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Abstract

Text-to-image (T2I) diffusion models are pop-
ular for introducing image manipulation meth-
ods, such as editing, image fusion, inpainting,
etc. At the same time, image-to-video (I2V)
and text-to-video (T2V) models are also built
on top of T2I models. We present Kandinsky
3, a novel T2I model based on latent diffusion,
achieving a high level of quality and photoreal-
ism. The key feature of the new architecture is
the simplicity and efficiency of its adaptation
for many types of generation tasks. We extend
the base T2I model for various applications and
create a multifunctional generation system that
includes text-guided inpainting/outpainting, im-
age fusion, text-image fusion, image variations
generation, I2V and T2V generation. We also
present a distilled version of the T2I model,
evaluating inference in 4 steps of the reverse
process without reducing image quality and 3
times faster than the base model. We deployed
a user-friendly demo system in which all the
features can be tested in the public domain.
Additionally, we released the source code and
checkpoints for the Kandinsky 3 and extended
models. Human evaluations show that Kandin-
sky 3 demonstrates one of the highest quality
scores among open source generation systems.

1 Introduction

Text-to-image (T2I) models play a dominant role in
generative computer vision technologies, providing
high quality results and language understanding
along with near real-time inference speed. This
led to their popularity and accessibility for many
applications through graphic AI editors and web-
platforms, including chatbots. At the same time,
T2I models are also used outside the image domain,
e.g. as a backbone for text-to-video (T2V) genera-
tion models. Similar to trends in natural language
processing (NLP) (et al, 2024), in generative com-
puter vision there is increasing interest in systems

*Work done during employment at Sber AI.

that solve many types of generation tasks. The
growing computational complexity of such meth-
ods is raising interest in distillation and inference
speed up approaches.

Contributions of this work are as follows:

• We present Kandinsky 3, a new T2I generation
model and its distilled version, accelerated by
3 times. We also propose an approach using
the distilled version as a refiner for the base
model. Human evaluation results demonstrate
the quality of refined model is comparable to
the state-of-the-art (SotA) solutions.

• We create one of the first feature-rich gener-
ative frameworks with open source code and
public checkpoints12. We also extend Kandin-
sky 3 model with a number of generation op-
tions, such as inpainting/outpainting, editing,
and image-to-video and text-to-video.

• We deploy a user-friendly web editor that pro-
vides free access to both the main T2I model
and all the extensions mentioned3. The video
demonstration is available on YouTube4.

2 Related Works

To date, diffusion models (Ho et al., 2020) are de
facto standard in the text-to-image generation task
(Saharia et al., 2022; Balaji et al., 2022; Arkhipkin
et al., 2024). Some models, such as Stable Diffu-
sion (Rombach et al., 2022; Podell et al., 2023), are
publicly available and widespread in the research
community (Deforum, 2022). From the user’s point
of view, the most popular models are those that

1https://github.com/ai-forever/Kandinsky-3
2,https://huggingface.co/kandinsky-community/

kandinsky-3
3https://fusionbrain.ai/en/editor
4https://youtu.be/I-7fhQNy4yI
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a) Text-to-image generation (left) and in/outpainting (right).

b) Image-to-video generation or animation (left) and text-to-video generation (right).

Figure 1: Kandinsky 3 interface on the FusionBrain website.

offer a high level of generation quality and an in-
teraction web-system via API (Midjourney, 2022;
Pika, 2023; Betker et al., 2023).

The development of diffusion models has en-
abled the design of a wide range of image manip-
ulation techniques, such as editing (Parmar et al.,
2023; Liew et al., 2022; Mou et al., 2023; Lu et al.,
2023), in/outpainting (Xie et al., 2023), style trans-
fer (Zhang et al., 2023b), and image variations (Ye
et al., 2023). These approaches are of particular
interest to the community and are also being im-
plemented in user interaction systems (Midjourney,
2022; Betker et al., 2023; Razzhigaev et al., 2023).

