Debug Smarter, Not Harder: AI Agents for Error Resolution in
Computational Notebooks

Konstantin Grotov'*, Artem Borzilov?,
Maksim Krivobok?, Timofey Bryksin', Yaroslav Zharov!
1JetBrains Research, 2JetBrains
“konstantin.grotov@jetbrains.com

Abstract

Computational notebooks became indispens-
able tools for research-related development,
offering unprecedented interactivity and flex-
ibility in the development process. However,
these benefits come at the cost of reproducibil-
ity and an increased potential for bugs. With
the rise of code-fluent Large Language Models
empowered with agentic techniques, smart bug-
fixing tools with a high level of autonomy have
emerged. However, those tools are tuned for
classical script programming and still struggle
with non-linear computational notebooks. In
this paper, we present an Al agent designed
specifically for error resolution in a computa-
tional notebook. We have developed an agentic
system capable of exploring a notebook envi-
ronment by interacting with it—similar to how
a user would—and integrated the system into
the JetBrains service for collaborative data sci-
ence called Datalore. We evaluate our approach
against the pre-existing single-action solution
by comparing costs and conducting a user study.
Users rate the error resolution capabilities of
the agentic system higher but experience dif-
ficulties with UI. We share the results of the
study and consider them valuable for further
improving user-agent collaboration.

1 Introduction

Computational notebooks have become a popular
medium for development during the last decade, es-
pecially for data analysis, machine learning (Perkel,
2018), and creating educational (Barba et al., 2019)
or scientific content (Perkel, 2021). One of the
main features of computational notebooks is their
statefulness—thus the notebook cannot be de-
scribed only by its cells, but additionally, runtime
information is required. The statefulness allows
to work iteratively with the runtime in an additive
manner and thus to efficiently go through hypothe-
ses (Rule et al., 2018). However, it causes high
code entanglement (Ramasamy et al., 2023; Rule
et al., 2018) and, therefore, a higher number of

errors in the code. As a result, notebooks are strug-
gling with low reproducibility rates. After a re-run,
they come to the same results with a 4% probabil-
ity (Pimentel et al., 2019), and 75% of them could
not be executed without exceptions (Pimentel et al.,
2021, 2019). The resulting debugging distracts
developers from the actual task.

Large Language Models (LLMs), such as GPT-
4 (OpenAl, 2023), Mixtral (Jiang et al., 2024), or
Code Llama (Roziere et al., 2023) recently demon-
strated advanced capabilities in solving complex
code-related problems, such as code generation (Ni
et al., 2023; Wu et al., 2023), debugging (Tian
et al., 2024; Bouzenia et al., 2024), and issue solv-
ing (Zhang et al., 2024; Yang et al., 2024a). How-
ever, there is a lack of studies applying such models
to notebooks. The difficulty lies in the stateful na-
ture of the notebook. Since the notebook requires
runtime information to represent its exact current
state, it is hard to gather the context for an LLM,
as passing the entire runtime information is impos-
sible due to the context size limitations.

Al agents allow LLMs to interact with such an
environment iteratively. An agent can explore the
environment and achieve the goal autonomously,
enabling it to adjust its actions based on the re-
ceived feedback. Such agents have shown abilities
to engage with software engineering tasks (Wang
et al., 2024; Tufano et al., 2024; Si et al., 2024;
Yang et al., 2024b), interact with web environ-
ments (Drouin et al., 2024; Zhou et al., 2023), or
operate embodied agents (Wang et al., 2023).

In this work, we present an Al Agent for er-
ror resolution in computational notebooks. The
proposed agent was integrated into Datalore,' a
JetBrains product for collaborative data science
that allows development in cloud-hosted computa-
tional notebooks. We design the agent to be capable
of creating, editing, and executing cells. This ap-
proach utilizes the notebook’s natural interactivity

'Datalore: datalore. jetbrains.com

363

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 363-371
November 12-16, 2024 ©2024 Association for Computational Linguistics

datalore.jetbrains.com

and allows gradual expansion of context.

The main contributions of our paper are:

* An LLM-based Al Agent integrated into Dat-

alore.

* A cost analysis of the proposed agent.

* A user study on developers’ experience with

agentic systems in their workflows.

In Section 2, we describe the overall design of
our agentic system. After that, in Section 3, we
evaluate our agent and discuss the results. Finally,
we describe the limitations and conclude our work.

