
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2221–2238

March 17-22, 2024 c©2024 Association for Computational Linguistics

Explaining Speech Classification Models via Word-Level
Audio Segments and Paralinguistic Features

Eliana Pastor♣, Alkis Koudounas♣, Giuseppe Attanasio♡, Dirk Hovy♡, Elena Baralis♣

♣ Politecnico di Torino, Turin, Italy
♡ Bocconi University, Milan, Italy

{eliana.pastor,alkis.koudounas,elena.baralis}@polito.it
{giuseppe.attanasio3,dirk.hovy}@unibocconi.it

Abstract
Predictive models make mistakes and have bi-
ases. To combat both, we need to understand
their predictions. Explainable AI (XAI) pro-
vides insights into models for vision, language,
and tabular data. However, only a few ap-
proaches exist for speech classification models.
Previous works focus on a selection of spo-
ken language understanding (SLU) tasks, and
most users find their explanations challenging
to interpret. We propose a novel approach to ex-
plain speech classification models. It provides
two types of insights. (i) Word-level. We mea-
sure the impact of each audio segment aligned
with a word on the outcome. (ii) Paralinguistic.
We evaluate how non-linguistic features (e.g.,
prosody and background noise) affect the out-
come if perturbed. We validate our approach
by explaining two state-of-the-art SLU mod-
els on two tasks in English and Italian. We
test their plausibility with human subject rat-
ings. Our results show that the explanations
correctly represent the model’s inner workings
and are plausible to humans.

1 Introduction
As models increase in complexity, understand-
ing how they work and the reasons behind their
outputs becomes more challenging. However,
this understanding is crucial for improving per-
formance and addressing biases. Various explain-
able AI (XAI) techniques, such as gradient-based
(Simonyan et al., 2013; Sundararajan et al., 2017;
Selvaraju et al., 2022, inter alia) and input pertur-
bation (Zeiler and Fergus, 2013) approaches, have
been proposed to gain insights into computer vision
model behavior. These techniques have been suc-
cessfully applied in language (Ribeiro et al., 2016;
Sanyal and Ren, 2021; Jacovi et al., 2021, inter
alia) and tabular (Lundberg and Lee, 2017; Pas-
tor and Baralis, 2019; Strumbelj and Kononenko,
2010) models.

Despite significant progress in XAI for vision,
text, and structured data models, explanations for
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Figure 1: Explanation with word-level and paralinguis-
tic attributes for a Fluent Speech Commands sample
(Lugosch et al., 2019). Audio aligned to words repre-
sented through color. Bars show word-level attributions
for target classes Increase (green) and Bedroom (or-
ange).

Spoken Language Understanding (SLU) models
remain largely unexplored. Some existing ap-
proaches provide spectrogram- (Becker et al., 2018;
Frommholz et al., 2023) or phoneme-based (Wu
et al., 2023a) explanations. However, they are too
fine-grained for broader speech tasks (e.g., intent
detection or emotion recognition) where other fac-
tors interplay to convey meaning, e.g., acoustic
features, linguistic aspects, and prosody. Captur-
ing such aspects requires tailor-made explainability
solutions that are also easy for human actors to
understand.

Our goal is to explain predictions by describ-
ing the interaction between input utterance compo-
nents and model predictions. Utterances incorpo-
rate semantic and paralinguistic information from
the speaker’s voice and external conditions, such as
prosody and acoustics. Following Ribeiro et al.’s
(2016) definition of explanation, we want to pro-
vide interpretable representations of utterances to
help humans understand model behavior, address-
ing the following research questions (RQs).
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RQ1. How do we define interpretable represen-
tations by understandably describing utterances?

RQ2. How do we explain predictions at the
semantic and paralinguistic levels?

We address both questions by presenting utter-
ances as word-level audio segments with paralin-
guistic features (such as pitch and speaking rate).
We propose a new explanation approach that pro-
vides insights on two different but complementary
levels. (i) We tackle the linguistic aspect and find
which parts of the spoken utterance influenced the
model prediction the most (e.g., the words “Turn”
and “up” for predicting that a user’s request entails
an “Increase” action for a voice assistant). These
explanations shed light on whether and to which ex-
tent models leverage linguistic aspects, e.g., word
semantics, pragmatics, or syntactic parsing when
predicting the output. (ii) We measure the impact
of paralinguistic features by perturbing the signal
and quantifying the effect of such transformations
in the predictions. Intuitively, if an alteration of a
feature (say, the average pitch) changes the predic-
tion, it indicates the model relies on that feature for
the prediction. Conversely, if the model is not sen-
sitive to that variation, that feature is irrelevant to
trigger that prediction —thus also offering insights
into model robustness. By observing the model’s
response to variations, we can identify potential
vulnerabilities (e.g., sensitivity to noise injection)
or biases (e.g., over- or under-reliance on prosody-
related features). Building on existing XAI liter-
ature, we construct our explanations by assigning
a numerical score to each input feature, whether
a word or a paralinguistic feature. We argue that
this representation improves overall readability and
usability. Figure 1 shows a sample explanation.

We test our approach by explaining wav2vec-
2.0 (Baevski et al., 2020) and XLS-R (Babu et al.,
2022), two state-of-the-art speech models, on two
datasets for intent classification and one for emo-
tion recognition in English and Italian. We assess
the quality of our explanations under the faithful-
ness and plausibility paradigms (Jacovi and Gold-
berg, 2020), using human subject ratings. Our re-
sults show that the explanations are faithful to the
model’s inner workings and plausible to humans.
We hope that our model can provide speech re-
searchers with a valuable tool for understanding
sources of bias and errors.

Contributions. We introduce a new method for
explaining speech classification models. Advanc-

ing from established XAI perturbation-based tech-
niques, our approach is the first to study the ef-
fect of word-level audio segments and paralinguis-
tic features on predictions. It generates easy-to-
interpret visualizations that are faithful and plausi-
ble to human experts across models, languages, and
tasks. We release the code at https://github.
com/elianap/SpeechXAI to encourage fu-
ture research at the intersection of SLU and in-
terpretability.

2 Methodology
To quantify the contribution of each utterance part
to a prediction, we compute word-level attribution
scores as follows. First, we align the audio sig-
nal to its transcript and get word-level timestamps.
Then, we use a perturbation-based technique to
compute the contribution of each spoken word to
the prediction by modifying the input and observ-
ing changes in the prediction. Specifically, we
propose a method based on the Leave-One-Out and
Local Interpretable Model-Agnostic Explanations
(LIME; Ribeiro et al., 2016) techniques. We follow
a similar perturbation-based approach to measure
the contribution of paralinguistic aspects. Given
an input utterance, we perturb the raw audio signal
and measure the effect on the model prediction. We
consider pitch to account for prosody, and audio
stretching, background noise, and reverb levels for
channel-related aspects.

