
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 407–416
November 15, 2024 ©2024 Association for Computational Linguistics

Attribution Patching Outperforms
Automated Circuit Discovery

Aaquib Syed*

asyed04@umd.edu
Can Rager†

canrager@gmail.com
Arthur Conmy†

arthurconmy@gmail.com

Abstract
Automated interpretability research has re-
cently attracted attention as a potential research
direction that could scale explanations of neu-
ral network behavior to large models. Exist-
ing automated circuit discovery work applies
activation patching to identify subnetworks re-
sponsible for solving specific tasks (circuits).
In this work, we show that a simple method
based on attribution patching outperforms all
existing methods while requiring just two for-
ward passes and a backward pass. We apply
a linear approximation to activation patching
to estimate the importance of each edge in the
computational subgraph. Using this approxima-
tion, we prune the least important edges of the
network. We survey the performance and lim-
itations of this method, finding that averaged
over all tasks our method has greater AUC from
circuit recovery than other methods.

1 Introduction

Mechanistic interpretability is a subfield of AI inter-
pretability that focuses on attributing model behav-
iors to its components, thus reverse engineering the
network (Olah, 2022). This field aims to identify
subnetworks (circuits) within the model which are
responsible for solving specific tasks (Olah et al.,
2020). Prior attempts at finding circuits in language
models have led to finding networks of attention
heads and multi-layer perceptrons (MLPs) that par-
tially or fully explain model behaviors at tasks such
as indirect object identification, modular arithmetic,
completion of docstrings, and predicting succes-
sive dates (Wang et al., 2023; Nanda et al., 2023;
Heimersheim and Janiak, 2023; Hanna et al., 2023).
However, almost all previous work has been limited
to relatively small models since manually applying
mechanistic interpretability methods has not cur-
rently scaled to end-to-end circuits in larger models
(Lieberum et al., 2023).

*University of Maryland, College Park
†Independent

It may be important to scale interpretability to
large models as these are the neural networks most
widely deployed and used by a wide range of peo-
ple. Currently, we have little understanding into
how these models work and failure modes are not
always found ahead of deployment. If successful,
scaled interpretability could address a wide vari-
ety of concerns about the lack of transparency of
language models (Vig et al., 2020), in addition to
speculative risks about the alignment of machine
learning systems (Hubinger, 2020).

Automated Circuit Discovery (ACDC; Conmy
et al. (2023)) attempts to automate a large por-
tion of the mechanistic interpretability workflow
— the pruning of edges between attention heads
and MLPs that do not affect the task being studied.
ACDC begins with a computational graph, and re-
cursively calculates the importance of an edge in
the graph for a specific task. In our work, we use
edges to refer to activations inside models between
two components (Section 2 describes this motiva-
tion further). ACDC’s pruning algorithm applies
activation patching. (Note that activation patch-
ing is not attribution patching. Both are defined
in full in Section 3.3.) At a high level, activation
patching edits a specific activation in a model for-
ward pass and measures a model statistic (e.g loss)
under this intervention. Activation patching is in-
efficient for circuit discovery because getting each
statistic about model activations requires another
forward pass. Our work uses attribution patching
to recover circuits more efficiently (Section 3.3).

Our main contributions are:
1. Introducing a method for using attribution

patching on all computational graph edges for
automated circuit discovery (Edge Attribution
Patching, Section 3.3).

2. Benchmarking Edge Attribution Patching vs
existing circuit discovery methods (Section 4).

3. Finding and explaining some limitations with
Edge Attribution Patching (Section 5).

407

2 Related Work

Automated Circuit Discovery refers to finding
the important subgraph of models’ computational
graphs for performance on particular tasks (Conmy
et al., 2023). Existing algorithms include effi-
cient heuristics (Michel et al., 2019) and gradient-
descent based methods (Louizos et al., 2018; Cao
et al., 2021). ACDC is related to pruning (Blalock
et al., 2020) and other compression techniques (Zhu
et al., 2023), but differs in how the compressed net-
works are reflective of the circuits that the model
uses to compute outputs to certain tasks and the
goal of ACDC is not to speed up forward passes
(all techniques studied in this work use slow for-
ward passes). Concurrent work has further estab-
lished attribution-based circuit discovery (Ferrando
and Voita, 2024; Hanna et al., 2024; Kramár et al.,
2024).