2 System Design

In this section, we will delve into the proposed sys-
tem’s architecture. The system contains three parts:
an agent, an environment, and a user interface. The
agent is a stateful back-end service responsible for
orchestrating the communication between the LLM
and the notebook, storing prompts, and converting
LLM predictions into actions in the environment.
The environment is the computational notebook
that—in addition to being fully functional—is re-
sponsible for executing actions provided by the
agent and providing corresponding observations.
The user interface defines how programmers inter-
act with the system as a whole.

The goal of the system was to conduct the nec-
essary code changes and cell executions to solve”
the given runtime exception.

2.1 AI Agent

To set up an Al agent, it is necessary to choose
an LLM, a memory stack storing the interaction
history, a strategy for solving the particular prob-
lem, and a set of tools that will be available to the
agent for interacting with the environment. The
tools we chose are described in the Section 2.2, as
the environment provides them. In this subsection,
we concentrate on the other parts of the agent.

As an LLM for our agent, we chose the
GPT-4-0613 foundation model with the ability of
function calling. We selected this specific model
based on its reliable performance in producing func-
tion calls as of April 2024. On each generation step,
the LLM is prompted with the history of previous
LLM generations, as well as observations from the
environment. This constitutes the memory stack.

*In formal terms, agents can solve errors by either com-
menting on or deleting code in a cell. However, for us, re-
solving errors means accurately identifying and resolving the
underlying cause of the error.

The strategy consists of the system prompt for
the LLM and the algorithm for converting an LLM
prediction into a tool call. The system prompt, in
our case, contains the description of the general
goal (which is error resolution), the tools, and the
guidelines. As the guidelines, we described the
hacks prohibited during the workflow and encour-
aged the agent to explore the environment and to
avoid actions with large outputs. We considered an
action a hack if it technically ablates errors instead
of resolving them. For example, deleting the code
cell that caused an error is a hack.

We used reflection, akin to Shinn et al. (2024),
as the algorithm for choosing the next action. In
this algorithm, at each step, the LLM is prompted
to reflect on the outcomes of the previous actions
before selecting the next tool to call.

The AI Agent was developed as a service that
communicates with the environment using HTTP
requests. After the environment makes an initial
request, the service creates a new stateful instance
of the agent. Once the agent generates the next
step, it is translated into a tool-calling instruction
and sent back as a response. If the proposed tool
is not “Finish”, the agent waits for another request
from the environment with the new observation.
Otherwise, the agent process is terminated, and the
previous session is no longer available. The agent
follows the strategy until it solves the error, reaches
the maximum number of iterations (15), or exceeds
the maximum response timeout of 15 minutes.

2.2 Tools and Environment

During error resolution, the agent collects new
observations from the environment using various
tools. A tool is an action available for the agent.
Then, on the environment side, the particular tool
call is processed, and the result is returned for the
agent to adapt and continue the strategy loop.

The environment in this context is a compu-
tational notebook (similar to Jupyter notebooks),
which provides an interactive interface for writing
and executing code in the cells. The environment
supports Python and offers features like inline plot-
ting, markdown support, and the ability to execute
shell commands, making it a versatile tool for data
analysis and development.

We extended the environment with tools to allow
the agent to interact with the notebook environment
in a manner natural to developers, seamlessly inte-
grating it further into the workflow. The proposed

364

~
Tools
Execute, create, change cells

-6

Strategy][Memory]

o @
H

print(data.name)

[no attribute 'name'] lgl
Let's investigate the data:
[\
(6 =) create_cell:
:5 print(type(data))
dict
(I see, you're using wrong)
dictionary referencing.
change_cell 0:
@rint(data[“name"]))
Alexa
' Y
Error is successfully solved!
LFinish

v

Figure 1: (a) The components of Al agent. (b) Inter-
actions of the Al Agent during error resolution. Once
an exception appears, the agent starts to interact with
the notebook environment to get valuable context and
resolve the error.

list of tools includes the following: creating, edit-
ing, and executing cells. Additionally, the “Finish”
action was introduced, enabling the agent to stop
independently. This action allows the agent to halt
its activities before reaching the maximum itera-
tion count. With these tools, the agent can explore
the environment even beyond the current notebook
state. For example, the agent can execute the !1s
code cell to explore files outside the notebook.