We generate explanations by assigning a single
numerical attribution score to each uttered word
(§2.1) and paralinguistic feature (§2.2). Each score
is generated via input perturbation and quantifies
the entity’s contribution (either a word or a paralin-
guistic feature) in predicting a given target class.

2.1 Word-level Audio Segment Attribution

We compute word-level contribution in two steps.

Word-level audio-transcript alignment. We extract
beginning and ending timestamps for each uttered
word. If no transcript or timestamp is available,
we use state-of-the-art word-level time alignment
models to extract them. The resulting timestamps
define a set of (non-overlapping) audio segments
corresponding to words in the time domain.1 See
Figure 1 (top) for an example.

Segment contribution. We compute each segment
contribution by perturbing the input signal. Follow-

1This step filters out the parts where no word is uttered, e.g.,
pauses or signal tails. Since these parts do not carry semantic
information, we suppose that they do not affect classification.
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Turn up the bedroom heat
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Figure 2: Word-level Time Alignment identifies audio
segments to mask (top). LIME sampling process selects
the segment to mask (bottom; 1 means “masked seg-
ment”, {S1, ..., Sn} are the sampled neighbors).

ing prior work, our perturbation consists of mask-
ing one or more segments (Covert et al., 2021) by
zeroing the corresponding samples in the time do-
main (Wu et al., 2023a).2 Choosing which segment
to mask and how the choice impacts the model
prediction3 is algorithmic-dependent. We consider
Leave-One-Out and LIME, two established XAI
solutions.

Leave-One-Out. Leave-One-Out consists of
masking one part of the input at a time, feeding
each perturbed sample to the model, and attributing
each part importance by measuring how the pre-
diction changes if the part is missing. Intuitively,
sharper variations in the output signal are of higher
importance.

More formally, let x ∈ Rn be an audio sig-
nal and {x1, .., xn} the set of n word-level audio
segments within. Consider a speech classification
model f applied for tasks such as intent classifi-
cation or emotion recognition. Let f(y = k|x)
be the output probability of model f for class k
given the input utterance x. We define the rele-
vance r(xi) ∈ R of each segment xi to the model’s
prediction for a target class k as:

r(xi) = f(y = k|x)− f(y = k|x \ xi) (1)

where x \ xi refers to signal x with segment xi
masked.

Higher values for r(xi) indicate a greater rele-
vance of segment xi to the prediction. A positive
score indicates that xi contributes positively to the
probability of belonging to class k. In contrast,

2We prefer zeroing out segments, rather than removing
them, to rule out any effect introduced by shorter recordings.

3In all our classification tasks, with “prediction,” we refer
to the normalized probability of the observed class.

a negative score suggests that xi may drive the
prediction toward a different class.4 See Figure 1
(middle) for an example.

LIME. LIME approximates a classifier with a
simpler, interpretable model in the “locality” of
a specific instance. Roughly, the process entails
sampling from the instance neighborhood, labeling
every sampled neighbor with the model, and train-
ing a simpler, white-box model on the resulting
set. Intuitively, the white-box model is a surrogate
approximating the model being explained within
the instance neighborhood.

To enable neighborhood sampling, LIME re-
quires the input to be represented with “inter-
pretable features”, i.e., a binary representation of
parts that can either be masked or not. Here, we
choose word-level audio segments as such repre-
sentations.5 Figure 2 shows an example neighbor-
hood. Notably, unlike the Leave-One-Out tech-
nique, LIME can mask multiple segments at once,
allowing it to capture intersectional effects that
might arise from multiple missing words. Analo-
gously to Leave-One-Out, the relevance score indi-
cates the magnitude and direction of the segment
contribution to the class prediction.

2.2 Paralinguistic Attribution

Beyond the semantic information conveyed by
words, speech includes additional paralinguistic
information provided by the speaker voice or ex-
ternal conditions, such as pitch, speaking rate, and
background noise level. We investigate the effect of
paralinguistic features by leveraging ad-hoc signal
perturbations.

Let p := f : Rn → R be a function to extract a
paralinguistic measure of interest, e.g., the average
pitch or signal-to-noise ratio (SNR). We transform
x into x̃ such that p(x̃) is either higher or lower
than p(x), e.g., we shift the pitch up or increase the
SNR.

To compute the impact of p on predicting the
class k, we perturb x multiple times and average
the result as follows:

4In the binary case, negative scores refer to the opposite
class, whereas in multi-class setups, they mean any of the
other classes.

5Some other choices are equal-width segments or n-grams,
e.g., to account for word compounds. We leave these addi-
tional solutions to future analysis.
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rp(x̃) = f(y = k|x)− f(y = k|x̃) (2)

r(x, p) =
1

|X̃p|
∑

x̃∈X̃p

rp(x̃) (3)

where rp(x̃) is effect of an individual perturba-
tion, X̃p = {x̃1, .., x̃t} is the set of t transformed
signals along p, and r(x, p) is the final relevance.
The number t depends on the considered feature
(see §3).

Each r(x, p) is bound between −1 and 1. High
absolute values indicate that the model is sensitive
to perturbations of the considered feature. In con-
trast, near-zero values indicate that it is otherwise
robust. Moreover, positive values indicate that, on
average, the perturbations reduce the prediction
probability for the given class; negative ones indi-
cate that perturbations increase it.

3 Experimental Setup
Datasets and Tasks. We evaluate our method on
three datasets and two tasks: FLUENT SPEECH

COMMANDS (FSC; Lugosch et al., 2019) and
the Italian Intent Classification Dataset (ITALIC;
Koudounas et al., 2023a) for the Intent Classifica-
tion (IC) task, and IEMOCAP (Busso et al., 2008)
for Emotion Recognition (ER).

FSC is a widely used benchmark dataset for the
IC task. The dataset contains recordings of inter-
actions with home voice assistants. The goal is
to predict an intent as the combination of three
independent predictions, i.e., an action (e.g., “in-
crease”), an object (e.g., “heat”), and a location
(e.g., “bedroom”). We focus on the test set, which
comprises 3793 audio samples.

ITALIC is an IC dataset for the Italian language,
including 60 unique intents. The test set consists
of 1441 samples. We use the “Speaker” setup,
wherein each speaker utterances belong to a single
set among the train, validation, and test.

IEMOCAP is a dataset for the ER task anno-
tated with emotion labels (i.e., happiness, anger,
sadness, frustration, and a neutral state). It consists
of recorded interactions between pairs of actors
engaged in scripted scenarios involving ten unique
actors. Among its five sessions, we consider Ses-
sion ‘1’, consisting of 942 utterances.

Models. We consider the monolingual English
wav2vec 2.0 base (Baevski et al., 2020) for FSC
and IEMOCAP. We use pre-existing fine-tuned

checkpoints on the two datasets (Yang et al., 2021a).
We use the multilingual XLS-R (Babu et al., 2022)
and its fine-tuned checkpoints (Koudounas et al.,
2023a) for ITALIC.