Activation Patching is a technique for analyz-
ing the role of individual components in a model.
It involves targeted manipulations of activations
during a forward pass (further explained in Sec-
tion 3.1). Previous works applied this technique
under various names, such as interchange interven-
tions (Geiger et al., 2021), causal mediation anal-
ysis (Vig et al., 2020) and causal tracing (Meng
et al., 2022). We adapt the terminology used by
Conmy et al. (2023).

Transformer Circuits. Our work builds upon
the framework for understanding transformers
for interpretability as introduced by Elhage et al.
(2021). Individual attention heads and MLPs (col-
lectively called nodes) read and write information
to a central communication channel, also called the
residual stream. In these terms we can examine
dependencies of nodes with the output of earlier
nodes, i.e we can measure the effect of attention
heads in layer 0 on the attention heads in layer 2.
In the following, we view these dependencies as
edges between nodes, building on existing work
using this perspective (Heimersheim and Janiak,
2023; Hanna et al., 2023; Wang et al., 2023).

3 Edge Attribution Patching

We present Edge Attribution Patching (EAP) as
a technique to identify relevant model components
for solving a specific task. In the following, we
view language models as directed, acyclic graphs.
In these terms, we aim to find small subgraphs that
retain good performance on narrow tasks. We de-
termine the importance of a specific edge through

targeted manipulation of activations during a for-
ward pass. We compare two approaches, Attribu-
tion Patching and Activation Patching, in order to
motivate EAP.

3.1 Activation Patching

Activation patching refers to replacing the activa-
tions from one model forward pass with the activa-
tions from a different forward pass. This method
is typically applied to measure the counterfactual
importance of model components, i.e. to measure
a statistic L(x) from model outputs under the acti-
vation patching, where x is an input prompt. For
example, L often represents loss or logit difference
(Wang et al., 2023).

Following existing work (Section 2), we study
the effect of activation patching on specific model
edges by setting these equal to activations from dif-
ferent forward passes. Concretely, suppose that an
edge E in the computational graph has activation
ecorr on some corrupted prompt. In this work, we
use the change in metric under activation patching

|L(xclean| do(E = ecorr))− L(xclean)| (1)

to measure the impact of edge E. We use do-
notation from causality (Pearl, 1995) to emphasise
that activation patching is a causal intervention.

3.2 Attribution Patching

Activation patching slows ACDC since each mea-
surement (like Equation (1)) requires another for-
ward pass. Attribution patching (Nanda, 2023) is
a technique for estimating Equation (1) for many
different edges E using only two forward passes
and one backward pass.1 It linearly approximates
the metric difference after corrupting a single edge
in the computational graph (Figure 1) by expanding
L as a function of the edge activation as a Taylor
series with terms up to the first order:2

L(xclean| do(E = ecorr)) ≈ L(xclean) + (2)

(ecorr − eclean)
⊤ ∂

∂eclean
L(xclean| do(E = eclean))

︸ ︷︷ ︸
Call this ∆eL, the attribution score.

1Attribution patching (like activation patching) also applies
to nodes and other model internal components that aren’t
edges, but we only use edges in this work.

2Note that L(xclean| do(E = eclean)) = L(xclean) as all
activations in this equation are from clean forward passes. We
highlight the eclean since we take the gradient with respect to
this activation. (2) denotes the equation number and does not
belong to the formula.

