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Abstract
Pretrained natural language processing (NLP)
models have achieved high overall perfor-
mance, but they still make systematic errors.
Instead of manual error analysis, research on
slice detection models (SDMs), which au-
tomatically identify underperforming groups
of datapoints, has caught escalated attention
in Computer Vision for both understanding
model behaviors and providing insights for
future model training and designing. How-
ever, little research on SDMs and quantitative
evaluation of their effectiveness have been
conducted on NLP tasks. Our paper fills
the gap by proposing a benchmark named
‘‘Discover, Explain, Improve (DEIM)’’ for
classification NLP tasks along with a new
SDM Edisa. Edisa discovers coherent and
underperforming groups of datapoints; DEIM

then unites them under human-understandable
concepts and provides comprehensive eval-
uation tasks and corresponding quantitative
metrics. The evaluation in DEIM shows that
Edisa can accurately select error-prone data-
points with informative semantic features that
summarize error patterns. Detecting difficult
datapoints directly boosts model performance
without tuning any original model parameters,
showing that discovered slices are actionable
for users.1

1 Introduction

While deep learning models (Kenton and
Toutanova, 2019; Liu et al., 2019; Clark et al.,
2020, inter alia) achieve high overall performance
on many tasks, they often display systematic
errors (Kayser-Bril, 2020; Stuart-Ulin, 2018;
Hamilton, 2018) correlated with biases, chal-
lenging data points, and data collection issues.
Investigating these errors and their associated
features is crucial for understanding models’

1Code and benchmark are available here: https://
github.com/Wenyueh/DEIM.

strengths and weaknesses. Although manual error
analysis is typically employed for identifying
biases and erroneous behaviors, its efficiency
and quality are limited. Consequently, automatic
slice detection models (SDMs) are motivated to
streamline the analysis process by identifying
systematic errors in any trained machine learning
model (Eyuboglu et al., 2022; Ribeiro et al., 2020,
2016; Wu et al., 2021), based on the observation
that representations of error instances may share
features and thus similar to each other.

In SDMs, a slice refers to a set of datapoints
sharing a specific attribute. An error slice is a
slice characterized by low accuracy (Eyuboglu
et al., 2022). Identifying these error slices serves
three primary purposes: (1) locating error-prone
datapoints to enable direct prediction adjustments,
(2) gaining insights into model behavior to fos-
ter better comprehension and interpretation, and
(3) guiding additional model training through
strategies such as slice-specific modeling, data
augmentation, and active learning. Therefore, an
effective slice detection model should (1) accu-
rately locate error-prone data points, (2) offer
coherent error slices which help yield intelligible
error-correlated features, and (3) enhance model
performance when complemented with suitable
tools.

In this study, we introduce a comprehensive
benchmark that assesses SDMs with three mod-
ules: namely, Discover, Explain, and Improve,
each of which corresponds to a point previously
discussed. We also propose a new SDM Edisa
to serve as a baseline on the benchmark. The us-
age of Edisa and the evaluation pipeline of the
benchmark DEIM are depicted in Figure 1. Here
we briefly introduce the three modules.

Discover: This module utilizes a tuned SDM
to detect error-prone datapoints on any unlabeled
datasets for a specific trained NLP model denoted
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Figure 1: An SDM (Edisa) takes a trained model M and a labeled dataset as inputs. It is tuned on inputs,
predictions, and labels. The tuned SDM generates multiple low-performing slicing functions such as ψ1 and ψ2.
Applying the SDM on any unlabeled dataset will group the datapoints based on slicing functions. The Discover
module collects error-prone datapoints; The Explain module assigns features to each error slice, and the Improve
module enhances model performance. Here, it simply flips the predictions of identified error-prone datapoints.

as M. The evaluation of the discovery capabil-
ity is straightforward, which verifies whether the
located error-prone datapoints are indeed mis-
predicted by M. In the example in Figure 1,
one sentence classified to ψ1 and three sentences
classified to ψ2 are deemed as error-prone.

Explain: This module employs linguistic tools
to articulate why a model fails on a given er-
ror slice, consolidating the reasons into human-
comprehensible concepts. For each identified
error slice, it discerns linguistic features that oc-
cur substantially more often within the slice. These
features potentially elucidate why the model in-
accurately predicts these data points. In Figure 1,
sentences in ψ1 all contain gerund (verbal ending
in -ing that functions as a noun) as sentence sub-
ject, indicating that it is likely to be the reason
why these datapoints are mispredicted. In order
to assess the cohesiveness of the discovered error
slices, we evaluate measures such as homogeneity
and completeness of each slice with respect to
their error-correlated features.

Improve: This module showcases how model
improvement is realized based on discovered error
slices utilizing three techniques: selective predic-
tion (Varshney et al., 2022b,c), flipping, and active
learning. For instance, as shown in Figure 1, we in-
vert the prediction for each identified error-prone
data point. These three model improvement meth-
ods also serve as external evaluations of SDMs. To
verify the usefulness of the discovered error slices,

we examine whether the model’s performance
escalates after implementing these techniques.

In the three-module benchmark DEIM, each
module concentrates on one specific application
of an SDM: (1) detection of error-prone data
points, (2) interpretability of error slices, and (3)
improvement of model performance. Each mod-
ule provides evaluation tasks with the necessary
tools and quantitative metrics. Each module incor-
porates evaluation tasks equipped with essential
tools and quantitative metrics. Experimental re-
sults on Edisa indicate that it can effectively
identify error-prone data points in unlabeled
datasets and precisely detect error-correlated fea-
tures, which contribute directly to enhanced model
performance.