Word-level Audio Alignment and Transcription.
We use WhisperX (Bain et al., 2023), a state-of-
the-art multi-lingual word-level alignment and tran-
scription model, to transcribe dataset audios and
obtain word-level timestamps.

We use the gold transcriptions of the datasets
to compute the word error rate (WER). WhisperX,
based on Whisper (Radford et al., 2023) for gen-
erating transcriptions, achieves a WER of 1.72 on
FSC, 15.77 on IEMOCAP, and 7.49 on ITALIC.

Paralinguistic Features. We consider pitch shift-
ing, time stretching, background white noise injec-
tion, and reverberation. We provide further details
on the transformations in Appendix B.2 and in our
repository.

Explanation Setup. For each sample of the set,
we explain the probability that the model assigns to
the predicted label. Explaining the predicted class
provides insights into how the model produced its
prediction.

4 Results

4.1 Qualitative Evaluation

We conducted a qualitative manual evaluation. We
observe local (instance-level) and global explana-
tions (Doshi-Velez and Kim, 2017). Instance-level
explanations provide insights into which features
influence the model to classify a specific instance.
Local explanations address questions such as: Is it
correct for the right reasons? Or: Was the predic-
tion robust to a specific input perturbation? Global
explanations provide an aggregate view to grasp
high-level model characteristics.

Individual level. We show the capabilities of our
method by explaining wav2vec 2.0 on a FSC sam-
ple. We refer the reader to Appendix C for more ex-
amples. For a specific utterance with transcription
“Turn up the bedroom heat,” the model correctly
predicts increase as the action, heat as the object,
and bedroom as the location, fully identifying the
intent.

Table 1 shows the word-level audio segment ex-
planation for this utterance computed for the pre-
dicted class for each intent slot.6 The explanation

6For convenience, the Table’s header reports the tran-
scribed words. However, we would like to remark that our
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Turn up the bedroom heat.
act=increase 0.250 0.545 0.260 0.139 0.021

obj=heat 0 0 0 0.014 0.550
loc=bedroom 0.002 0.006 0.087 0.997 0.323

Table 1: Example of word-level audio segment explana-
tion; FSC dataset. The higher the value (and darker the
color), the more the audio segment is relevant for the
prediction.

speed pitch
up down down up reverb noise

act=increase 0.19 0.04 0.04 0.13 0.56 0.44
obj=heat 0 0 0 0.04 0 0.29

loc=bedroom 0.03 0.01 0.13 0.33 0.36 0.60

Table 2: Example of paralinguistic attribution r(x, p)
for p := time stretching (speed variation), pitch shifting,
and noise injection; FSC dataset, instance in Table 1.
The higher the value (and darker the color), the more
the model is sensitive to perturbing the feature.

reveals that the segment relative to the word ‘up’ is
the most relevant term for the action increase. The
words “heat” and “bedroom” increase the prob-
ability of the predictions heat and bedroom, re-
spectively. Such explanations are reasonable and
aligned with our expectations. We expand on ex-
planation plausibility by conducting a user study
with human subjects in §5.

Table 2 shows the paralinguistic explanation. In-
creasing the speed of the signal has a moderate
effect on the prediction “action=increase” but none
on the others.7 Increasing the pitch impacts the
prediction of the location and also of the action.
Lowering the pitch affects the location slot. The
reverberation impacts the prediction for the action
slot and slightly for the location; on the other hand,
the object prediction is not affected. The prediction
for this instance is affected by the introduction of
noise, specifically for the location and the action.

To get a finer-grained view on the effect of par-
alinguistic perturbation, we inspect r(x̃i),∀x̃i ∈
X̃p, for different p, using heatmaps. Figure 3 shows
r(x̃) when stretching the audio (i.e., increasing and
decreasing speed), shifting the pitch, and injecting
noise. The model’s prediction are always robust to
time stretching but one case. Halving the duration

approach works end-to-end at the audio level, and importance
scores relate to audio segments.

7Editing paralinguistic features has no symmetrical effects.
E.g., increasing noise for a highly-noisy signal will not likely
change the prediction. We expect a similar effect on prosody.
Tuning the pitch up or down will contribute differently based
on the original pitch of the signal.

0.55
faster

0.7 0.85 x 1.15 1.3 1.45
slowerstretching factor

increase
heat

bedroom

time stretching

-5.0
lower
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Figure 3: rp(x̃) breakdown for p := time stretching,
pitch shifting, and noise injection. x indicates the
original signal. A darker red (green) color indicates
a stronger drop (increase) in probability.

of the signal (i.e., making it twice as fast) makes
the prediction “action=increase” drop severely. We
hypothesize this effect is due to the fact that the
leading phrase “Turn on” becomes hardly intelligi-
ble.

Similarly, the model is generally robust to pitch
shifting. We see the prediction change only in ex-
treme cases when the pitch is tuned up or down
by three or more semitones. These cases are “lo-
cation=bedroom” (pitch up and down) and “ac-
tion=increase” (pitch up). Finally, the model is af-
fected starting when the signal-to-noise ratio (SNR)
reaches 10 dB. Interestingly, the effect varies across
slots. The “location” prediction drops first, fol-
lowed by “action” and “object” whose prediction
changes after SNR is as low as 1 dB.

Tables and heatmaps provide two complemen-
tary tools for the intepretability of SLU mod-
els. The former is helpful for a first, high-level
glance to understand whether specific tokens or
non-linguistic features have driven the model out-
put. Heatmaps uncover where and to which extent a
model is sensitive to input perturbation. Moreover,
note that our framework can easily be extended
to other forms of p. We will provide easy-to-use
Python implementations to facilitate and enrich
such multi-faceted analysis.

Global level. We aggregate the importance
scores of word audio segments or paralinguistic
levels across the entire dataset to investigate the
global influence of each component.
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Figure 4: Top 15 most influential words, separately for
each predicted class. FSC dataset, Slot: Action.

speed pitch
up down down up reverb noise

action 0.13 0.09 0.12 0.07 0.27 0.37
object 0.07 0.05 0.07 0.04 0.17 0.43

location 0.06 0.04 0.06 0.04 0.11 0.21

Table 3: Average r(x, p) for p := time stretching (speed
variation), pitch shifting, and noise injection; FSC
dataset. The higher the score (and darker the color),
the more the model is sensitive to perturbing the feature.

