 768x16 to transform it into a
16 dimensional vector (which is the total size of our
tools). The output of this layer is passed through a
sigmoid layer to produce the probability of select-
ing each tool. During inference, we select the tools
that have probably higher than 50%, and if so, we
include their description in the prompt. On average
we noticed that only 3.97 tools are retrieved with a
recall of 0.998, whereas the basic RAG requires us-
ing the top 6 tools to achieve a tool recall of 0.968.

We evaluated the model performance after
incorporating Tool RAG. The results are shown
in Table 1, where we report the performance of
the simple RAG system along with the fine-tuned
DeBERTa approach. As one can see, the DeBERTa
based Tool RAG method achieves almost perfect
recall performance, improves the baseline accuracy,
while reducing the prompt size by ∼2x tokens.

3.5 Fast Edge Deployment with Quantization

Deploying models at the edge, such as on consumer
MacBooks, can still be challenging even for small
models with O(1B) parameters, since loading the
model parameters can consume a large portion
of the available memory. A solution to these
issues is quantization, which allows us to store
the model at a reduced bit precision. Quantization
not only reduces the storage requirements and
model footprint, but also cuts down the time and
resources needed to load model weights into mem-
ory, thereby reducing the overall inference latency
as well. For more information on quantization,
refer to (Gholami et al., 2022).

To more efficiently deploy the models, we
quantized the models into 4-bit with a group size of
32, which is supported by the llama.cpp framework
with quantization-aware training. As shown in
Table 2, the 4-bit models result in 30% better
latency, along with a 4x reduction in the model
size. We also notice slight accuracy improvement
which is due to the additional fine-tuning with
simulated quantization.

4 Putting It All Together

We provide a demo video of the final TinyAgent-
1.1B model deployed on a Macbook Pro M33,
which can be downloaded and tested on Mac

3https://www.youtube.com/watch?v=0GvaGL9IDpQ
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from the link4. It not only runs all of the model
inference locally on your computer, but it also
allows you to provide commands through audio.
We process the audio locally as well using the
Whisper-v3 (Radford et al., 2022) model from
OpenAI deployed locally using the whisper.cpp
framework. The greatest surprise for us was that
the accuracy of the 1.1B model exceeds that of
GPT-4-Turbo, and is markedly fast while deployed
locally and privately on-device.

5 Conclusions

To summarize, we introduced TinyAgent and
showed that it is indeed possible to train a small
language model and use it to power a semantic sys-
tem that processes user queries. In particular, we
considered a Siri-like assistant for Mac as a driving
application. The key components for enabling it is
to (i) teach off-the-shelf SLMs to perform function
calling through LLMCompiler framework, (ii)
curate high quality function calling data for the
task at hand, (iii) fine-tune the off-the-shelf model
on the generated data, and (iv) enable efficient
deployment by optimizing the prompt size through
only retrieving the necessary tools based on the
user query through Tool RAG, as well as quantized
model deployment to reduce inference resource
consumption. After these steps, our final models
achieved 80.06% and 84.95% for the TinyAgent-
1.1.B and 7B models which exceed GPT-4-Turbo’s
success rate of 79.08% on this task.

6 Ethics Statement

Deploying TinyAgent to operate agentic systems
at the edge presents several ethical considerations
that are integral to our design and operational
philosophy.

Accessibility and Inclusivity: Ensuring that
TinyAgent serves all users equitably, including
those with disabilities, is a priority. We are com-
mitted to designing interfaces that are universally
accessible, incorporating features such as voice
recognition that can understand diverse speech
patterns and text-to-speech technologies that
are clear and easily comprehensible. Further,
we are exploring adaptive technologies that can
adjust to the specific needs of users with varying

4https://github.com/SqueezeAILab/TinyAgent/
raw/main/TinyAgent.zip

abilities, ensuring that everyone can benefit from
TinyAgent’s capabilities without barriers.

Human Oversight: While TinyAgent demon-
strates robust capabilities in function calling, the
risk of hallucination and erroneous responses by
LLMs remains (Zhang et al., 2023). To mitigate
this, it is essential to maintain human oversight
throughout the operational loop, not just at the end-
point. This means integrating mechanisms for reg-
ular checks and balances where humans can review,
override, or refine decisions made by TinyAgent.
Future iterations of our system will aim to facilitate
even more seamless human-agent collaboration to
enhance decision accuracy and reliability.

Cultural and Bias Considerations: Synthetic
datasets generated using simple or naive prompts
often carry inherent biases, such as those related
to regional or cultural specificity (Yu et al., 2024).
Because task-specific agent systems like TinyA-
gent rely on synthetic data, their effectiveness and
impartiality can be impacted when operating across
different demographic landscapes. In response,
we integrate diverse cultural data and demographic
groups in our data generation processes to mitigate
these biases. Our aim is to ensure that the synthetic
data fueling TinyAgent is as inclusive and unbiased
as possible, supporting a function-calling system
that is culturally aware and equitably serves a
global user base.
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