408

A simple rearrangement implies that Equa-
tion (1) is approximately equal to |∆eL| (3) which
we call the absolute attribution score for the rest
of this paper. In this work we always compute this
score across a set of (xclean, xcorr) pairs and take
the mean.

eclean

ecorr

(x, y): Activation

z: L

Figure 1: Attribution Patching approximates the differ-
ence in metric L caused by corrupting edges.

3.3 Edge Attribution Patching

We can use the insights from Section 3.2 to build an
automated circuit discovery algorithm. This takes
two steps:

1. Obtain absolute attribution scores for the im-
portance of all edges in the computational
graph with Equation (2).

2. Sort these scores and keep the top k edges in
a circuit.

We use Edge Attribution Patching (EAP) to
refer to this algorithm. In the rest of the work we
report results for all k values when we evaluate
EAP (similar to HISP in Conmy et al. (2023)).

Figure 2: Removing the
least important edges.

Note that in Edge
Attribution Patching,
the partial derivative
(∂/∂eclean)L(x) in
Equation (??) reduces
to a partial derivative
w.r.t the endpoint of
the edge, as discussed
in Appendix F.

In practice, all gra-
dients needed to cal-
culate the attribution
scores come from intermediate terms computed in
one ordinary backwards pass3 in PyTorch (Paszke

3In Appendix F we show how only one backwards pass is
required.

et al., 2019), hence attribution patching is ex-
tremely efficient.

One limitation of attribution patching is that it
will not work when the gradient of the metric is the
zero vector. Conmy et al. (2023) recommended the
use of KL divergence as a metric, which is i) equal
to 0 when we run the model without ablations and
ii) a non-negative metric. Therefore the zero point
is a global minimum and hence all gradients are
the zero vector at this point. In this work we use
the task-specific metrics’ (not KL divergence) from
Conmy et al. (2023) so avoid this issue.

4 Results

4.1 Edge Attribution Patching vs Activation
Patching vs ACDC

We compare Edge Attribution Patching (EAP) and
ACDC on the Indirect Object Identification (IOI),
Docstring, and Greater-Than tasks. For each of
these tasks, previous studies identified a subgraph
(circuit) relevant for solving the task. We use their
results as a ground truth for benchmarking both
methods. We also compare using ACDC with the
task-specific metrics (e.g logit difference) and KL
Divergence (which was originally recommended).
For the docstring task, we also include repeated
activation patching as another point of reference
for performance comparisons. We applied repeated
activation patching by running the same circuit dis-
covery method described in Section 3.3 but using
Equation (1) rather than absolute attribution scores.
Activation patching was not included in the other
tasks as it was too computationally expensive to
run on the GPT-2 small models used by IOI and
Greater-Than. Subnetworks found using EAP for
all three tasks are shown in Appendix A.

The ROC curves in Figure 3 suggest the perfor-
mance of EAP is better than ACDC overall: it has
the maximal AUC when applied to the IOI and
greater than tasks, while ACDC used with the KL
Divergence metric outperforms EAP in the doc-
string task.

4.2 Validating EAP Attribution Scores

In this section, we look at the approximate metric
change (attribution score) EAP assigns to each edge
in the model. We aim to understand the relation
between the attribution score and the function of
the edge in the task being studied. First, we look
at the distribution of scores for edges in the circuit
compared to edges not in the circuit for each of the

409

Figure 3: ROC Curves comparing EAP, ACDC with
task metric, and ACDC with KL Divergence for the
Greater-Than (left), IOI (right), and Docstring task (bot-
tom). The Docstring plot also compares to Activation
Patching.

three tasks.

Figure 4 shows the distribution of attribution
scores for the IOI task. The distributions for the
remaining tasks can be found in Appendix B. Qual-
itatively, attribution scores for edges in the cir-
cuit tend to be spread further from zero. Further-
more, there are only 6 edges outside of the interval
[−0.25, 0.25] that aren’t part of the IOI circuit. We
further explore the attribution scores for the IOI
circuit’s classes of heads in Appendix E.