The paper is organized as follows: Section 2
discusses recent work on slice detection mod-
els; Section 3 introduces the model structure of
Edisa model. Section 4 presents the details of the
DEIM benchmark and all relevant tools. Section 5
presents experiment results and relevant ablation
studies. Section 6 concludes this paper.

2 Related Work

Explainable model predictions are crucial in var-
ious research areas. Discovering error-correlated
features in datapoints both increases model per-
formance and delivers insights into future model
design. In Computer Vision (CV), research has
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been reported to use learned input representa-
tions to identify semantically meaningful slices
where errors are made in prediction (Eyuboglu
et al., 2022; d’Eon et al., 2022; Yeh et al., 2020;
Sohoni et al., 2020; Kim et al., 2019; Singla
et al., 2021). Eyuboglu et al. (2022) recently
proposed the SOTA automatic error detection
method DOMINO. In NLP, task-specific auto-
matic error analysis research has been conducted
on tasks such as document-level information ex-
traction (Das et al., 2022), coreference resolution
(Kummerfeld and Klein, 2013), and machine
translation (Popović and Ney, 2011). There is also
extensive research conducted on different model
evaluations to see whether models make erroneous
datapoints in certain types of noising datapoints
(Belinkov and Bisk, 2017; Rychalska et al., 2019)
or adversarial datapoints (Ribeiro et al., 2018;
Iyyer et al., 2018). Another line of work including
Swayamdipta et al. (2020), Xu et al. (2020), and
Varshney et al. (2022a) focuses on evaluating the
model-independent difficulty level of datapoints.
Recently, Rajani et al. (2022) introduced an in-
teractive visualization tool for underperforming
slices using token-level features.

However, as far as we know, there has not
been a comprehensive evaluation benchmark that
circumvents all the aspects of SDM in NLP. There-
fore in this project, we contribute to the research
area by designing a benchmark DEIM for all clas-
sification tasks: It provides (1) task-independent
comprehensive linguistic feature benchmark for
potential explanations, (2) quantitative experi-
ments for both error slice quality and error-prone
datapoints detection efficacy in unlabeled datasets,
and (3) corresponding metrics that facilitate future
development. We also propose a new SDM model
Edisa which performs fairly well to serve as the
SDM baseline for DEIM benchmark in NLP field.
Its simple structure and promising results show a
good prospect of this field.

3 Edisa Model

The Edisa model is a new model that we proposed
for slice detection in NLP. This section describes
the model structure, training objective, and in-
ference procedure of Edisa. Subsequently, we
compare this model with the current state-of-the-at
SDM model DOMINO (Eyuboglu et al., 2022) to
underscore why such model structure design is
necessary.

In Edisa, we posit the existence of a set of k
interpretable slices, each distinguished by one or
more crucial features that differentiate the slice
from other data points. Edisa specifically fo-
cuses on error-correlated features, that is, features
co-occurring with incorrect predictions. Thus, for
the same task and dataset, the set of features and
the k slices may vary with respect to different NLP
models. The objective of an SDM is to identify
these k slices for a trained M in an unsupervised
manner. Ideally, the discovery of these k slices re-
quires a sufficiently large dataset where both input
information and model prediction information are
accessible. We mimic this setting by providing a
labeled validation dataset, aiming to identify the
k slices within it.

To formally introduce the model, Edisa can be
seen as a function g that takes in a trained NLP
model M and a labeled dataset D to generate k
slicing functions {ψi}i=k

i=1 :

g(M,D) = {ψi : D×M → {0, 1} | 1 ≤ i ≤ k}
(1)

3.1 Edisa’s Model Structure

Edisa is an Error-distance-aware multivariate
Gaussian mixture model that models the data-
point representation, error-distance, and model
prediction (e.g., confidence scores in classification
tasks). The observations of one datapoint from a
model M include three components: {Z,E,Y},
where Z is an embedding representation, Y is
predicted probabilities or confidence scores from
the model, and error-distance E is the distance
between the one-hot tensor of the gold label Y
and Y:

E = Y − Y (2)

For each datapoint, Z encodes the task-relevant
semantic information; E encodes both label in-
formation and confidence information, which
represents whether the prediction is wrong, to
what extent it deviates from the gold label, and
how much change is still required to make a correct
prediction;Y encodes the confidence score, which
is added to the model to control the weights of
label information and of confidence information.2

2Future work can replace confidence with calibrated con-
fidence to improve the model (Yu et al., 2011; Guo et al.,
2017; DeVries and Taylor, 2018; Kumar et al., 2018, inter
alia.), since calibrated confidence usually presents a better
probability estimate of the likelihood for a datapoint to be
categorized in some class.
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Figure 2: Model structure.

We perform PCA on representations to filter out
redundant information before applying the SDM.
Figure 2 illustrates the model structure.

The generative story of the Edisa model is
as follows: In order to generate all the observa-
tions of one datapoint, one slice Sj is first drawn
from a categorical distribution with parameters
θ. Then, the embedding Z, the error-distance
E and model prediction Y are drawn from
slice-specific Gaussian distributions with pa-
rameters {μZ

j ,Σ
Z
j }, {μE

j ,Σ
E
j }, and {μY

j ,Σ
Y
j },

respectively.