The environment initiates the agent’s workflow
by sending the error stack trace with the corre-
sponding cell number and the notebook cells source
without outputs. After receiving the response from
the agent, the proposed tool is executed and re-
sponded to with the cell output as the observa-
tion. The schematic diagram of the automatic error-
solving workflow is shown in Figure 1. All prompts
can be found in Appendix A, and tool descriptions
are in the supplementary materials.

2.3 User Interface

We incorporated the user-agent interaction in the
computational notebooks available in Datalore.
Once an error occurs in a cell, the additional “Fix
with Al Agent” button appears, which allows one
to initiate the error resolution process. After the

user clicks on this button, an additional panel ap-
pears on the right side of the screen, displaying
the chat between the agent and the environment.
Every action the agent proposes is displayed in the
chat with an additional explanation by the agent of
why it chose it. Simultaneously with the changes in
the chat, the actions are executed in the notebook
environment, and cell outputs are sent back to the
agent as observations. The interface of the system
is elucidated in Figure 2.

3 Evaluation

We evaluated our system from two perspectives:
system performance and user experience. For the
former, we compared the costs of employing such
an Al agent and the single-action solution already
implemented in Datalore. For the latter, we con-
ducted a user study to estimate the effect on the
developers’ subjective productivity and satisfaction
with error resolution capabilities.

3.1 Cost Analysis

For cost analysis, we compared our developed Al
agent with the single-action solution. A single-
action solution has already been implemented in
Datalore as an LLM-powered feature for Python ex-
ception resolution. It was implemented using a sim-
ilar user interface but without multiple iterations.
The system uses chain-of-thought reasoning (Wei
et al., 2022) to identify the cause of the problem
and generates the code to resolve the issue in the
current code cell. As the input context of the single-
action solution, Datalore uses the notebook code
and the cell number where the error appeared. We
calculated the costs of a single-action solution us-
ing real user statistics gathered from Datalore. The
data contained the consumption of both request and
response tokens after each error resolution.

For the evaluation of the Al agent, we used a
dataset of fine-grained Jupyter Notebook execution
logs.? The dataset included over 100 hours of logs,
capturing all cell additions, executions, and dele-
tions made when solving data science tasks in a
hackathon. A total of 20 people participated in the
experiment. The key feature of the dataset is that
the developer’s workflow in the notebook can be
reproduced, which was very useful for our analysis.
We utilized the dataset to reproduce the notebook

3The dataset is currently unavailable since it is part of
another paper under review, and more specific information
will be shared afterward. In the meantime, the dataset can be
accessed upon request.

365

inport numpy as np
inport matplotlib.pyplot as plt

X = np.linspace(o, 1, 108)
v 0, 1, 108)
1'2)' * np.explyss2/2)

| Exception |

| Agent responses |

Environment
Observations

@ Agent initiation.
The user clicks the button
and an agent starts

>

x = np.linspace(d, 1, 100)
y = np.linspace(8, 1, 100)
X
z

L Y = np.meshgrid(x, y)

pLt.imshow(z)

@ Agent runs.
The additional panel appears,
where agent calls
and observations showed

@ Notebook updates.
Datalore process agent's actions
in the same notebook

= np.exp(Xx*2 / 2) % np.exp(Y**2 / 2)

J

Figure 2: AI Agent in the Datalore notebook. Once an error appears, the user can initiate the work of an agent, and
it will iteratively resolve the error and reflect on its actions respectively.

errors and then resolved them using the Al agent.
This allows us to evaluate our system on real errors
that occurred during development and fine-tune our
agent strategy to solve errors better.

When evaluating the agentic workflow, we con-
sidered the error successfully resolved if the cell
executes without an exception after the agent is fin-
ished. We also manually checked error resolution
logs to ensure that the agent did not use prohibited
hacks. There were no such cases. We logged the
history of notebook-agent interaction during error
resolution, based on which we calculated the costs.
The tokens were divided into request and response,
since their prices differ significantly.

Figure 3 (a-b), shows the consumption of request
and response tokens, respectively. We observe that
the agentic system consumes almost three times
more input tokens and almost the same amount of
response tokens compared to the single-action so-
lution. This is due to the growing memory stack.
While the consumption of input tokens is signifi-
cantly higher for the agentic system, it is still ac-
ceptable for industrial use due to the cheapness of
these tokens compared with the output ones. The
average cost of the single error resolution for the Al
agent is $0.22, and for the single-action solution —
$0.09. To mitigate the growing context and further
decrease the cost difference, one can turn to the
context caching techniques (Monteiro et al., 2024).