1.5 1.0 0.5 0.0 0.5 1.0
Change in Logit Difference

100

101

102

103

104

Lo
g

Co
un

t

Histogram of Edge Scores (IOI Task)
In IOI: mean=-0.0094, std=0.1403
Not In IOI: mean=0.0001, std=0.0083

Figure 4: Distribution of Attribution Scores for the IOI
Task (Logit difference metric)

5 Limitations

We introduced edge attribution patching as an ap-
proximation to activation patching. However, we
found that edge activation patching outperformed
ACDC, a technique based on activation patching
(Section 4). In this section, we investigate whether
attribution patching’s success is due to extremely
accurate approximations (in Section 5.1 we find
that the answer is no), and whether there is any
further use for ACDC (in Section 5.2 we find that
the answer is yes). We use the docstring task as a
case study due to the small model size used.

5.1 How faithful are Attribution Patching’s
approximations?

To study how faithful the approximation ?? is,
we plot the attribution patching scores (Equation
(2)) against the activation patching scores (Equa-
tion (1)) in Figure 5a. Surprisingly, we find a fairly
weak correlation between activation and attribution
patching scores (R2 = 0.27). Further, the line of
best fit has gradient 0.531, suggesting that attri-
bution patching estimates the effect of activation
patching as twice as important as it really is.

Moreover, we can gain some sense for the
discrepancy between activation and attribution
patching by studying the continuous transition
between clean (eclean) and corrupted (ecorr) acti-
vations in Equation (1), i.e studying the values
|L(xclean| do(E = λecorr + (1 − λ)eclean)) −
L(xclean)| for 0 ≤ λ ≤ 1. We can compare this to
the linear approximations of Attribution Patching
λ∆eL. Figure 5b shows the result for one edge in
the docstring circuit where the linear approxima-
tion to activation patching is not accurate.

We find that interpolating towards the corrupted
input creates a concave curve (Figure 5b) such that
the linear approximation at λ = 0 overestimates
the effect of activation patching this edge. In Ap-
pendix D we show that this also holds for the other
outlier edges in the ellipse in Figure 5a.

5.2 Is there any further use for ACDC?

In Section 5.1 above, we found that EAP overesti-
mates activation patching in cases where the task
specific metric is concave. This suggests the po-
tential to refine the result by running ACDC on the
pruned subgraph returned by EAP. We ran EAP
first, then ACDC on the resulting subgraph for the
Docstring task, varying pruning thresholds for EAP
and ACDC independently. Figure 6 compares the

410

3 2 1 0 1 2 3 4 5 EAP

2

1

0

1

2

Ac
tiv

at
io

n
Pa

tc
hi

ng
Docstring Logit Diff change when Ablating Edges

Edge in circuit
Edge not in circuit
Line of Best Fit:
y = 0.531x + -0.049;
 R^2: 0.27

(a) Distribution of attribution scores for edges from activation
patching and attribution patching. Circled: outlier EAP point
studied in Figure 5b.

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation towards corruption

0

1

2

3

4

Ch
an

ge
 in

 D
oc

st
rin

g
Lo

gi
t D

iff

Clean edge
Corrupted edge

Input to L1H4K
EAP linear approximation
Interpolated activation patching
EAP value

(b) Visualizing the rightmost point in Figure 5a. Note that
corrupting this edge (surprisingly) slightly increases the logit
difference on the Docstring task (higher logit difference is
better). However, EAP overestimates how large this increase
is.

Figure 5: Visualizing Edge Attribution Patching.

TPR and FPR for the combined methods with the
ROC curve of EAP only. The combined meth-
ods show increased performance compared to EAP
only.

Finally, one further limitation of this research
is that the metrics used for interpretability do not
precisely capture meaningful human understand-
ing. Recovering a subgraph that humans previously
recovered is limited because i) we can’t evaluate
this metric for interpretability tasks that we don’t
yet understand and ii) human-found circuits are im-
perfect, increasing the noise in this measurement.