T2I models have extensive knowledge of the
relationship between visual and textual concepts.
This allows them to be used as a backbone for
models that expand the scope of generative AI to
I2V (Karras et al., 2023), T2V (Singer et al., 2023;
Blattmann et al., 2023; Arkhipkin et al., 2023;
Gupta et al., 2023), text-to-3D generation (Poole
et al., 2023; Lin et al., 2023; Raj et al., 2023), etc.

For a long time, the key disadvantage of diffu-
sion models remained the speed of inference, which
requires a large number of steps in the reverse dif-
fusion process. Recently these limitations have
been significantly overcome by the speed-up and
distillation methods for diffusion models (Meng
et al., 2023; Sauer et al., 2023). This increases the

prospects for creating multifunctional generative
frameworks based on diffusion models and their
use through online applications and web editors.

3 Demo System

Kandinsky 3 model underlies a comprehensive user
interaction system with free access. The system
contains different modes for image and video gen-
eration, and for image editing. Here we describe
the functionality and capabilities of our two key
user interaction resources — Telegram bot and Fu-
sionBrain website.

FusionBrain is a web-editor that supports load-
ing images from the user, and saving generated
images and videos (Figure 1). The system accepts
text prompts in Russian, English and other lan-
guages. It is also allowed to use emoji in the text
description. The maximum prompt size is 1000
characters5. In terms of generation tasks, this web
editor provides the following options:

• Text-to-image generation with maximum res-
olution 1024× 1024 and the ability to choose
the aspect ratio. In the Negative prompt
field, the user can specify which informa-
tion (e.g., colors) the model should not use

5A detailed API description can be found at https://
fusionbrain.ai/docs/en/doc/api-dokumentaciya/.
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for generation. There are also options for
zoom in/out, choosing the generation style
and prompt beautification (Section 5.1). For
details of the base T2I model, see Section 4.

• Inpainting/outpainting are tools for editing
an image by adding or removing individual
objects or areas. Using the eraser allows one
to highlight areas that can be filled in with or
without a new text description. The sliding
window can expand the image boundaries and
further generate new areas of image. The web
editor allows user to upload starting image or
reuse the generation result. For implementa-
tion description see Section 5.3.

• Animation. This is an image-to-video gener-
ation based on the T2I scene generation using
Kandinsky 3. The user can set up to 4 scenes
by describing each scene using a text prompt.
Each scene lasts 4 seconds, including the tran-
sition to the next. For each scene, it is possible
to choose the direction of camera movement.
For more details see Section 5.6.

• Text-to-video generation. Creating smooth
and realistic videos in a 512× 512 resolution
with FPS = 32 using the text-to-video model
Kandinsky Video (Arkhipkin et al., 2023),
which is based on the Kandinsky 3 model.
See also Section 5.7.

Telegram bot provides all the same options as
the FusionBrain website, except in/outpainting. It
also has a number of additional features:

• Distilled model. There is a choice of Kandin-
sky 2.2 (Razzhigaev et al., 2023), Kandinsky
3 or distilled version (Section 5.2).

• Image editing. This includes: style transfer
using a guidance image or text prompt, image
fusion, image-text fusion, and creation of the
image variations (Section 5.4). We also de-
ployed Custom Face Swap 5.5 for generating
images using photos with real people.

Table 1: Kandinsky 3 models parameters.

Architecture part Params Freeze
Text encoder (Flan-UL2 20B) 8.6B True
Denoising U-Net 3.0B False
Image decoder (Sber-MoVQGAN) 0.27B True
Total parameters 11.9B

Figure 2: Architecture of the text-to-image model
Kandinsky 3. It consists of a text encoder, a latent
conditioned diffusion U-Net, and an image decoder.

4 Text-to-Image Model Architecture

Overview. Kandinsky 3 is a latent diffusion
model, which includes a text encoder for process-
ing a prompt from the user, a U-Net-like network
(Ronneberger et al., 2015) for predicting noise, and
a decoder for image reconstruction from the gener-
ated latent (Figure 2). For the text encoder, we use
the encoder of the Flan-UL2 20B model (Tay, 2023;
Tay et al., 2022), which contains 8.6 billion param-
eters. As an image decoder, we use a decoder from
Sber-MoVQGAN (Arkhipkin et al., 2024). The
text encoder and image decoder were frozen during
the U-Net training. The whole model contains 11.9
billion parameters (Table 1).