Panel (c) highlights the distribution of iterations
the agent needs for error resolution. We discovered
that most frequently the errors were successfully
solved in just one step. Furthermore, we observed
that the frequency of step sequences sharply de-
clines after the third step, with very few cases re-
quiring more than five.

3.2 User Study

To evaluate the effect of our agentic system on the
developer workflow, we designed and conducted
a user study. During the study, we measured the
developers’ subjective productivity and assessment
of the systems’ error resolution capabilities. The
study design included two groups of participants:
one employing a single-action Al assistant and the
other one using the Al Agent. We recruited par-
ticipants within JetBrains without mentioning the
group to which they were referred. As a result, we
collected a sample containing 16 people in each of
the two groups.

We offered both groups a data-filtering task de-
signed to be completed within 30 to 45 minutes in
Datalore. The task was to read the unstructured tex-
tual data, which had various mistakes that caused
errors during pre-processing. The task could be
solved using the Pandas Python package and the
Python Standard Library. The full task description
can be found in Appendix B.1. Participants solved

366

(a) Request token count (b) Response token count (€)
0.4
15000 6 ©
- 7
1500 o 7
5 10000 g
i 15
3 1000 - 6 k=
2 e 0.2
5 15
= 8 &
S 5000~ 500
1675+ Ij
0 I I 0 T 1 0.0
Al Agent Single-step Al Agent Single-step 1 2 3 4 >=5

Number of agent steps

Figure 3: Al Agent evaluation. (a), (b) Comparison of Al Agent token consumption with the single-action solution.
(c) Distribution of steps needed for an agent to solve the error.

the task without supervision. They were allowed to
solve the task at the time of their choice. However,
we asked them to stop after 45 minutes.

After completing the task, each participant was
asked to fill out a survey for qualitative analysis. In
the survey, we asked questions divided into three
categories: the system’s error resolution capabil-
ity (ER) and both positive (PP) and negative (NP)
productivity experiences while using the system.
The System Usability Scale (SUS) (Lewis, 2018;
Brooke et al., 1996), consisting of a 5-item Lik-
ert scale questionnaire (with items ranging from
“Strongly disagree” to “Strongly agree”), was used
for qualitative analysis of user experience.

The results of the user study for each group of
questions are shown in Figure 4. We further discuss
each group of questions separately.

Error resolution capability. The first group of
questions is shown in the chart as ER questions.
The questions were: Q1 “The system has a good
understanding of errors” and Q2 “The system effec-
tively resolves errors as expected”. We note that
the developers demonstrate a more positive per-
ception of the agentic system and consider it more
capable in terms of solving errors (mean value is
4.03 = 0.31 for the Al agent and 3.41 + 0.49 for
the single-step system).

Positive productivity feedback. The next set
of questions labeled in the chart as PP evaluated
the positive subjective productivity feedback while
using the system. The list of questions in this set
is the following: Q1 “I would let the system oper-
ate on my daily code and data”, Q2 “I spend less
time searching for information”, Q3 “I complete

my tasks more quickly”, Q4 “I complete my tasks
with less mental effort”, Q5 “I have more time to
engage in more interesting work-related tasks”,
Q6“1 think that I would like to use this system fre-
quently”, Q7“I thought the system was easy to
use”, Q8“I found the various functions in this sys-
tem were well integrated”, Q9“I would imagine
that most people would learn to use this system
very quickly”, Q10“I felt very confident using the
system”. We see that, on average, people highly
rated both systems. For that, we calculated the av-
erage score using all questions in the group. We’ve
got the average score in the group of 4.08+0.43 for
the Al agent and 4.10£0.35 for the single-step one.
However, looking at the individual questions Q4
and Q10, we note that while people rely on the Al
agent more than on the simpler solution, mentally,
it is harder to interact with the agent.