6 Conclusion

We provide evidence that Edge Attribution Patch-
ing (EAP) outperforms ACDC in identifying cir-
cuits while being substantially faster to compute.
This result is surprising, as EAP is an approxima-
tion for activation patching, the method applied by

Figure 6: Comparing statistics of the combined EAP +
ACDC methods with EAP only. The inset shows a zoom
to the significant area of the statistics of the combined
method.

ACDC. However, running ACDC on the prepruned
subnetwork found by EAP can improve the identi-
fication of relevant edges. Therefore, we suggest
future circuit discovery experiments to run EAP
first and then apply ACDC.

References

Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John V. Guttag. 2020. What is the
state of neural network pruning? In Proceedings
of Machine Learning and Systems 2020, MLSys 2020,
Austin, TX, USA, March 2-4, 2020. mlsys.org.

Steven Cao, Victor Sanh, and Alexander Rush. 2021.
Low-complexity probing via finding subnetworks. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 960–966. Association for Computational Lin-
guistics.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. 2023. Towards automated circuit discovery
for mechanistic interpretability. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread.

411

https://proceedings.mlsys.org/book/296.pdf
https://proceedings.mlsys.org/book/296.pdf
https://doi.org/10.18653/v1/2021.naacl-main.74
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2304.14997
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

Javier Ferrando and Elena Voita. 2024. Information flow
routes: Automatically interpreting language models
at scale. Preprint, arXiv:2403.00824.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. arXiv preprint.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. Preprint, arXiv:2305.00586.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov.
2024. Have faith in faithfulness: Going beyond cir-
cuit overlap when finding model mechanisms. arXiv
preprint arXiv:2403.17806.

Stefan Heimersheim and Jett Janiak. 2023. A circuit for
Python docstrings in a 4-layer attention-only trans-
former.

Evan Hubinger. 2020. An overview of 11 pro-
posals for building safe advanced ai. Preprint,
arXiv:2012.07532.

János Kramár, Tom Lieberum, Rohin Shah, and Neel
Nanda. 2024. Atp*: An efficient and scalable method
for localizing llm behaviour to components. arXiv
preprint arXiv:2403.00745.

Tom Lieberum, Matthew Rahtz, János Kramár, Neel
Nanda, Geoffrey Irving, Rohin Shah, and Vladimir
Mikulik. 2023. Does circuit analysis interpretability
scale? evidence from multiple choice capabilities in
chinchilla. Preprint, arXiv:2307.09458.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2018. Learning sparse neural networks through l0
regularization. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 14014–14024.

Neel Nanda. 2023. Attribution patching: Activation
patching at industrial scale.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability. In
The Eleventh International Conference on Learning
Representations.

Chris Olah. 2022. Mechanistic interpretability, vari-
ables, and the importance of interpretable bases.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel
Goh, Michael Petrov, and Shan Carter. 2020. Zoom
in: An introduction to circuits. Distill.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Judea Pearl. 1995. Causal diagrams for empirical re-
search. Biometrika, 82(4):669–688.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
Huang, Yaron Singer, and Stuart Shieber. 2020.
Causal mediation analysis for interpreting neural nlp:
The case of gender bias. Preprint, arXiv:2004.12265.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping
Wang. 2023. A survey on model compression for
large language models. Preprint, arXiv:2308.07633.