Diffusion U-Net. To decide between large
transformer-based models (Dosovitskiy et al., 2021;
Liu et al., 2021; Ramesh et al., 2021) and convo-
lutional architectures, both of which have demon-
strated success in computer vision tasks, we con-
ducted more than 500 experiments and noted the
following key insights:

• Increasing the network depth while reducing
the total number of parameters gives better
results in training. A similar idea of resid-
ual blocks with bottlenecks was exploited in
the ResNet-50 (He et al., 2016) and BigGAN-
deep architecture (Brock et al., 2019);

• We decided to process the latents at the first
network layers using convolutional blocks
only. At later stages, we introduce transformer
layers in addition to convolutional ones. This
choice of architecture ensures the global inter-
action of image elements.

Thus, we settled on the ResNet-50 block as the
main block for our U-Net. Using bottlenecks in
residual blocks made it possible to double the num-
ber of convolutional layers, while maintaining ap-
proximately the same number of parameters as
without bottlenecks. At the same time, the depth
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Figure 3: Inference regimes of Kandinsky 3 model.

of our new architecture has increased by 1.5 times
compared to Kandinsky 2 (Razzhigaev et al., 2023).

At the higher levels of the upscale and down-
sample parts, we placed our implementation of
convolutional residual BigGAN-deep blocks. At
lower resolutions, the architecture includes self-
attention and cross-attention layers. The complete
scheme of our U-Net architecture and a description
of our residual BigGAN-deep blocks can be found
in Appendix A.

5 Extensions and Features

5.1 Prompt Beautification

Many T2I diffusion models suffer from the depen-
dence of the visual generation quality on the level
of detail in the text prompt. In practice, users have
to use long, redundant prompts to generate desir-
able images. To solve this problem, we have built
a function to add details to the user’s prompt using
LLM. A prompt is sent to the input of the lan-
guage model with a request to improve the prompt,
and the model’s response is sent as the input into
Kandinsky 3 model. We used Neural-Chat-7b-v3-
1 (Lv et al., 2023), based on Mistral 7B (Jiang
et al., 2023)), with the following instruction: ###
System:\nYou are a prompt engineer. Your
mission is to expand prompts written by
user. You should provide the best prompt
for text to image generation in English.
\n### User:\n{prompt}\n### Assistant:\n.
Here {prompt} is the user’s text. Example of gen-
eration for the same prompt with and without beau-
tification are presented in the Appendix D.1. In gen-
eral, human preferences are more inclined towards

generations with prompt beautification (Section 7).

5.2 Distilled Model
Inference speed is one of the key challenges for
using diffusion models in online-applications. To
speed up our T2I model we used the approach from
(Sauer et al., 2023), but with a number of significant
modifications (see Appendix A). We trained a dis-
tilled model on a dataset with 100k highly-aesthetic
image-text pairs, which we manually selected from
the pretraining dataset (Section 6). As a result, we
speed up Kandinsky 3 by 3 times, making it possi-
ble to generate an image in only 4 passes through U-
Net. However, like in (Sauer et al., 2023), we had
to sacrifice the text comprehension quality, which
can be seen by the human evaluation (Figure 5).
Generation examples by distilled version can be
found in Appendix D.2.

Refiner. We observed that the distilled version
generated more visually appealing examples than
the base model. Therefore, we propose an approach
that uses the distilled version as a refiner for the
base model. We generate the image using the base
T2I model, after which we noise it to the second
step out of the four that the distilled version was
trained on. Next, we generate the enhanced image
by doing two steps of denoising using the distilled
version.

5.3 Inpainting and Outpainting
We initialize the in/outpainting model by the
Kandinsky 3 weights in GLIDE manner (Nichol
et al., 2022). We modify the input convolution
layer of U-Net so that it takes 9 channels as in-
put: 4 for the original latent, 4 for the image latent,
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and one channel for the mask. We zeroed the ad-
ditional weights, so training starts with the base
model. For training, we generate random masks of
the following forms: rectangular, circles, strokes,
and arbitrary form. For every image sample we use
up to 3 unique masks. We use the same dataset as
for the training base model (Section 6) with gener-
ated masks. Additionally, we finetune our model
using object detection datasets and LLaVA (Liu
et al., 2023) synthetic captions.