Negative productivity feedback. The last group
of questions labeled as NP elucidates problems and
difficulties experienced while using the system. For
these questions, a higher score is worse. Here is
the list of the questions: QI “/ found the system
unnecessarily complex”, Q2 “I think that I would
need the support of a technical person to be able
to use this system”, Q3“I found the system very
cumbersome to use”, Q4 “I needed to learn a lot
of things before I could get going with this sys-
tem”. We note that, on average, people rate the
agentic system worse than the single-action one
(mean value is 1.57 £ 0.18 for the Al agent and
1.31 £ 0.09 for the single-step one). We attribute
this to an overloaded UI and overall new user expe-
rience of interacting with the system with a higher

367

Al Agent

QIER
QZER

Q17°
Q277
Q3PP
Q4PP
Q5P
Q6"°
Q7P
Q8PP | N IR
o [FETE -
Q107" Y JA

QlNP
Q2NP
Q3NP
Q4P

Q W‘: ng /\‘) \Q

Y [1 E=EA

B Strongly Disagree

[[NTHAE

Single-step

B Strongly Agree

Figure 4: The Likert diagram showed a comparison of question scores between the Al agent group and the single-
step group. The questions are divided into three sections. The users rate the Al Agent error resolution capabilities

higher, while the user experience worse.

level of autonomy. We considered it this way be-
cause user interface and control were mentioned by
participants in open questions. Some of them can
be found in Appendix B.2.

We calculated the SUS score (Brooke, 2013)
based on the users’ answers. We note that both sys-
tems rated between “good” and “excellent” (72.7
for the Al agent versus 72.8 for the single-step solu-
tion). The user study highlighted the strength of the
proposed system—its ability to effectively resolve
errors in computational notebooks, thus enhanc-
ing productivity during the data science workflow.
However, the weakness of the proposed system lies
in its user interface, which lacks user control and
is difficult to understand.

4 Conclusion and Future work

In the present work, we have presented an agen-
tic system for error resolution in computational
notebooks. Our solution was integrated into Jet-
Brains Datalore. The cost of running the system
tripled, yet the cost stayed within the reasonable
price range. The user study revealed many direc-
tions for further user-agent interaction research,
such as ensuring the user’s control over the agent
or better visualization of the agent’s actions.
Utilizing smaller and cheaper models and more
intelligent information retrieval holds potential for

cost-efficient next generations of such systems. The
context caching techniques also look promising in
iterative agentic applications. To benefit the com-
munity, we publish used prompts and the answers
from the user study.

5 Limitations

After the user study, we got many comments on im-
proving the UI. The users mentioned that the agent
took too much control of their workflow. While it
performed actions with the appropriate reasoning,
it was tough to keep track of them due to the speed
of the agent’s work. While it is a limitation of our
system, which will be investigated more carefully,
we found the general lesson of keeping the user
in control useful for the community. Even though
people generally agree to use the system for their
own working tasks, we have not developed a se-
cure sandbox. It is crucial to ensure the safety of
their data and code while an agent explores the
environment.

Although the system showed higher costs than
the single-step solution, the agent successfully
found the solution in most cases within the first
or second steps. Therefore, the agentic approach
can be used to determine the valuable context for
task-solving purposes, which can subsequently be
incorporated into a single-step solution.

368

Distinguishing between actual problem resolu-
tion and hallucination remains challenging algorith-
mically. Although the agent demonstrates effective
error resolution in most observed cases, a quanti-
tative evaluation of accuracy was not conducted.
This presents a potential limitation, as the system
may occasionally produce a seemingly correct so-
lution that does not address the root cause of the
error. Further research is needed to develop metrics
that can automatically assess the correctness and
relevance of the agent’s solutions.

References

Lorena A Barba, Lecia J Barker, Douglas S Blank, Jed
Brown, Allen B Downey, Timothy George, Lindsey J
Heagy, Kyle T Mandli, Jason K Moore, David Lip-
pert, et al. 2019. Teaching and learning with jupyter.
Recuperado: https://jupyterdedu. github. io/jupyter-
edu-book, pages 1-77.

Islem Bouzenia, Premkumar Devanbu, and Michael
Pradel. 2024. Repairagent: An autonomous, llm-
based agent for program repair. arXiv preprint
arXiv:2403.17134.

John Brooke. 2013. Sus: a retrospective. Journal of
usability studies, 8(2).

John Brooke et al. 1996. Sus-a quick and dirty usability
scale. Usability evaluation in industry, 189(194):4—
7.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Is-
sam H. Laradji, Manuel Del Verme, Tom Marty, Léo
Boisvert, Megh Thakkar, Quentin Cappart, David
Vazquez, Nicolas Chapados, and Alexandre Lacoste.
2024. Workarena: How capable are web agents at
solving common knowledge work tasks?

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

James R Lewis. 2018. The system usability scale: past,
present, and future. International Journal of Human—
Computer Interaction, 34(7):577-590.