Figure 4 shows a summary plot for the word-
level audio segment explanations of wav2vec 2.0
predictions on the FSC test set for the slot “action.”
We first compute the explanations for the predicted
classes. Then, we aggregate audio segments corre-
sponding to the same transcripted word after basic
processing (i.e., lowercase, punctuation removal,
noun singularization). We report the top 15 seg-
ments, occurring at least 5 times in the dataset,
with the highest average importance. The average
importance scores are represented separately for
each class. Hence, the summary plot shows which
spoken words are associated with which predicted
class(es). From Figure 4, the importance score for
spoken words such as ‘newspaper’ and ‘cooler’
across the entire test set is associated with a single
class value. Each class ( ‘bring’ and ‘decrease’)
corresponds to a plausible value. When a term is as-
sociated with multiple labels, the summary plot can
become a debugging tool. For instance, the spoken
word ‘pause’ is correctly linked to the predicted
action ‘deactivate’ but erroneously connected to
‘decrease.’

Table 3 shows the average importance score of
paralinguistic explanations aggregated for each la-
bel. We observe higher average importance scores
for the action label for the time stretching compo-
nent, specifically when compressing the utterance
duration (‘stretch down’). The pitch transforma-

tions induce a higher change in the prediction prob-
ability for the action slot, especially when lowering
the pitch. Finally, adding background noise glob-
ally impacts the model prediction.

We further investigate the complementary points
of view of word-level and paralinguistic attribu-
tions in Appendix C.

4.2 Quantitative Faithfulness Evaluation

A significant research effort has been devoted to the
evaluation of post-hoc explainability (Atanasova
et al., 2020; Agarwal et al., 2022; DeYoung et al.,
2020). Faithfulness and plausibility have been
conceptualized as two crucial desiderata to make
explanations meaningful and trustworthy (Jacovi
and Goldberg, 2020). Faithfulness measures eval-
uate how accurately the explanation reflects the
model’s inner workings, whereas plausibility mea-
sures whether it matches human expectations.

We quantitatively evaluate the faithfulness of
our word-level audio segment explanations in this
section and discuss a user study for plausibility in
§5. Our focus on word-level explanations is driven
by token-level explainability. Building upon prior
works on text-based explanations (DeYoung et al.,
2020; Jacovi and Goldberg, 2020), we extend and
adapt existing evaluation metrics to the specific
context of audio segment explanations.

Metrics. We generalize comprehensiveness and
sufficiency (DeYoung et al., 2020), two widely
adopted faithfulness measures. These metrics were
originally designed for token-level explanations in
text classification, where explainers assign a rele-
vance score to each token. Being in a similar setup,
we use audio segments rather than tokens, leaving
the metric unchanged.

Comprehensiveness evaluates whether the ex-
planation identifies the audio segments the model
“truly relied upon” to make the prediction. We
measure it by progressively masking the audio seg-
ments highlighted by the explanation, observing
the change in probability, and finally averaging
the results. A high value of comprehensiveness
indicates that the audio segments highlighted by
the explanations are relevant to the prediction (see
DeYoung et al. (2020) for more details).

Sufficiency evaluates if the audio segments in the
explanation are sufficient for the model to make the
prediction. Differently from comprehensiveness,
we preserve only the relevant audio segments and
compute the prediction difference. A low score in-
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FSC ITALIC IEMOCAP
Method action object location intent emotion

WA-L1O 0.623 0.627 0.467 0.693 0.507
WA-LIME 0.638 0.663 0.481 0.723 0.484
random 0.299±0.002 0.251±0.005 0.192±0.005 0.325±0.005 0.274±0.005

WA-L1O 0.161 0.086 0.063 0.158 0.310
WA-LIME 0.165 0.077 0.054 0.139 0.264
random 0.483±0.004 0.447±0.007 0.338±0.002 0.558±0.002 0.454±0.004

Table 4: Comprehensiveness (↑, top) and Sufficiency (↓, bottom) scores for our word attribution explanation via
leave-one-out (WA-L1O), our word-level LIME (WA-LIME), and random attribution for the FSC, ITALIC, and
IEMOCAP datasets, separately for each label. Best result in bold.

dicates that the audio segments in the explanations
indeed drive the prediction.

Baseline. We assess the quality of explanations
compared to a random explainer. The random ex-
plainer assigns a random score in the range [-1, 1]
to each word audio level segment.

Results. Table 4 shows the comprehensiveness
and sufficiency results for the FSC, ITALIC, and
IEMOCAP datasets, separately for each label. We
generated our word-level audio segment explana-
tions with respect to the predicted class. We report
our results for both the leave one out (WA-L1O)
and the LIME-based (WA-LIME) methods. For
the random baseline, we consider five rounds of
generations, and we report average and standard
deviation. The results in Table 4 show that our
word-level explanations outperform the random
baseline for both metrics. Moreover, WA-LIME
explanations are generally more faithful.

5 Plausibility User Study
Plausibility to humans is another essential desider-
atum of good explanations. It measures whether
explanations are reasonable, believable, and, more
generally, align with human reasoning (DeYoung
et al., 2020; Jacovi and Goldberg, 2020).

We conducted a user study to assess whether
our approach produced plausible explanations. We
focused on word-level audio segment attribution
in the Intent Detection task in English and Italian.
The target of our study was practitioners knowl-
edgeable in machine learning. See Appendix D for
full details.

5.1 Study Design

Quality Control. To help participants familiarize
themselves with the task and to check if our def-

inition of plausibility applies, we provided some
initial questions as sanity checks and quality con-
trol. In practice, we asked participants to compare
our explanations with a baseline method that as-
signs random scores to every word and to express
a preference.8 This task tests if the study questions
are well-framed and our explanations are informa-
tive (at least over random attribution).

Plausibility Assessment. To understand the per-
ceived plausibility of explanations, we asked par-
ticipants to rate the plausibility of the explanations
in absolute terms on a 4-point Likert-like scale.

Visualization Strategy. Recent evidence shows
that different visualization strategies impact cog-
nitive load, efficiency, and efficacy (Schuff et al.,
2022). Our color-coded score approach (see Ta-
ble 1) combines a word-level saliency map with
the precise indication of the score overlaid onto it.
However, we are interested in finding out if better
options exist. We asked participants to compare our
solution against plain word saliency maps (Arras
et al., 2017; Arora et al., 2022), and bar charts for
ease-of use and scalability to many examples.

5.2 Findings

Our study involved 35 participants recruited from
university courses and research laboratories close
to our institutions. We report here the main findings.
Please refer to Appendix D for full results.

The quality control checks confirmed that our
approach can provide plausible insights. In the
head-to-head comparison, all participants preferred
our explanation over the random one for both FSC
(IC, English) and ITALIC (IC, Italian) across all

8We verified that all study recordings were intelligible.
There is at least one Italian native speaker and a B2-level
English speaker among the authors.
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provided examples. Participants scored the plausi-
bility of our explanations with 3.13/4 (std: 0.787)
for FSC, and 3.37/4 (std: 0.75) for ITALIC. These
scores suggest that our method generates explana-
tions that are highly plausible to humans, consistent
across two languages and datasets.