Sj ∼ P (S; θ)

Z|Sj ∼ N (μZ
j ,Σ

Z
j )

E|Sj ∼ N (μE
j ,Σ

E
j )

Y|Sj ∼ N (μY
j ,Σ

Y
j ) (3)

For each datapoint d, the joint likelihood of slice
Sj and the observations of d is a weighted product
of the likelihoods from all distributions in the
model with weights γ, λE , λY on the Gaussians:

L(d, Sj) = P (Sj)P (Zd|Sj)
γP (Ed|Sj)

λEP (Yd|Sj)
λY

(4)

Given the joint likelihoods, the conditional prob-
ability of slice assignment P (Sj |d) for the
datapoints can be computed as:

P (Sj |d) =
L(d, Sj)

Σj=k
j=1L(d, Sj)

∝ L(d, Sj) (5)

Semantic information in the embedding, the
error-distance, and the model predictions together
determine the slice distribution. Thus datapoints
that share some similar semantic features with
the same gold label and similar model predic-
tions are encouraged to be clustered into one slice.
Given the joint likelihood, each slicing function
ψj is defined such that ∀d ∈ D, ψj(d) = 1 if and
only if:

argmaxiL(d, Si) = j (6)

3.2 Train
The model parameters are estimated with
Expectation-Maximization by maximizing the
sum of log-likelihood of all datapoints d ∈ D in
each slice Sj for j ∈ {1, . . . , k}:

L(D) = Σ
i=|D|
i=1 log Σj=k

j=1L(di, Sj) (7)

in which the assignment likelihood and the model
parameters are estimated iteratively. Edisa is tuned
using the embeddings, error-distances, and confi-
dence scores from the validation dataset of a task
after M has been trained on the training dataset.

A slice Sj is defined as an error slice, denoted
as Se

j if the accuracy of {d ∈ D|d ∈ Sj} <
δ for some threshold δ ∈ R. We call slicing
functions corresponding to error slices as error
slicing functions, denoted as ψe

j corresponding
to Se

j .

3.3 Inference
For inference, we apply the tuned Edisa to test
datasets T where gold labels are unknown to the
model. Since gold label information is not avail-
able, the error-distance needs to be marginalized
over potential label values. Thus the joint like-
lihood of a test datapoint t ∈ T and slice Sj

is computed as below, where E′
t ranges over all

possible E values:

L(t, Sj) =P (Sj)P (Zt|Sj)
γ(ΣE ′

t
P (E′

t|Sj)
λE )

· P (Yt|Sj)
λY (8)

Then for each datapoint t, ψj(t) = 1 if and
only if

argmaxiL(t, Si) = j (9)

An unlabeled datapoint t is determined to be
error-prone if ψe

j (t) = 1 for some j ∈ {1, . . . , k}.

3.4 Comparison with DOMINO
The difference between Edisa and DOMINO has
notable empirical effects while theoretically nu-
anced. In Edisa, all distributionsZ|Sj , E|Sj ,Y|Sj

are continuous and thus modeled by Gaussian
distributions. This is enabled by converting the
discrete Y into a continuous E, which still pre-
serves the label information. In DOMINO, only
the distribution of Z|Sj is modeled as Gaussian,
while both Y |Sj and Y|Sj are treated as categor-
ical distributions because Y is a discrete variable
and Y is usually treated in the same manner as
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Y . Consequently, Edisa comprises an array of
Gaussian distributions, whereas DOMINO com-
bines Gaussian and categorical distributions. This
subtlety results in different levels of empirical dif-
ficulty during hyperparameter searching: a model
consisting only of Gaussian distributions allows
a much larger range of effective hyperparameters
that can achieve good performance in the eval-
uation benchmark across all three SDM facets,
especially in the Discover and Improvement parts.
Thus empirically Edisa is much easier to tune and
can obtain better performance. More detailed ex-
perimental results and comparative analysis will
be discussed in Section 5.

4 DEIM Benchmark

The DEIM Benchmark evaluates the performance
of a tuned SDM. This section elaborates on the
specifics of the three modules within the DEIM

Benchmark: (1) the process of error-prone data
point detection (Discover), (2) the manner in
which explanations are delivered (Explain), and
(3) the approach to model improvement (Im-
provement), and the evaluation metrics for each
module.

4.1 Discover: Error-prone
Datapoints Detection

In the Discover module, the objective is to as-
certain if an SDM, after recognizing the error
patterns present in the validation dataset, can ac-
curately identify datapoints that are challenging
for M. As such, we deploy a tuned SDM on unla-
beled datasets, anticipating it to correctly pinpoint
error-prone datapoints. The details of this process
are elaborated in the preceding Inference subsec-
tion. To evaluate its efficacy, we simply resort to
determining whether the selected datapoints are
indeed mispredicted by M.

4.2 Explain: Slice Feature Detection

In the Explain module, the objective is to make
errors more interpretable as well as actionable.
Towards this end, we find features that signifi-
cantly correlate with an error slice as explanations.
Such features can be surface string features such
as specific tokens, linguistic features such as
part-of-speech, and pragmatic indicators. Note
that the Explain module seeks to interpret errors,
which necessitates knowing which datapoints are

index input sentence pred label
1 It is Kim on whom Sandy relies on. T F
2 It is Kim whom Sandy relies. T F
3 It is on Kim on whom Sandy relies. T F

4 That’s the most kind answer that I ever heard. T F
5 That’s a most kind answer that I ever heard. T F
6 That’s a kindest answer that I ever heard. T F

Table 1: Examples on CoLA dataset.