5.4 Image Editing
Kandinsky 2 (Razzhigaev et al., 2023) natively sup-
ported images fusion technique through a complex
architecture with image prior. Kandinsky 3 has
a simpler structure (Figure 2), allowing it to be
easily adapted to existing image manipulation ap-
proaches.

Fusion and variations. Kandinsky 3 also pro-
vides generation using an image as a visual prompt.
To do this, we extended an IP-Adapter-based ap-
proach (Ye et al., 2023). To implement it based on
our T2I generation model, we used ViT-L-14, fine-
tuned in the CLIP pipeline (Radford et al., 2021),
as an encoder for visual prompt. For image-text
fusion, we get CLIP-embeddings for input text
and image, and sum up the cross-attention out-
puts for them. To create image variations, we get
the visual prompt embeddings and feed them to
the IP-Adapter. For image fusion, the embeddings
for each image are summed with weights and fed
into the model. Thus, we have three inference op-
tions (Figure 3). We trained our IP-Adapter on the
COYO 700m dataset (Byeon et al., 2022).

Style transfer. We found that the IP Adapter-
based approach does not preserve the shape of ob-
jects, so we decided to train ControlNet (Zhang
et al., 2023a) in addition to our T2I model to con-
sistently change the appearance of the image, pre-
serving more information compared to the original
one (Figure 3). We used the HED detector (Xie
and Tu, 2015) to obtain the edges in the image fed
to the ControlNet. We train model on the COYO
700m dataset (Byeon et al., 2022).

5.5 Custom Face Swap
This service allows one to generate images with
real people who are not present in the Kandin-
sky 3 training set without additional training. The
pipeline consists of several steps, including: creat-
ing a description of a face on an uploaded photo

using the OmniFusion VLM model (Goncharova
et al., 2024), generating an image based on it us-
ing Kandinsky 3, and finally face detection and
then transferring the face from the uploaded photo
to generated one using GHOST models (Groshev
et al., 2022). Also at the end, enhancement of the
transferred face images is done using the GFPGAN
model (Wang et al., 2021). Examples are presented
in Appendix D.3.

5.6 Animation

Figure 4: Image-to-Video generation. The input image
undergoes a right shift transformation. The result enters
the image-to-image process to eliminate transformation
artifacts and update the semantic content guided by the
text prompt.

Our I2V generation pipeline is based on the De-
forum technique (Deforum, 2022) and consists of
several stages as shown in Figure 4. First, we con-
vert the image into a 2.5D representation using a
depth map, and apply spatial transformations to the
resulting scene to induce an animation effect. Then,
we project a 2.5D scene back onto a 2D image,
eliminate translation defects and update semantics
using image-to-image (I2I) techniques. More de-
tails can be found in Appendix C.

5.7 Text-to-Video Generation
We created the T2V generation pipeline (Arkhip-
kin et al., 2023), consisting of two models – for
keyframes generation and for interpolation. Both
of them use the pretrained Kandinsky 3 as a back-
bone. Please refer to the main paper for additional
details and results regarding the T2V model.

6 Data

Our dataset for the T2I model training consists
of popular open-source datasets and our internal
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Figure 5: Human evaluation results on DrawBench (Saharia et al., 2022).

data of approximately 150 million text-image pairs.
To improve data quality, we used several filters:
aesthetics quality6, watermarks detection7, CLIP
similarity of the image with the text (Radford et al.,
2021), and detection of duplicates with perceptual
hash (Zauner, 2010). Using these filters, we created
multimodal datasets processing framework8.

We divided all the data into two categories.
We used the first at the initial stages of low-
resolution pretraining and the second for mixed
and high-resolution fine-tuning. The first category
includes open text-image datasets such as LAION-
5B (Schuhmann et al., 2022) and COYO-700M
(Byeon et al., 2022), and data that we collected
from the Internet. The second category contains
the same datasets but with stricter filters, especially
for the image aesthetics quality. For training details,
please refer to the Appendix B.