Regarding visualization strategies, we found sta-
tistically significant differences between the three
representations (p < 0.05, Friedman) on FSC. Sub-
jects preferred saliency words and color-coded ta-
bles over bar charts for identifying relevant words
and found them more user-friendly when inspect-
ing multiple explanations. They preferred our color-
coded table and bar charts for comparing relative
word importance. These results suggest that re-
porting the scores (via saliency maps with number
overlays or via a bar plot) requires a lower cognitive
load to compare words than saliency maps alone.
Considering overall preference, users strongly pre-
ferred our representation, followed by saliency
maps.

On ITALIC, our questions present a single target
prediction (i.e., the intent) rather than the specific
slots (“action,” “object,” or “location”). We observe
statistically significant differences in the scores for
comparing salient words. As for FSC, the bar plot
and our color-coded table emerged as preferred
methods for comparing relevant words. Overall,
participants preferred our table and the bar chart.

For both datasets, participants preferred the bar
plot and our color-coded table for comparing scores.
However, other questions revealed some variation,
with our color-coded table and saliency maps pre-
ferred for FSC, and our method and bar charts fa-
vored for ITALIC. One key distinction between the
two datasets is the unique number of targets (or
slots) explained (i.e., 3 for FSC and 1 for ITALIC).
In the single-label scenario of ITALIC, users find
bar plots an effective visualization. This result
echoes Schuff et al. (2022)’s, suggesting that bar
charts mitigate biases such as word length. In
multi-label scenarios like FSC, color-coded expla-
nations are preferred as they facilitate interpretation
and comparison across labels. These findings em-
phasize that the visualization strategy needs to be
adapted depending on the context and use case.

Overall, our study suggests that users find our
explanations plausible and straightforward, a pre-
requisite to making them useful for model explana-
tions.

6 Related Work

Few works address interpretability by design
for speech and audio, like the prototypical net-
works (Zinemanas et al., 2021b,a) and attention-
based explanations (Won et al., 2019). Most ap-
proaches focus on post-hoc interpretability to ex-
plain (already trained) models. We categorize them
based on the form of the provided explanations.

Multiple studies (Montavon et al., 2019) use
Layer-wise Relevance Propagation (LRP) (Bach
et al., 2015), initially proposed for image classi-
fication, to explain audio analysis tasks. Most
works represent explanations as time-frequency
heatmaps over spectrograms (Becker et al. (2018);
Frommholz et al. (2023); Colussi and Ntalampiras
(2021); Arras et al. (2019), inter alia), or heatmaps
over ad-hoc terms (Becker et al., 2018). While
experts are familiar with spectrograms, they are
challenging for laypersons to interpret.

Becker et al. (2018) also use LRP to derive
relevance scores for individual samples of the
input waveform. Interpreting explanations as
sets of individual signal samples lacks abstrac-
tion and disregards sample context. We propose a
more user-friendly and intuitive approach to ex-
planation. Similarly, Wu et al. (2023b) assign
relevance scores to audio frames for ASR, i.e.,
raw data bins of predefined size in the time di-
mension. SoundLIME (Mishra et al., 2017) ap-
plies LIME (Ribeiro et al., 2016) to equal-width
segments within the time, frequency, or time-
frequency domains. However, the chosen segment
size affects these temporal explanations. More-
over, their explanations are not grounded in spo-
ken words or paralinguistic information, limiting
interpretability for semantic contexts like speech
classification.

Wu et al. (2023a) is similar to our approach,
as it tests fixed-width audio segments and audio
segments aligned with phonemes. However, they
require phoneme-level annotations, which limits
evaluation to when such labeling is available. More-
over, their method specializes in phoneme recogni-
tion. In contrast, our approach offers a more gener-
alized solution to any SLU classification task. We
automatically derive audio segments at the word
level via state-of-the-art speech transcription sys-
tems. Furthermore, to the best of our knowledge,
we are the first to assess the impact of paralinguistic
features on predictions in an interpretable form.

Occluding parts of the input data to measure
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their impact is a well-established method in XAI
(Covert et al., 2021). Different domains use diverse
techniques for removing or masking parts of the
data like noise addition, blurring, or masking in
grey (vision), a special mask token or removing
words (text), or using average values (structured
data; Covert et al., 2021). For speech data, Wu
et al. (2023a) generate perturbations for a LIME ex-
plainer using signal zeroing for masking phonemes.
Notable efforts have analyzed speech models at the
subgroup level (Dheram et al., 2022; Koudounas
et al., 2023b; Zhang et al., 2022; Veliche and Fung,
2023; Koudounas et al., 2024). These works pri-
marily concentrate on addressing fairness issues
and mitigating biases. In contrast, our focus lies on
enhancing the interpretability of such systems at
both the individual and global levels.

7 Conclusion
We proposed a new perturbation-based explana-
tion method for speech classification models using
word-level audio segments and paralinguistic fea-
tures. The experimental evaluation highlighted the
ability of our approach to cope with different tasks,
models, and languages. Our analysis revealed that
word-level attributions accurately identified the spo-
ken words influencing both local and global predic-
tions, aligning well with user expectations. Mean-
while, paralinguistic attributions shed light on how
non-linguistic features such as prosody and speak-
ing conditions impacted predictions. Our findings
showed that the generated word-level explanations
are faithful to the model’s inner workings. More-
over, a comprehensive user study proved that the
generated explanations are plausible to human ex-
perts. Users found our explanation representation
intuitive for pinpointing relevant words for pre-
dictions and examining multiple explanations—a
crucial aspect for ensuring their utility in model
explanations.

Future work could further explore explanation
assessments, such as the subjective usefulness of
explanations and their helpfulness for users for spe-
cific practical applications.

Limitations
Our work has some technical and design limita-
tions. From the technical perspective, the two ex-
planation methods we adopt to compute word-level
segment attributions have known limitations. The
leave-one-out method masks one-word segment
at a time, thus not considering the intersectional

effect of multiple masked words. LIME, instead,
may suffer from instability since it relies on random
sampling to generate perturbed samples around the
instance to explain, and the sample size can affect
explanations. We plan to experiment with different
masking strategies and include other explanation
methods. Moreover, word-level explanations might
not be the most helpful explanations in specific
speech classification tasks, e.g., spoken language
identification or speaker identification. We are ac-
counting for this limitation by evaluating paralin-
guistic contributions, but we will also explore new
methods. We will also investigate the impact of
the perturbation techniques and third-party speech
libraries on paralinguistic attributions. From the
experimental design perspective, we currently fo-
cus the evaluation of explanations on word-level
segment attributions due to their closeness to token-
level attributions and the solid literature for their
evaluation. We intend to explore novel methods for
evaluating paralinguistic contributions. The faith-
fulness measures we adopted are based, as the pro-
posed explanation methods, on perturbation-based
criteria. While the relative comparison of these
methods holds, we note the intrinsic connection
between these explainers and evaluation measures.
We plan to explore alternative evaluation strategies
for faithfulness assessment.