Feature Type Features
surface string
features length, word frequency in corpus, foreign word

syntactic
features

negation, reflexive, aspect, tense,
voice, comparison, echo question, multiple modal,
multiple prepositions, NP-subordinate clause,
quantifier, long-distance dependency,
tree depth, extra infinite with modal,
how-question, why-question,

pragmatic
features

age, gender, nationality, physical appearance,
race/ethnicity, religion, social economic status,
sexual orientation, toxicity,
valency sentiment (positive/negative/neutral),
arousal (excited/calm/neural),
dominance (dominant/subordinate/neutral),
number of people, number of organization,
number of location, number of money,
date, product, ordinal number

Table 2: Linguistic feature benchmark.

indeed mispredicted. As such, this process is con-
ducted on the validation dataset where Edisa is
tuned on.

Table 1 displays some instances of system-
atic errors in the CoLA dataset,3 a dataset for
the grammaticality judgment task, that are eas-
ily interpretable. Sentences 1–3 are incorrectly
predicted due to inappropriate preposition usage.
The grammatically correct version would be ‘‘It
is Kim on whom Sandy relies.’’ Similarly, sen-
tences 4–6 are mispredicted due to incorrect usage
of superlatives and the correct would be ‘‘That’s
the kindest answer that I ever heard.’’

In order to elucidate possible explanations for
systematic errors, we have constructed a feature
benchmark consisting of 38 unique features, de-
noted as F . Each feature is associated with a
corresponding function, denoted as f . This bench-
mark facilitates the intrinsic evaluation of slices
pinpointed by an SDM.

Table 2 presents all features grouped into three
types in the benchmark: surface string features,
syntactic features, and pragmatic features. Sur-
face string features include features that can be
detected based on surface strings such as sen-
tence length, word frequency in the corpus, and

3https://nyu-mll.github.io/CoLA/.
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Feature Explanation

Reflexive
sentences containing reflexives (myself/
themselves/each other and etc) such as
‘‘*John believes that Mary saw himself.’’

Aspect
sentences using perfect aspect such as
‘‘The men would have been all working.’’

Tense sentence using past tense

Voice
sentences using passive voice such as
‘‘A mile to work was run by him.’’

Comparison
sentences containing comparative or superlative
such as ‘‘He’s more reliable a man.’’

Multiple Modal sentences that wrongly contain multiple modals
such as ‘‘*Kim must will bake a cake.’’

Multiple
preposition

sentences with many prepositions such as
‘‘This girl in the red coat will put a picture of
Bill in the mailbox and on your desk before
tomorrow.’’

NP-subordinate
clause

sentences containing NP-subordinate clauses
such as ‘‘This is the book that we had read.’’

Quantifier
sentences containing numerals, any, all, most
and etc such as ‘‘*Almost any owl hunts mice.’’

Long distance
dependency

sentences containing long syntactic dependencies
such as ‘‘The video which I thought John told us
you recommended was really terrific.’’

Tree depth

sentences whose largest tree depths in their
constituency parse trees are exceptionally
large such as ‘‘The pen of the girl’s father’s
uncle’s wife is beautiful.’’

Extra infinite
after modal

sentences that wrongly contain ‘‘to’’ after
modals such as ‘‘*John can to kick the ball.’’

Table 3: Syntactic feature examples.

whether the sentence contains foreign words. Syn-
thetic features require a dependency parser or a
constituency parser to detect, such as negation,
reflexive, aspect, and so on. Pragmatic features
include age, gender, nationality of people men-
tioned in the sentence, etc., detected by models
trained on the corresponding task. Table 3 uses
examples in the CoLA dataset to illustrate some
syntactic features.

Each feature F corresponds to a feature func-
tion f : If F is binary such as negation and echo
question, then f is a characteristic function such
that f(sentence) = 1 indicates that the sentence
contains the feature; if F is non-binary such
as multiple-preposition and long-distance depen-
dency, then f(sentence) = d ∈ R indicating that
the sentence has d-degree of the feature.

To evaluate whether an SDM is able to group
datapoints sharing the same error-correlating fea-
tures, we design two feature discovery tasks:
Synthetic Feature Detection and Real Dataset
Feature Detection, evaluating whether an SDM
is able to group datapoints sharing the same
error-correlating features.

The first task evaluates the feature discov-
ery capability by using synthetic datasets where
each dataset contains one gold error-correlated

feature. A synthetic dataset with a feature F
is generated by mixing a set of wrongly pre-
dicted datapoints featuring F : Dtarget = {d ∈
D|M(d) 
= label(d) and f(d) = 1} (assuming
f is a characteristic function here) and a set of
randomly selected datapoints from the original
dataset with the same number. Then we fit an
SDM on the synthetic dataset to see how many
target datapoints in Dtarget can be grouped into
error slices and then we can compute recall,
precision, and F1.