Jodo Monteiro, Etienne Marcotte, Pierre-André Noél,
Valentina Zantedeschi, David Véizquez, Nicolas
Chapados, Christopher Pal, and Perouz Taslakian.
2024. Xc-cache: Cross-attending to cached con-
text for efficient llm inference. arXiv preprint
arXiv:2404.15420.

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. In International Con-
ference on Machine Learning, pages 26106-26128.
PMLR.

OpenAl. 2023. ArXiv,

abs/2303.08774.

Gpt-4 technical report.

Jeffrey M Perkel. 2018. Why jupyter is data scien-
tists’ computational notebook of choice. Nature,
563(7732):145-147.

Jeffrey M Perkel. 2021. Ten computer codes that trans-
formed science. Nature, 589(7842):344-349.

Jodo Felipe Pimentel, Leonardo Murta, Vanessa Bra-
ganholo, and Juliana Freire. 2019. A large-scale
study about quality and reproducibility of jupyter
notebooks. In 2019 IEEE/ACM 16th international
conference on mining software repositories (MSR),

pages 507-517. IEEE.

Joao Felipe Pimentel, Leonardo Murta, Vanessa Bra-
ganholo, and Juliana Freire. 2021. Understanding
and improving the quality and reproducibility of
jupyter notebooks. Empirical Software Engineering,
26(4):65.

Dhivyabharathi Ramasamy, Cristina Sarasua, Alberto
Bacchelli, and Abraham Bernstein. 2023. Workflow
analysis of data science code in public github reposi-
tories. Empirical Software Engineering, 28(1):7.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Adam Rule, Aurélien Tabard, and James D Hollan. 2018.
Exploration and explanation in computational note-
books. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, pages 1—
12.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo
Liu, and Diyi Yang. 2024. Design2code: How far are
we from automating front-end engineering?

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2024. De-
bugbench: Evaluating debugging capability of large
language models. arXiv preprint arXiv:2401.04621.

Michele Tufano, Anisha Agarwal, Jinu Jang,
Roshanak Zilouchian Moghaddam, and Neel
Sundaresan. 2024. Autodev: Automated ai-driven
development.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable
code actions elicit better llm agents. arXiv preprint
arXiv:2402.01030.

369

http://arxiv.org/abs/2403.07718
http://arxiv.org/abs/2403.07718
https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2403.03163
http://arxiv.org/abs/2403.03163
http://arxiv.org/abs/2403.08299
http://arxiv.org/abs/2403.08299

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xi-
aojian Ma, and Yitao Liang. 2023. Describe, explain,
plan and select: Interactive planning with large lan-
guage models enables open-world multi-task agents.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

John Yang, Carlos E Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. 2024a. Swe-agent: Agent-computer inter-
faces enable automated software engineering. arXiv
preprint arXiv:2405.15793.

Ke Yang, Jiateng Liu, John Wu, Chaoqgi Yang, Yi R
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, et al. 2024b. If llm is the wiz-
ard, then code is the wand: A survey on how code
empowers large language models to serve as intelli-
gent agents. arXiv preprint arXiv:2401.00812.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Ab-
hik Roychoudhury. 2024. Autocoderover: Au-
tonomous program improvement. arXiv preprint
arXiv:2404.05427.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2023. Webarena: A realistic web envi-
ronment for building autonomous agents.

A Prompts
A.1 System Prompt

It’s better to run a cell as is to fix errors than
to change the cell’s code.

You have a few ways of interacting with the
environment:

1. You can suggest new code for the existing cells
, run it, and give the output.

2. You can make a new cell with your own code, run
it, and give the output.

3. You can run any cell as is and give the output.

4. If you’re sure the error won’t show up in the
cell it was found in, you can run "finish”.

A.2 Initial Prompt Template

Here’s a Jupyter notebook. It uses ‘{separator}‘ as
a separator between cells. Note that cells
indexes START FROM 1!

e

{notebook}
Error occurred in cell with num {cell_num}.
The error trace is the following:

e

{error}

Please resolve the error.

You must use only defined functions for solving the
error. Return output only as a valid JSON.

YOU MUST NOT WRITE ANY COMMENTS / THOUGHTS /
PLANNING OUTSIDE OF the "comment” JSON FIELD!

After you perform actions which should solve the
error, use function finish to indicate that.