Ethical Statement
Our approach builds on pre-existing language tech-
nologies, including alignment and transcription
models. However, such tools achieve uneven per-
formance across different languages and sociode-
mographic groups (Adda-Decker and Lamel, 2005;
Radford et al., 2023; Gu et al., 2023, inter alia).
Whisper (Radford et al., 2023), the model we use
for audio transcription, reports a drop in speech
recognition capabilities for languages with fewer
training instances and with high linguistic distance
from the high-resource Indo-European languages
used in the training set. Combining these methods
has the potential to increase biases. Since our ap-
proach is directly reliant on these tools, our method
is likely to work better for predominant languages
and social groups. Our work should therefore be
taken as a starting point for further activities to test
and, where necessary, broaden its applicability.

We would also point out some ethical dual-use
considerations. Paralinguistic attributions uncover
if models are sensitive to signal perturbations. Ma-
licious actors could take advantage of these vul-
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nerabilities to manipulate or craft audio signals,
potentially resulting in adversarial attacks. Yet,
practitioners can use paralinguistic attributions as
a proactive tool for robustness assessment.
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A WhisperX
We adopt WhisperX (Bain et al., 2023) to extract
beginning and ending timestamps for each uttered
word. WhisperX builds upon Whisper (Radford
et al., 2023), a state-of-the-art speech model trained
on diverse audio data enabling multilingual speech
recognition, translation, and language identification
capabilities. While the original Whisper model
performs speech transcription at a high level of
accuracy, it only provides utterance-level times-
tamp annotations. WhisperX improves upon this
by leveraging Whisper’s foundation and incorpo-
rating additional techniques to achieve word-level
timestamp precision. It applies voice activity detec-
tion to isolate speech segments from non-speech
periods. Forced phoneme alignment is then used
to map the acoustic features of spoken utterances
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to their constituent words at a finer temporal gran-
ularity. WhisperX thus provides the word-level
timing data needed for our analysis while retaining
Whisper’s high performance in speech processing
domains.

B Implementation Details
In this section, we describe the libraries and param-
eters used to generate the explanations via input
perturbation on word-level audio segments (B.1)
and on paralinguistic features (B.2).

B.1 Word-Level Attribution

To compute word-level contribution, we generalize
two approaches from XAI literature, L1O (Leave
One Out) and LIME. For both approaches, we intro-
duce perturbations through selective zeroing (i.e.,
silencing) of audio segments in the time domain as
in (Wu et al., 2023a).

For LIME, we use the ‘LIME FOR TIME’ li-
brary (Metzenthin, 2020). We customize it to deal
with word-level segments and zeroing as the form
of perturbation. The original implementation re-
lies on equal-width splits defined by the number of
segments the input would be split. Instead, we con-
sider word-level audio segments and split the audio
based on the timestamps derived from WhisperX.
We generate neighbor samples of the instance to
explain by masking random audio segments. In
our version, we mask these segments by setting
their values to zero. In our experiments, we set the
number of generated perturbed samples to 1000.
For the other settings, we use default ones (e.g.,
Ridge linear model as the interpretable model and
random selection of the segments to mask).

B.2 Paralinguistic Attribution

We analyze the impact of paralinguistic aspects by
introducing targeted perturbations to the utterances.
Specifically, we apply custom audio manipulations
and then compute the variations in the class predic-
tion probability. In our analysis, we experimented
with time stretching, noise addition, pitch modifi-
cation, and reverberation effects.

Time stretching. We use the AudioStretchy
library (Twardoch, 2023), which enables high-
quality time-scale modification via Time-domain
harmonic scaling (TDHS). This allows adjustment
of speech rate without impacting pitch contour or
formant structure evolution over time. More in de-
tail, downward time scaling progressively shortens
utterance length from the original to 55% in decre-

ments of 5%, spanning the range from 55-95%
duration. Similarly, upward time scaling progres-
sively lengthens utterance length from the original
to 145% in increments of 5%, spanning the range
from 105-145% duration.

Noise. We leverage the noise addition transfor-
mation from Torchaudio (Yang et al., 2021b) li-
brary, which scales and adds noise according to a
specified signal-to-noise ratio (SNR). In our exper-
iments, we add white background noise at various
SNR levels. Specifically, noise is introduced with
the SNR ranging from 40 decibels (dB) down to
0.1 dB, decreasing in steps of 2.5, 5, or 10 dB
depending on the level. This results in 11 noise
perturbation conditions with SNR values of 40, 20,
10, 7.5, 5, 4, 3, 2, 1, 0.5 and 0.1 dB. As a result, we
worsen the clarity of the speech from a high SNR
of 40 dB down to 0.1 dB to evaluate the model
sensitivity to noise.

Pitch shifting. We use the pitch shift function
of the Torchaudio library and vary the number of
steps to shift the input waveform. This allows us to
isolate the effect of pitch variation independently
from other temporal factors like time-stretching
or speed changes. We apply both downward and
upward modulation of the utterance fundamental
frequency (f0). Downward pitch scaling lowers the
f0 within the range of -0.5 to -5 semitones in decre-
ments of 0.5 semitones. This progressively shifts
the semitones lower by up to 5 semitones. Con-
versely, upward pitch scaling raises the f0 within
the [0.5, 5] semitones range, with increments of 0.5
semitones. This progressively transposes the utter-
ance up by a maximum of 5 semitones, effectively
shifting the pitch closer to one full semitone higher
than the largest downward value. By systemati-
cally altering the pitch up and down within these
controlled bounds, we aim to evaluate the model’s
invariance to changes in vocal prosody that may
occur naturally due to differences among speakers.

Reverberation. We apply the room impulse re-
sponse generator from Audiomentations (Jordal
et al., 2023) to introduce a reverberation. It mod-
els a cuboid room with parameterized dimensions,
absorption, configurable source, and microphone
placements to simulate natural reverberant effects.
We systematically varied the dimensions of the vir-
tual room environment. Specifically, we model
room width (x-axis), depth (y-axis), and height (z-
axis) within the range of 3 to 7 meters, altering
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It’s really romantic.

class=happy -0.02 0.24 0.04

Table 5: Example of word-level audio segment explana-
tion; IEMOCAP dataset.

speed pitch
up down down up reverb noise

class=happy 0.33 0.12 0.82 0.26 0.94 0.74

Table 6: Example of paralinguistic attribution; IEMO-
CAP dataset, instance in Table 5.

each dimension incrementally by 1 meter. This pro-
duces a total of 5 unique room-size configurations
for evaluation. The absorption coefficient, which
determines how room surfaces absorb sound, is
held constant at 0.1. This setting effectively sim-
ulated a typical office or residential room space
rather than a sound-treated studio, which would re-
quire a higher coefficient above 0.4. Additionally,
we established a minimum distance of 0.5 meters
between any sound source, microphone, or reflect-
ing surface to control for closely spaced early re-
flections vs. larger room reverberation effects. By
varying these parameters, the perturbation aims to
assess model robustness when processing audio
captured or generated in enclosed environments
that naturally differ in size.