The second task is to detect features in real
datasets, which also characterizes how SDM can
be utilized for general model analysis. For each
datapoint, we apply all feature functions to identify
the set of features that it exhibits. Then for each
error slice, we leverage significance testing to an-
alyze which features are distributed significantly
differently between in-slice and out-of-slice data.
For each feature’s in-slice and out-of-slice dis-
tributions, if the p-value from a permutation test
is smaller than 0.05 and the mean of the in-slice
distribution is larger than that of the out-of-slice
distribution (as their occurrences usually compli-
cate sentence structures), this feature is strongly
correlated with erroneous predictions.

Both tasks aim at finding the error-correlated
features. These interpretable features describe
these datapoints and provide insights into the
behaviors of current models.

4.3 Improve: Downstream Tasks

The final module of the benchmark assesses
the SDM’s capacity to enhance model perfor-
mance. Three automated improvement methods
are utilized in this module: selective prediction,
flipping, and active learning. When these tech-
niques are deployed on a tuned SDM, they can
boost model performance if the SDM can identify
an ample amount of informative error patterns
and error-prone datapoints. Consequently, these
methods serve a dual function: demonstrating the
feasibility of automated improvements using SDM
and evaluating the SDM.

4.3.1 Selective Prediction
The selective prediction task aims at point-
ing out which datapoints are error-prone in a
given unlabeled dataset T and rejecting them
from being evaluated. An SDM predicts a data-
point t to be error-prone if t ∈ E where
E = {t ∈ T | ψe

j (t) = 1 where j ≤ k} with
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ψe
j being some error slicing function. It reorders

each t based on error probability P (e = 1|t) of t
defined as below:

P (e = 1|t) = ΣSe∈Se
∗

L(t, Se)

Σj=k
j=1L(t, Sj)

(10)

where Se
∗ is the set of all error slices.

It refrains from evaluating these datapoints one
by one to demonstrate the change of efficacy
of the remaining datapoints. The more efficacy
increases, the better this task is fulfilled.

4.3.2 Flipping
Flipping is a task to directly improve model per-
formance by flipping the prediction of error-prone
datapoints in an unlabeled dataset. If the dataset is
binary, flipping changes its prediction from 1 to 0
or 0 to 1; if the dataset is multi-labeled, we select
a label to flip the predicted label to.

For multi-labeled datasets, for each error-prone
datapoint t, we select the new label as follows: If
the confidence score of t is below some threshold
and ψe

j (t) = 1 for some j, we find the majority of
gold label l in Se in validation dataset and flip t’s
prediction to l; if the confidence of t is above the
threshold, the predicted label remains the same.
The confidence threshold is found with 10% of
the validation dataset used to train the SDM.

For the confidence baseline, the label is flipped
to the next confident label in the corresponding
error slice.

In flipping, the predicted error-prone datapoints
t are also flipped one by one ordered byP (e = 1|t)
as in the selective prediction task.

4.3.3 Active Learning
Active learning is an interactive learning algorithm
that proactively selects examples to be labeled
next from the pool of unlabeled data. Error-prone
datapoints are also points with potential bias and
training with them should promote time and data
efficiency. Thus if an SDM can accurately select
enough error-prone datapoints, simulating active
learning in training time will help the model learn
faster in training. The active learning simulation in
DEIM is implemented as follows: Step 1: Divide
the whole training dataset into a small training
seed set and an extra training data pool from which
more training datapoints can be selected to train
the model on. Step 2: Fit an SDM on the validation
dataset and select error-prone datapoints from
the extra training data pool without using label

information to replicate real-time scenario. Step 3:
Create a new training dataset combining original
training data + selected training data and remove
the selected datapoints from the extra training
data pool. Step 4: Retrain the model on the new
training dataset. Repeat steps 2–4 until the model
converges on the validation dataset.

5 Experiment Result

This section presents experiment results for all
three modules on Edisa. It illustrates how this
benchmark should be used and also demonstrates
that Edisa is able to cluster error datapoints with
similar features and detect error-prone datapoints
accurately.

We apply DEIM on a variety of datasets
in GLUE benchmark (Wang et al., 2019)
and Kaggle dataset Jigsaw:4 CoLA, QNLI,
QQP, SST-2, MNLI, SST-5, Jigsaw-gender,
Jigsaw-racial, Jigsaw-religion. Since GLUE test
dataset labels are not publicly available, we
split the original training dataset into training
and validation, and treat the original valida-
tion dataset as a test dataset. For each dataset,
we train three models based on three widely
used models: BERT-large, RoBERTa-large, and
ELECTRA-large-discriminator with the follow-
ing hyperparameters: {batch size = 32, learning
rate = 1e-4, warm up proportion = 0.1, epochs =
10, gradient clip = 1.0, dropout rate = 0.1}. All
models are trained on one A5000 GPU. To evalu-
ate the performance of DEIM, we apply Edisa on
each of the trained models and evaluate on results
from these models.

5.1 Discover: Experiment Result

In the Discover module, the evaluation of an
SDM’s performance with respect to any model
M is achieved by assessing its efficacy in identi-
fying error-prone datapoints, that is, determining
whether these points are indeed mispredicted by
M. We compare the performance of Edisa with
DOMINO which is the current SOTA slice detec-
tion model, confidence thresholding, and random
sampling.