IF IT’S POSSIBLE TO SOLVE ERROR WITHOUT CHANGING THE

CODE YOU MUST DO THAT!
IF YOU NEED ANY EXTRA INFORMATION GET IT VIA
EXECUTION OF NEW CELL (CREATE IT, CHANGE SOURCE
AND EXECUTE)

IF YOU WANT TO WRITE ANY COMMENT USE "comment"” FIELD
IN FUNCTION CALL AND NOWHERE ELSE!

YOU MUST NOT CHANGE FILES OUTSIDE OF THE NOTEBOOK
BUT CAN EXPLORE THE ENVIRONMENT VIA EXECUTING
NOTEBOOK CELLS.

Just adding try-except is not a solution. Commenting

the code that produced error is not the
solution. You should propose only meaningful
final solutions.

While exploring you must avoid large outputs, so be
careful with prints.

You are a coding assistant which should help to
solve user’s error in computational notebook.

You should use functions to help handle the real
time user queries and return outputs ONLY in
the form of a valid JSON.

Remember :

1. Keep trying for at least 10 steps before you
stop. But if you think you solved the problem
, you can finish right away.

2. Use Python code only. When you need to explain
what you did, write it as a comment in the
code or in the ‘comment‘ field of the JSON.

3. If you can fix the error without changing any
code, do that. Don’t edit the existing code
or add new code unless you really need to.

4. Use only the functions given to you. If you
have many functions to choose from, pick the
one that solves the problem quickest.

5. Don’t run the cell that caused the error. If
you think you’ve fixed the error, run the
finish” function instead.

6. If nothing shows up after you run a cell, that
means there were no errors or outputs.

n

After you’ve done actions that you think have fixed
the problem, run "finish” to say you’re done.

B User Study Artifacts
B.1 Data Filtering Task

Several services simultaneously launched an Al
assistant and agreed to jointly collect and analyze
user feedback. Despite using the same LLM, the
integration of feedback data faced challenges due
to differences in data formats. Additionally, an
issue emerged where timestamps were not logged
correctly.

To facilitate the analysis, extract the user feed-
back data from the aggregated_logs. log file lo-
cated at the project root. This file contains merged
logs from all participating services, structured with
timestamp data preceding the JSON-formatted log
entries.

The task is to create a DataFrame with the fol-
lowing structure:

* hash: str

* service_id: int

* time: datetime

370

http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2302.01560
http://arxiv.org/abs/2307.13854
http://arxiv.org/abs/2307.13854

e is_positive_feedback: bool

Further, analyze instances where timestamps are
incorrectly logged (logged as ‘unknown‘ instead
of the actual date) to identify potential patterns or
systematic errors causing this issue. This might
involve reviewing the formatting or encoding dis-
crepancies among different service logs.

Please note that if you find yourself taking longer
than 45 minutes, you should stop solving the task.

B.2 Open Feedback Responses

Here are the selected answers for the following
question: Please share any comments or sugges-
tions you have regarding aspects you disliked
about the system or areas where you think the
system can be improved.

* It’s not always obvious which cell was edited
by agent. like i tried to follow along with
agent execution in an agent interaction win-
dow, but the texts fly quite fast, and once it’s
finished, you have to spend some time pro-
cessing either the texts or your notebook to
understand what actually happened.

* Overall, a problem I had with the Al, includ-
ing the Compose or Code with Al, was that
it overwrote the content of the entire cell. It
would have been useful if I could have some-
how specified to only edit within a selection
to avoid unwanted changes further up in the
cell. This could of course lead to the error not
being resolved, but it could also serve as a way
to ground the Al to the target task? Similarly
to how Al in IDEs does code completion.

* Perhaps it would be beneficial to indicate
more explicitly, what cell the agent is going
to execute (in the user interface), and maybe
cleanup the cells it created to launch its own
code (mine created a cell in the end of note-
book with "print(logs[:5])" or smth like this,
and it stayed after agent’s finish)

* It would also be great if there was a separate
window where I could enter my request to the
agent, not just being able to use it only in case
of Errors

* A very obvious commentary, but it’s slow.
That’s not a problem if you can work while
it’s thinking. The problem with that is that it’s
jumpy when everything is changing around

371

you. It seems like there is no "protection"
even for a cell you are now working on.

* A lot of time, I felt like I needed help without
an explicit red error. It just wasn’t doing what
I wanted. I am not sure what UX is needed,
or how it is possible to communicate desire to
agents, but that would be very cool.