412

https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2403.00824
https://arxiv.org/abs/2106.02997
https://arxiv.org/abs/2106.02997
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://arxiv.org/abs/2012.07532
https://arxiv.org/abs/2012.07532
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2307.09458
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://arxiv.org/abs/2308.07633
https://arxiv.org/abs/2308.07633

A EAP Subnetworks

<m10>

<resid_post>

<a10.10>

<a11.10>

<a10.7><a10.6> <a10.3> <a10.1> <a10.0> <a10.2>

<m0>

<a9.9> <m9>

<a11.2>

<a5.5> <a5.9><m5>

<m4>

<m1>

<m3> <a3.0>

<a7.9><m7>

<m6><a6.9>

<m2> <a2.11>

<a0.1><a0.10>

<a8.10>

<a0.5>

<a9.8> <a9.7><a9.6>

<a8.6>

<a7.1>

<a6.6>

<a5.6>

<a4.11><a4.7> <a4.3><a4.4>

<a3.7><a3.3> <a3.4>

embed

<m8>

<a7.3>

<a6.0>

<a2.9> <a2.2>

<a1.4>

<a2.2> <a2.0>

<a3.6><a3.0>

<a1.5> <a1.2> <a1.0>

embed

<a0.5><a0.0><a0.1> <a0.6><a0.3><a0.2><a0.7><a0.4>

<a2.5> <a2.3>

<a3.7>

<resid_post>

<a7.10> <m7>

<resid_post>

<m8>

<m9>

<a8.10>

<m2>

<m3>

<a9.1>

<a6.9><a6.1>

<m1>

<m11>

embed

<m0> <a0.1>

<m10> <a10.7>

<m4>

<m5> <a5.8>

<a8.8>

<a0.5> <a0.10>

<a8.11>

Figure 7: Resulting subnetworks after EAP at the given thresholds: (Top) IOI Subnetwork, Threshold=0.077;
(Middle) Docstring Subnetwork, Threshold=0.244; (Bottom) Greater-Than Subnetwork, Threshold=0.009.

413

B Distribution of EAP Attribution Scores

3 2 1 0 1 2 3 4

Change in Logit Difference

100

101

102

103

Lo
g

Co
un

t

Histogram of Edge Scores (Docstring Task)
In Docstring: mean=-0.6777, std=0.8054
Not In Docstring: mean=0.0170, std=0.2127

(a) Distribution of Attribution Scores for the Docstring Task

0.05 0.00 0.05 0.10 0.15 0.20
Change in Logit Difference

100

101

102

103

104

Lo
g

Co
un

t

Histogram of Edge Scores (Greaterthan Task)
In Greaterthan: mean=0.0087, std=0.0270
Not In Greaterthan: mean=0.0000, std=0.0022

(b) Distribution of Attribution Scores for the Greater-Than Task

Figure 8: Distribution of Attribution Scores for the Docstring and Greater-Than tasks

C Further investigation into combining EAP with ACDC

Figure 9: Youdens-J statistic (maximum TPR minus FPR value) for combining EAP and ACDC methods on the
docstring task. We applied ACDC to the pruned subgraph returned by EAP.

D Further failures of attribution patching approximation

In Figure 10 we show further cases where in the docstring task attribution patching can be misleading.
These cases all involve an edge that comes from the model’s embeddings (positional and tokens). Our
interpretation is that weighted averages of embeddings are anomalous inputs to the model and cause the
concave change in docstring logit diff which doesn’t occur when edges ae between non-embedding model
components.

414

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation towards corruption

0.0

0.5

1.0

1.5

2.0

2.5

Ch
an

ge
 in

 D
oc

st
rin

g
Lo

gi
t D

iff

Clean edge Corrupted edge

Input to L3H0K
EAP linear approximation
Interpolated activation patching
EAP value

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation towards corruption

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ch
an

ge
 in

 D
oc

st
rin

g
Lo

gi
t D

iff

Clean edge Corrupted edge

Input to L3H6K
EAP linear approximation
Interpolated activation patching
EAP value

Figure 10: Visualizing Edge Attribution Patching in two further cases where the concave activation patching curve
means the linear fit is poor.