The hyperparameters for Edisa in the Discover
module are {γ = 0.15, λE = 0.1, λY = 1, PCA
dimension = 128, number of slices = 128} for

4https://www.kaggle.com/competitions
/jigsaw-unintended-bias-in-toxicity
-classification/overview/evaluation.
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NLP model BERT RoBERTa ELECTRA
Method Edisa DOMINO conf rand Edisa DOMINO conf rand Edisa DOMINO conf rand
Metric num eff num eff eff eff num eff num eff eff eff num eff num eff eff eff
CoLA 38 63.16 74 33.78 55.26 21.86 96 60.42 52 32.69 45.83 28.67 6 50.00 61 29.51 50.00 13.82
QNLI 313 60.06 204 41.48 53.04 26.10 348 54.70 464 39.01 45.12 26.67 85 57.65 103 35.92 48.24 8.82
QQP 1728 51.45 2349 42.32 47.23 23.56 652 48.00 1802 41.18 50.92 23.57 152 59.21 3159 35.84 43.42 19.38
SST-2 27 48.15 35 37.14 40.74 21.90 24 54.37 33 42.42 50.00 20.87 36 47.22 29 44.83 41.67 12.01
MNLI 530 61.13 465 55.48 60.94 35.27 441 61.68 975 47.08 62.81 37.23 110 57.27 125 31.20 57.27 13.21
SST-5 667 59.52 783 55.56 56.97 51.45 705 51.91 789 48.92 52.77 46.45 119 60.50 813 49.08 53.78 43.17
J-gender 1160 65.43 1501 70.09 50.17 43.47 1334 65.42 1592 57.67 52.61 44.98 304 32.57 132 31.06 43.75 12.39
J-racial 1049 73.59 1247 66.73 48.62 39.59 1254 72.81 1554 62.36 47.60 41.55 356 43.82 166 35.54 44.66 16.01
J-religion 135 87.41 77 53.25 48.62 17.43 142 43.66 82 48.78 43.66 14.39 166 78.92 121 46.28 54.22 24.39

average N/A 63.32 N/A 50.65 51.28 31.18 N/A 57.00 N/A 46.68 50.15 31.60 N/A 51.16 N/A 37.70 47.28 18.13

Table 4: Efficacy of predicted error-prone datapoints.

all datasets for all models BERT, RoBERTa, and
ELECTRA. For DOMINO, we manually tune
their hyperparameters for the best performance.5

Both sets of hyperparameters are tuned only on
held-out sets in CoLA using BERT models.

Table 4 reports the test dataset results: (1) the
number of error-prone datapoints found and (2)
efficacy, which is defined by

|{t ∈ ESDM |M(t) 
= label(t)}|
|ESDM | (11)

where ESDM is the set of predicted error-prone
datapoints predicted by the SDM.

The efficacy for confidence baseline is com-
puted on |EEdisa| lowest confident datapoints; the
efficacy for random baseline is computed based
on |EEdisa| randomly sampled datapoints.6 Seen
from Table 4, the efficacies of Edisa are almost
always much higher than other baselines and
higher than 50.00%, indicating that it is effective
in discovering datapoints that will be mispredicted
by M.

Among the three types of models BERT-large,
RoBERTa-large and ELECTRA-large-discriminator,
Edisa performs much better in the former two. It
could be because ELECTRA-large-discriminator
already performs very well in all the nine
datasets and Edisa is not able to witness enough
mispredicted datapoints in validation datasets in
tuning time to generalize to test datapoints during
inference.

5The set of hyperparameters is γ = 1, λY = 10, λY =
40 after manual tuning. This is different from the default
hyperparameters provided in Eyuboglu et al. (2022): γ =
1, λY = 10, λY = 10, tuned for feature detection on CV.

6We do not compute confidence baseline and random sam-
pling baseline based on the number of error-prone datapoints
discovered by DOMINO because, in all GLUE datasets,
DOMINO’s efficacy is lower than confidence baseline
efficacy.

dataset number efficacy confidence

Edisa-Y CoLA 78 44.87 41.03
QNLI 306 57.84 53.99

Edisa-E,Y CoLA 73 46.58 43.84
QNLI 285 57.95 54.04

Edisa
CoLA 38 63.16 55.26
QNLI 313 60.06 53.04

Table 5: Ablation study on model structure.

5.1.1 Model Structure Ablation

We study the model structure based on the efficacy
performance on CoLA and QNLI in Table 5. We
compare models with (1) only Y edge (Edisa-Y),
(2) both E and Y edge (Edisa-E,Y), and (3) all
three edges (Edisa).

First, we notice that Edisa-Y detects error-prone
datapoints more accurately than confidence base-
line, indicating that selecting error slices with
a certain range of confidence scores validated
by validation datasets is better than directly
choosing datapoints with the lowest confidence
scores throughout the whole dataset, as effi-
cacy is not always directly related to confidence
score. Edisa-E,Y calibrates confidence scores,
which performs more accurately. Edisa leveraging
representation information selects error-prone dat-
apoints most accurately, indicating that semantic
information provides additional clues on difficulty
levels of datapoints for a given model, which
contributes to error detection.

5.1.2 Validation Size Ablation

We investigate how the size of the validation
dataset, on which Edisa is tuned, impacts the effi-
cacy of the model. Ideally, the larger the validation
size, the more error patterns it potentially covers,
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Figure 3: Efficacy with different sizes of validation.