7 Human Evaluation

We found that when a high level of generation qual-
ity is achieved, FID values do not correlate well
with visually noticeable improvements. For the
previous version of Kandinsky model (Razzhigaev
et al., 2023) we reported FID, but in this work
we focused on human evaluation results for model
comparison.

We conducted side-by-side (SBS) comparisons
between the refined version of Kandinsky 3 with
beautification and other competing models: Mid-
journey 5.2 (Midjourney, 2022), SDXL (Podell
et al., 2023) and DALL-E 3 (Betker et al., 2023).
For SBS we used generations by prompts from
DrawBench dataset (Saharia et al., 2022). We also
compared our base T2I model with a distilled and
refined version, as well as a version with prompt

6https://github.com/christophschuhmann/
improved-aesthetic-predictor

7https://github.com/boomb0om/
watermark-detection

8https://github.com/ai-forever/
DataProcessingFramework

beautification. Each of the 12 people chose the best
image from the displayed image pairs based on two
criteria separately: 1) alignment between image
content and text prompt, and 2) visual quality of
the image. Each pair was shown to 5 different peo-
ple out of 12. The group of estimators included
people with various educational backgrounds, such
as an economist, engineer, manager, philologist,
sociologist, programmer, financier, lawyer, histo-
rian, journalist, psychologist, and editor. The par-
ticipants ranged in age from 19 to 45. We also
compared our base T2I model with a distilled ver-
sion. Each of the 12 people chose the best image
according to alignment between image content and
text prompt, and visual quality of the image.

According to the results for all categories (Fig-
ure 5), prompt beautification has significantly im-
proved the visual quality of the images. Distillation
led to an increase in visual quality, but a deterio-
ration in text comprehension. Using a distilled
model as a refiner improves visual quality, while
ensuring text comprehension is comparable to the
base model. The low percentage values for text
alignment here are due to the fact that people often
chose both models.

Kandinsky 3 demonstrates competitive results
for well-known SotA models, noting the complete
openness of our solution, including code, check-
points, implementation details, and the ease of
adapting our model for various kinds of genera-
tive tasks.

8 Conclusion

We presented Kandinsky 3, a new open source
text-to-image generative model. Based on this
model, we presented our multifunctional genera-
tive framework that allows users to solve a variety
of generative tasks, including inpainting, image
editing, and video generation. We also presented
and deployed an accelerated distilled version of our
model, which, when used as a refiner for the base
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T2I model, produces SotA results among open-
source solutions, according to human evaluation
quality. We have implemented our framework on
several platforms, including FusionBrain website
and Telegram bot. We have made the code and pre-
trained weights available on Hugging Face under a
permissive license with the goal of making broad
contributions to open generative AI development
and research.

9 Ethical Considerations

We performed multiple efforts to ensure that the
generated images do not contain harmful, offen-
sive, or abusive content by (1) cleansing the train-
ing dataset from samples that were marked to be
harmful/offensive/abusive, and (2) detecting abu-
sive textual prompts.

To prevent NSFW generations we use filtration
modules in our pipeline, which works both on the
text and visual levels via OpenAI CLIP model (Rad-
ford et al., 2021).

While obvious queries, according to our tests, al-
most never generate abusive content, technically it
is not guaranteed that certain carefully engineered
prompts may not yield undesirable content. We,
therefore, recommend using an additional layer of
classifiers, depending on the application, which
would filter out the undesired content and/or use
image/representation transformation methods tai-
lored to a given application.
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A Architecture details

Figure 6: Kandinsky 3 U-Net architecture. The archi-
tecture is based on modified BigGAN-deep blocks (left
and right – downsample and upsample blocks), which
allows us to increase the depth of the architecture due
to the presence of bottlenecks. The attention layers are
arranged at levels with a lower resolution than the origi-
nal image.

U-Net. Our version of the BigGAN-deep residual
blocks (Figure 6) differs from the one proposed in
(Brock et al., 2019). Namely, we use Group Nor-
malization (Wu and He, 2018) instead of Batch Nor-
malization (Ioffe and Szegedy, 2015) and use SiLU
(Elfwing et al., 2017) instead of ReLU (Agarap,
2019). As skip connections, we implement them
in the standard BigGAN residual block. For exam-
ple, in the upsample part of the U-Net, we do not
drop channels but perform upsampling and apply a
convolution with 1× 1 kernel.