E Edges Roles in IOI

We further explore the attribution scores for the IOI circuit. The IOI circuit is comprised of different
attention head classes such as Induction heads, S-Inhibition heads, etc. (Wang et al., 2023). Figure 11
shows the distributions of scores stratified by the roles of the edges. The edge roles are defined according
to the role of their origin node. While edge roles such as Previous Token, Duplicate Token, Induction,
and S-Inhibition edges have attribution scores centered around zero, we see a bias in edge scores given to
name mover and negative name mover edges. As the name mover edges are directly responsible for the
model outputting the indirect object, the attribution scores are largely negative since ablating these edges
removes the model’s ability to output the indirect object, lowering the logit difference. Similarly, the
negative name movers have attribution scores that are largely positive since ablating these edges improves
the logit difference. This matches the intuitive function of the edges.

0.2 0.1 0.0 0.1 0.2
Change in Logit Difference

100

101

Lo
g

Co
un

t

Previous Token Edge Scores (IOI Task)

mean=0.0021, std=0.0819

0.1 0.0 0.1 0.2 0.3
Change in Logit Difference

100

101

Lo
g

Co
un

t

Duplicate Token Edge Scores (IOI Task)

mean=0.0001, std=0.0584

0.4 0.2 0.0 0.2 0.4
Change in Logit Difference

100

101

Lo
g

Co
un

t

Induction Edge Scores (IOI Task)

mean=-0.0117, std=0.0975

0.15 0.10 0.05 0.00 0.05
Change in Logit Difference

100

2 × 100

3 × 100

4 × 100

6 × 100

Lo
g

Co
un

t

S-inhibition Edge Scores (IOI Task)

mean=-0.0224, std=0.0457

0.0 0.2 0.4 0.6 0.8 1.0
Change in Logit Difference

10 1

100

101

Lo
g

Co
un

t

Negative Name Mover Edge Scores (IOI Task)

mean=0.3110, std=0.3851

1.5 1.0 0.5 0.0
Change in Logit Difference

100

101

Lo
g

Co
un

t

Name Mover Edge Scores (IOI Task)

mean=-0.0909, std=0.2849

Figure 11: Distribution of Attribution Scores for each Edge Role in the IOI Task.

415

F Only one backwards pass is required for EAP

Note: it may be easier to understand our implementation https://github.com/Aaquib111/
edge-attribution-patching/blob/3702573/utils/prune_utils.py#L249 rather than read this ex-
planation. Alternatively, this derivation uses essentially the same arguments as Nanda (2023) 4 though
with an updated codebase.

There are only two types of edges iterated over in ACDC: i) residual edges where the result is added at
its endpoint, and ii) edges between the residual stream and the query, key and value calculations. Clearly
for all edges like ii) we can compute the gradient terms in ?? in one backwards pass.

Interestingly, for all ∆eL terms where e is a type i) edge (i.e added at the endpoint), we only need
calculate the gradient with respect to the endpoint of the edge! For example, suppose we’re calculating the
effect of L0H0 on L1H0Q. If we represent the input to L1H0Q as a node V in the computational graph
then

∂

∂eclean
L(xclean| do(E = eclean)) =

∂

∂vclean
L(xclean| do(V = vclean)) (2)

due to how V is just the sum of all the edges entering V . This allows efficient calculation of all the
∆eL values since gradients with respect to nodes in computational graphs are calculated by default in
backwards passes.

4Specifically, this section: https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#
how-to-think-about-activation-patching=:~:text=axes%20of%20variation.-,Path%20patching,-The%20core%
20intuition

416

https://github.com/Aaquib111/edge-attribution-patching/blob/3702573/utils/prune_utils.py#L249
https://github.com/Aaquib111/edge-attribution-patching/blob/3702573/utils/prune_utils.py#L249
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#how-to-think-about-activation-patching=:~:text=axes%20of%20variation.-,Path%20patching,-The%20core%20intuition
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#how-to-think-about-activation-patching=:~:text=axes%20of%20variation.-,Path%20patching,-The%20core%20intuition
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#how-to-think-about-activation-patching=:~:text=axes%20of%20variation.-,Path%20patching,-The%20core%20intuition