CoLA QNLI
λE number efficacy conf number efficacy conf
0.01 38 63.16 55.26 285 58.60 54.04
0.05 40 55.00 55.00 266 59.02 53.38
0.2 33 60.61 54.54 346 58.95 51.45
0.5 117 40.17 43.59 1732 36.54 42.67
1 120 40.00 50.00 1705 37.83 43.17

γ number efficacy conf number efficacy conf
0.01 65 37.91 44.62 233 54.09 53.22
0.05 39 46.25 53.85 232 62.93 53.02
0.2 58 50.00 48.28 312 58.65 52.88
0.5 28 42.87 42.87 315 59.37 53.33
1 1 0.00 100.00 111 58.56 51.35

Table 6: Ablation study on the value of λE and γ.

and the better the result. Figure 3 uses the CoLA
and QNLI datasets as examples to present the cor-
relation between validation dataset size and the
model’s efficacy. The x-axis is the ratio of the
validation dataset size to the test dataset size, and
the y-axis is the efficacy. As a reference, the test
dataset for CoLA contains 1043 datapoints, while
that of QNLI contains 5463 datapoints. From the
figures, we can draw the following conclusions:
(1) In general, the larger the validation dataset
used to train the Edisa, the higher the model’s ef-
ficacy. (2) If the validation dataset is smaller than
the test dataset, Edisa’s performance decreases a
lot, especially for CoLA, which has a small test
dataset. Based on this validation result, to ensure
adequate coverage of error patterns, we recom-
mend that the validation dataset be at least twice
the size of the test dataset.

5.1.3 Hyperparameter Sensitivity

We explore different settings of Edisa and
test functions of the following hyperparameters:

weights (λE and γ with λY fixed) and PCA dimen-
sion. We conduct experiments on the BERT-based
model on CoLA and QNLI datasets.

Weights We test different weights with λE ∈
{0.01, 0.05, 0.2, 0.5, 1} and γ ∈ {0.01, 0.05, 0.2,
0.5, 1} separately.

In Table 6: (1) For λE , efficacy is high with
values smaller than 0.5 but decreases with large
values. With largeλE , Edisa overfits on the valida-
tion dataset because there is a discrepancy between
the training and the testing modeling scheme:
When fitting an SDM on the validation dataset,
the model leverages all information of input repre-
sentations, error-distance, and model predictions;
while in the test stage, it does not have access to
the ground truth information. Thus focusing on
error-distance information when tuning on valida-
tion misleads the model and negatively impacts
the performance of the test dataset. (2) For γ, it im-
pacts negatively on efficacy with both small and
large values. Large values are harmful because
semantic representation does not have a straight-
forward relationship with prediction results for
any given model M. Thus focusing mainly on se-
mantic feature information while neglecting label
and prediction information encourages a flatter
accuracy distribution over slices, and thus it is
more difficult to find high-quality error slices in
validation to fit on the test dataset. Small values
hurt performance may be because they render in-
put representation information to be noise to Edisa
and thus impact the performance negatively.

PCA Dimensions We test PCA dimension =
32, 64, 128, 256, and 1024 (without PCA di-
mension reduction) under different weights of the
embedding. The results are presented in Table 7.
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CoLA QNLI
PCA γ number efficacy conf number efficacy conf
32 0.15 55 52.72 50.91 289 56.04 54.03
64 0.15 78 43.59 41.03 290 60.00 53.79
256 0.15 4 25.00 50.00 297 55.89 54.21
1024 0.15 1 0.00 100.00 229 53.95 53.20

32 0.1 53 37.74 50.94 232 58.18 53.00
64 0.1 23 65.32 60.87 295 60.00 53.90
256 0.1 49 55.11 48.98 323 57.59 52.60
1024 0.1 4 25.00 50.00 229 52.39 53.20

32 0.05 85 45.88 41.18 301 54.17 53.82
64 0.05 66 50.00 45.45 301 60.13 53.82
256 0.05 39 56.41 53.85 298 58.05 54.03
1024 0.05 1 0.00 100.00 235 52.15 53.61

Table 7: Ablation study on PCA dimensions.

For all three γ values, PCA dimensions 64 and
256 work well. Embeddings without PCA dimen-
sion reduction perform much worse: In the CoLA
dataset, it almost completely fails Edisa and Edisa
can discover almost no error-prone datapoints;
In QNLI dataset, the model performs non-trivial
efficacy results but is still worse than when us-
ing other PCA dimensions. Thus in general, we
recommend removing redundant information and
noise by PCA dimension reduction.

Furthermore, we notice that the models using
small dimensions (32) tend to work better un-
der relatively large γ values than small γ values;
the model using large dimensions (256) performs
better with small γ values than with large γ val-
ues. Thus the PCA dimension should be chosen
inversely to γ.

5.2 Explain: Experiment Result

Synthetic Dataset Feature Discovery and Real
Dataset Feature Discovery evaluate how reliably
an SDM can find feature explanations for errors.
In these tasks, DEIM explains slices discovered in
the validation dataset instead of the test dataset be-
cause it is expected to explain why the models fail
on some data points which require access to gold
labels. Therefore a different set of hyperparame-
ters is required: {γ = 0.15, λE = 1, λY = 0.1}.
Both experiment results demonstrate that Edisa
performs better than DOMINO.