C Additional Qualitative Evaluations
We report additional results on the word-level and
paralinguistic attributions. We focus on the emo-
tion recognition task for which the content by itself
is not sufficient to convey the meaning and the
emotion.

Individual level. Tables 5 and 6 show the word-
level (via LIME) and paralinguistic attributions
for an instance of IEMOCAP. Figure 5 further fo-
cuses on the paralinguistic aspect. Wav2vec 2.0
correctly predicts the emotion label of the instance
as ‘happy’. The speaker pronounced the sentence
‘It’s really romantic’ with a cheerful tone while
laughing. At the content level, the relevant word
is ‘really’. We then may wonder how the model is
sensitive to variation of paralinguistic features for
this instance. The model is highly sensitive when
introducing reverberation and noise (see Table 6).
Then, it is highly sensitive to shifting down the
pitch. When we lower the pitch, the probability of
the class ‘happy’ drops from 0.95 of the original

0.55
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0.7 0.85 x 1.15 1.3 1.45
slowerstretching factor

hap
time stretching

-5.0
lower

-3.0 -1.0 x 1.0 3.0 5.0
highersemitones

hap
pitch shifting

1

0

1

Figure 5: rp(x̃) breakdown for p := time stretching,
and pitch shifting; same instance x of Table 5.

What am I gonna do, huh?

class=sad 0.07 0.02 0.04 0.18 0.10 0.20

Table 7: Example of word-level audio segment explana-
tion; IEMOCAP dataset.

speed pitch
up down down up reverb noise

class=sad 0.97 0.81 0.01 0.17 0.98 0.09

Table 8: Example of paralinguistic attribution; IEMO-
CAP dataset, instance in Table 7.

recording to 0.329 when shift of -0.5 semitones and
to 0.017 when we shift of 5. We report the drop in
Figure 5. In all these cases, the model labels the
perturbed instance to the ‘neutral’ class.

Table 7 and 8 show the word-level attributions
(again via LIME) and paralinguistic ones for an-
other instance of IEMOCAP. The model correctly
predicts the sentence as belonging to the ‘sad’ emo-
tion. At the word level (Table 7), ‘huh?’ and
‘gonna’ are the most important words. At the
paralinguistic level, other than the introduction of
reverberation, the time-stretching transformation
highly induces a change in the prediction proba-
bilities. As we can also observe from the heatmap
in Figure 6, all time-stretching transformations in-
duce a drop in the prediction probability of the
‘sad’ class. Hence, the model is highly sensitive
to the perturbation of the speaking rate for this
instance. The speaking rate is an important char-
acteristic of communicating sad emotions, making
the model sensitivity of this feature on the emotion
label plausible. Moreover, we observe a change
in the prediction probability when increasing the
pitch ( for values ≥3 in Figure 6). The prediction
probability drops by 0.38 when we increase the
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Figure 6: rp(x̃) breakdown for p := time stretching,
and pitch shifting; same instance x of Table 7.

pitch by 5 octaves (specifically, it goes from 0.98
to 0.6, and the probability assigned to the ‘happy’
class increases). We argue this change is plausible
for this instance prediction: the higher pitch could
be generally associated with other emotions such
as happiness.

Global level. Finally, we may wonder whether
the higher sensitivity of the pitch for the ‘happy’
class and of the time stretching for the ‘sad’ class
is local to the two instances we analyzed, or it is
observed for multiple instances. We compute the
prediction difference when varying the perturbation
for 50 instances predicted as ‘happy’ and for 50 as
‘sad’. We then aggregate the scores separately for
the two classes and compute the average. Figures 7
and 8 show the average prediction differences for
the ‘happy’ and ‘sad’ classes, respectively. The
model confirms to be sensitive to the pitch for the
class ‘happy’. Moreover, it is also sensitive when
time stretching the audio, especially when increas-
ing the speed. For the ‘sad’ class, the model con-
firms to be sensitive to variations of the speaking
rate via time stretching. Shifting the pitch has a
negligible impact: raising the pitch induces, on av-
erage, a slight drop in the prediction probability of
the ‘sad’ class, while lowering it causes a slight
increase.

These analyses show that paralinguistic attribu-
tions can be a valid tool to inspect and understand
the model behavior.

D Plausibility User Study

The user study is available at https://forms.
gle/vuWpm7ha6r3BRt6w8. The link was re-
leased in October 2023 via email. Participation
was voluntary and not compensated. We did not
collect any personally identifiable information on
participant subjects.
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Figure 7: Average rp(x̃) for 50 instances of the IEMO-
CAP dataset assigned to the ‘happy’ class for p := time
stretching and pitch shifting.
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Figure 8: Average rp(x̃) for 50 instances of the IEMO-
CAP dataset assigned to the ‘sad’ class for p := time
stretching and pitch shifting.

D.1 Setup.

We first ask about preferences in the visualization,
separately from the rest. This design should avoid
biases since all other visualizations use our color-
code representation. We use a scale from 1 to 4
for all ratings to encourage participants to take a
clear stance, discouraging the selection of a neutral
score. The entire study typically requires around
20 minutes to complete.

We provide to the participants the following def-
inition for plausibility: “Plausibility reflects how
explanations are aligned with human reasoning and
how they are convincing to humans. If the explana-
tion of a system prediction sounds reasonable, clear,
and like something a person would consider, then
they are considered plausible.” We then instruct the
participant to consider the following aspects when
evaluating plausibility “(i) Does the score assigned
to the word align with my expectations? (ii) Would
the explanations I would provide as a human match
those of the model? (iii) Does the explanation seem
reasonable and believable? (iv) Does it make sense
within the context of the problem?’.
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FSC ITALIC
Category Bar Words Table Bar Words Table

Identify words (↑) 2.54±0.74 3.54±0.51 3.40±0.85 3.54±0.61 3.51±0.51 3.66±0.54

Compare word (↑) 3.37±0.77 2.60±0.81 3.63±0.60 3.66±0.68 2.74±0.82 3.63±0.65

Inspect multiple (↑) 2.57±1.01 3.34±0.73 3.29±0.83 3.34±0.76 3.29±0.75 3.29±0.62

Overall preference rank (↓) 2.51±0.70 1.94±0.73 1.54±0.74 1.89±0.83 2.20±0.83 1.80±0.68

Table 9: User study - Effectiveness of the visualization. Average and standard deviation scores for the four questions.