Distillation. The key differences with (Sauer
et al., 2023) are as follows:

• As a discriminator, we used the frozen down-
sample part of the Kandinsky 3 U-Net with
trainable heads after each layer of resolution
downsample (Figure 7);

• We added cross-attention on text embeddings
from FLAN-UL2 to the discriminator heads
instead of adding text CLIP-embeddings. This
improved the text alignment using a distilled
model;

• We used Wasserstein Loss (Arjovsky et al.,
2017). Unlike Hinge Loss, it is unsaturated,
which avoids the problem of zeroing gradi-
ents at the first stages of training, when the
discriminator is stronger than the generator;

• We removed the regularization in the Distilla-
tion Loss, since according to our experiments
it did not affect the quality of the model;

• We found that the generator quickly becomes
more powerful than the discriminator, which
leads to learning instability. To solve this
problem, we have significantly increased the
learning rate of the discriminator. For the dis-
criminator the learning rate is 1e − 3, and
for the generator it is 1e − 5. To prevent di-
vergence, we used gradient penalty, as in the
(Sauer et al., 2023).

Figure 7: Discriminator architecture for distilled version
of our model. Gray blocks inherit the weight of U-Net
from T2I version Kandinsky 3 and remain frozen during
training.

B Training strategy

We divided the training process into several stages
to use more data and train the T2I model to generate
images in a wide range of resolutions:

1. 256× 256 resolution: 1.1 billions of text-
image pairs, batch size = 20, 600k steps, 104
NVIDIA Tesla A100;

2. 384× 384 resolutions: 768 millions of text-
image pairs, batch size = 10, 500k steps, 104
NVIDIA Tesla A100;

3. 512× 512 resolutions: 450 millions of text-
image pairs, batch size = 10, 400k steps, 104
NVIDIA Tesla A100;

4. 768× 768 resolutions: 224 millions of text-
image pairs, batch size = 4, 250k steps, 416
NVIDIA Tesla A100;

5. Mixed resolution: 7682 ≤ W ×H ≤
10242, 280 millions of text-image pairs,
batch size = 1, 350k steps, 416 NVIDIA Tesla
A100.
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C Animation pipeline details

The scene generation process involves depth esti-
mation along the z-axis in the interval [(znear, zfar)].
Depth estimation utilizes AdaBins (Bhat et al.,
2020). The camera is characterized by the coor-
dinates (x, y, z) in 3D space, and the direction of
view, which is set by angles (α, β, γ). Thus, we set
the trajectory of the camera motion using the depen-
dencies x = x(t), y = y(t), z = z(t), α = α(t),
β = β(t), and γ = γ(t). The camera’s first-person
motion trajectory includes perspective projection
operations with the camera initially fixed at the
origin and the scene at a distance of znear. Then,
we apply transformations by rotating points around
axes passing through the scene’s center and trans-
lating to this center. Due to the limitations of a
single-image-derived depth map, addressing dis-
tortions resulting from camera orientation devia-
tions is crucial. We adjust scene position through
infinitesimal transformations and employ the I2I
approach after each transformation. The I2I tech-
nique facilitates the realization of seamless and
semantically accurate transitions between frames.

D Additional generation examples

D.1 Prompt beautification

Figure 8: Prompt: A hut on chicken legs. With-
out/With LLM.

Figure 9: Prompt: Lego figure at the waterfall.
Without/With LLM.

D.2 Distillation and prior works

Figure 10: Prompt: Tomatoes on a table, against
the backdrop of nature, a still life painting
depicted in a hyper realistic style.

Figure 11: Prompt: Funny cute wet kitten sitting
in a basin with soap foam, soap bubbles
around, photography.

D.3 Custom Face Swap

Figure 12: Real photo on the left. Name is anonymised.
Prompt: @Name is sitting at his laptop.

Figure 13: Real photo on the left. Name is anonymised.
Prompt: @Name at the bar, photo.
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