FSC ITALIC
Category Bar, Words Bar, Table Word, Table Bar, Words Bar, Table Word, Table

Identify words <0.0001 0.0001 0.2291 0.4284 0.1425 0.1126
Compare words 0.0008 0.0752 <0.0001 <0.0001 0.4278 0.0001
Inspect multiple 0.0016 0.0010 0.3867 0.4364 0.3583 0.4762
Overall preference rank 0.0083 0.0001 0.0518 0.0802 0.3187 0.0297

Table 10: User study - Effectiveness of the visualization. p-value of the pairwise Wilcoxon test. The statistically
significant pairwise differences are in bold (p-value<0.05).

Category FSC ITALIC

Identify words <0.0001 0.3577
Compare words <0.0001 <0.0001
Inspect multiple 0.0092 0.7030
Overall preference rank 0.0002 0.2564

Table 11: User study - Effectiveness of the visualization.
p-value of the Friedman test. The statistically significant
differences are in bold (p-value<0.05).

D.2 Task, datasets, and explainer

We focus our study on a single task, Intent Classifi-
cation, to simplify the user experience and enhance
participant understanding. We include explanations
from the FSC and ITALIC datasets to cover both
the English and Italian languages. This inclusion
enables the assessment of the plausibility of our
methods across different linguistic contexts. More-
over, the choice of the task and datasets enables
the assessment in the multi-label and single-label
classification scenarios. While for ITALIC we tar-
get the intent alone, for FSC we simultaneously
predict and explain the action, object, and loca-
tion. Multi-label explanation evaluation introduces
an additional complexity for the participants; we
consider this additional load in our assessment.

We focus on LIME explanations since they ob-
tained higher faithfulness.

D.3 Assessments

Quality Control. We compare our explanation
with the random baseline to assess the reliability
of the explanations. For a given audio, we pre-
sented to the participants an explanation generated
by our approach and one randomly generated. We
then asked users to indicate which explanation they
found more plausible. This initial question allows
us to determine whether users perceive our expla-
nations as indeed more plausible than random ones.
Moreover, it helps prevent potential biases in inter-
pretation. By offering a clear choice between our
explanations and random ones, we guide users to
focus on what they expect and find most suitable.

For each dataset, we presented two explanations
(ours and the random baseline) for the same record-
ing visualized in a color-coded table.

Plausibility Assessment. We asked the partici-
pants to rate an explanation’s plausibility level on a
scale from 1 to 4, with 1 indicating no plausibility
at all and 4 indicating very high plausibility.

We presented ten explanations for ten distinct
recordings for each dataset, visualized in a color-
coded table.

Visualization Strategy. In our work, we visual-
ize explanations as a color-coded score table that
combines the heat map representation of word-level
saliency explanations and the precise indication of
the score. We assess how users find this visual-
ization effective compared to word-level saliency
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Figure 9: Statistics of participants. Expertise in machine
learning and/or data science and in Explainable AI (left)
and education level (right).

explanations as color-coded highlighted words and
bar plots showing the importance of each word.
For each visualization, we asked them to quantify
with a score from 1 to 4 the following aspects: (i)
how easy the visualization allows them to identify
the words that push (or pull from) the prediction,
(ii) how easy it is to compare the relative impor-
tance among words, (iii) how much would be easy
to inspect many explanations. Finally, we asked
the participants to express their overall preferences
among these visualization options.

For each dataset, we presented the explanation
of a single recording visualized in the three forms:
bar chart, saliency map, and color-coded table.

D.4 Participants

Participation Requisites. To be eligible to par-
ticipate in the study, individuals must have a min-
imum proficiency level of B2 or higher in both
English and Italian.

Sociodemographic Statistics. We also asked par-
ticipants, as optional questions, their age (a numer-
ical integer) and gender (male, female, non-binary,
undeclared) of participants. Table 12 reports the
distribution of gender and age.

Level of Expertise. We collect information on
participants’ expertise in machine learning (ML)
and/or data science and their familiarity with ex-
plainable AI. We categorize the expertise into four
levels: None, Beginner (Limited knowledge or ex-
perience), Intermediate (Moderate knowledge or
experience), and Advanced (Extensive knowledge
or experience). We then collect data on the educa-
tion level of the participants.

Figure 9 presents the statistics in percentage
form. Most participants have moderate or advanced
knowledge or experience in ML and data science,

while most have no experience with explainable
AI. The majority of the participants hold a Master’s
degree as their highest level of education.

D.5 Result Details

Table 9 shows the average and standard deviation
scores for the four questions for the assessment of
the effectiveness of the visualization.

We test the statistical significance of the score
and their relative ranking. We use the Friedman
(Friedman, 1937) and the Wilcoxon signed-rank
(Wilcoxon, 1992) tests.

Given a question and the scores for the three rep-
resentations, we use the Friedman test to test the
null hypothesis that scores have the same distribu-
tion. For p-values lower than a significance level
(that we set at 5%), we reject the null hypothesis
and say that the three scores differ. Table 11 shows
the Friedman test over the scores for the three vi-
sualizations (bar chart, saliency words, and color-
coded table). The scores of the participants differ
for all questions on the multi-label dataset FSC. For
ITALIC, the scores differ significantly when eval-
uating the representation efficacy for comparing
words.

With the Wilcoxon signed-rank test, we test the
null hypothesis that two paired samples come from
the same distribution. If the obtained p-value is
lower than our confidence threshold of 5%, we
reject the null hypothesis, and we say that there is
a difference in scores between the two groups. We
compute the Wilcoxon test for each question and
for each pair of visualizations. Table 10 reports the
p-values of the pairwise Wilcoxon test.

For FSC, the scores show statistically signifi-
cant differences between the bar plot representa-
tion and color-coded ones (both saliency words
and our color-coded table) when evaluating their
ability to identify words, inspect multiple expla-
nations, and consider overall aspects. Participants
preferred saliency words and our table for these
tasks and scored them similarly. Participants pre-
ferred our color-coded table and the bar plot over
saliency words to compare relative importance
among words.

For ITALIC, participants preferred, as for FSC,
our table and the bar plot over saliency words for
comparing relative word importance and scored
them similarly. The other significant difference is
in the overall preference ranked: users preferred
our color-coded table over saliency maps.

We argue that these differences in preference

2237



Gender Male Female Non-Binary Undeclared

68.57% 31.43% 0% 0%

Age ≤ 25 [26-29] ≥ 30 Undeclared

31.43% 60.0% 8.57% 0.0%

Table 12: Gender and age distribution of the participants.

between the two datasets can be reconducted to a
key distinction between the two: multi-label (FSC)
vs single-label (ITALIC) scenario.

E CO2 Emission Related to Experiments
Experiments were conducted using a private in-
frastructure, which has a carbon efficiency of 0.29
kgCO2eq/kWh. A cumulative of 60 hours of com-
putation was performed on hardware of type RTX
A6000 (TDP of 300W). Total emissions are esti-
mated to be 5.22 kgCO2eq of which 0 percent were
directly offset. Estimations were conducted using
the MachineLearning Impact calculator presented
in Lacoste et al. (2019).
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