Synthetic Dataset Feature Discovery We
perform this experiment on features with a
relatively large number of wrongly predicted dat-
apoints: {length, negation, reflexive, comparison,
NP subordinate, multiple preposition, quantifier,

dataset model avg. precision avg. recall avg. F1

CoLA Edisa 26.04 95.17 40.89
DOMINO 25.98 83.42 39.62

QNLI Edisa 7.83 25.12 11.94
DOMINO 7.32 17.77 10.37

QQP Edisa 7.44 29.33 11.87
DOMINO 7.94 20.73 11.48

SST-2 Edisa 8.68 12.31 10.18
DOMINO 8.06 10.5 9.12

MNLI Edisa 7.59 34.58 12.45
DOMINO 7.88 14.17 10.12

SST-5 Edisa 7.43 56.71 13.14
DOMINO 7.15 48.22 12.45

Jigsaw-gender Edisa 52.38 95.12 67.56
DOMINO 51.96 99.45 68.26

Jigsaw-racial Edisa 29.49 88.36 44.22
DOMINO 29.30 99.30 45.24

Jigsaw-religion Edisa 27.67 95.87 42.96
DOMINO 26.18 88.12 40.37

cross-dataset Edisa 19.40 59.13 29.22
DOMINO 19.08 53.52 28.13

Table 8: Synthetic feature detection result.

hyper-parameter avg. precision avg. recall avg. F1
26.04 95.17 40.89

γ = 0.5 21.78 74.88 33.72
γ = 1 29.91 56.11 35.94

λY = 0 25.19 94.89 35.00
λY = 0.5 24.90 97.13 38.28
λY = 1 23.16 84.34 34.02

Table 9: Ablation study on synthetic feature
detection.

tree depth, long-distance} for GLUE datasets and
{female, male, Asian, Black, White, Latino, Athe-
ist, Buddhist, Christian, Hindu, Jewish, Muslim}
for Jigsaw datasets. We compare Edisa results
with DOMINO results.

Table 8 presents cross-feature average preci-
sion, recall, and F1 for each dataset. In general
Edisa performs better than DOMINO except in
SST-2, where the average F1 of DOMINO result
is +0.02 higher than that of Edisa. Edisa performs
better in recall in all cases and better in precision
in some cases. The last two rows of the table
show the cross-dataset average precision, recall,
and F1. We notice that Edisa performs better than
DOMINO on all metrics, especially recall.

Hyperparameter Ablation We study the effect
of hyperparameters in feature detection-related
tasks on the CoLA dataset, which is a dataset
focusing on grammaticality. Results on the effects
of γ and λY with fixed λE are presented in Table 9.
We noticed that large γ improves precision but
decreases the recall while large λY brings the
reverse effect. γ = 1 and λY = 1 have low
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dataset model feature prop V-measure Homo Comp

CoLA

Edisa 81.25 22.58 13.18 78.80
DOMINO 68.75 15.98 7.77 74.18
Edisa-Z 56.25 24.57 18.55 84.41
Edisa-E 56.25 9.48 5.37 68.47

QNLI

Edisa 50.00 7.11 3.78 60.12
DOMINO 75.00 5.77 2.88 67.07
Edisa-Z 12.50 5.35 2.96 61.00
Edisa-E 50.00 6.99 3.81 57.48

QQP

Edisa 50.00 7.23 3.87 68.31
DOMINO 56.25 16.13 9.94 67.45
Edisa-Z 12.50 15.4 9.30 48.41
Edisa-E 50.00 10.68 3.19 76.15

SST-2

Edisa 50.00 4.68 2.44 57.34
DOMINO 62.50 4.01 1.97 69.46
Edisa-Z 31.25 9.61 4.08 78.61
Edisa-E 50.00 4.08 2.29 47.16

MNLI

Edisa 68.75 17.00 10.12 53.22
DOMINO 62.50 16.09 11.03 54.56
Edisa-Z 50.00 18.51 13.89 46.18
Edisa-E 50.00 15.64 9.42 65.59

SST-5

Edisa 81.25 23.52 14.23 67.78
DOMINO 75.00 19.50 13.64 68.80
Edisa-Z 31.25 23.30 43.79 31.95
Edisa-E 62.50 21.30 16.62 65.33

J-gender

Edisa 100.00 35.94 26.88 54.23
DOMINO 100.00 36.85 26.73 54.42
Edisa-Z 100.00 34.99 27.57 47.87
Edisa-E 100.00 42.3 31.32 52.39

J-racial

Edisa 75.00 22.71 16.54 36.20
DOMINO 100.00 33.44 22.03 63.25
Edisa-Z 100.00 27.09 19.67 53.88
Edisa-E 50.00 37.49 31.26 47.02

J-religion

Edisa 100.00 46.13 41.23 52.35
DOMINO 50.00 33.98 26.72 49.88
Edisa-Z 83.33 38.53 28.30 49.39
Edisa-E 83.33 23.62 23.49 28.79

ave. weighted

Edisa — 21.74 14.69 45.47
DOMINO — 20.30 10.55 43.25
Edisa-Z — 14.12 12.03 30.11
Edisa-E — 13.69 10.45 32.98

Table 10: Real datasets feature detection results.

recall because the former fails to detect feature
Comparison and the latter fails to detect feature
NP sub.

Real Dataset Feature Detection In Table 10,
we report the error slice feature detection re-
sults with surface and syntactic features on GLUE
datasets and pragmatic features on Jigsaw data-
sets. We compare with DOMINO model results,
Edisa using only semantic embedding informa-
tion (Edisa-Z) and that using only error-distance
information (Edisa-E).

Each slice has one or more significant fea-
ture(s) as each datapoint may exhibit one or more
error-prone feature(s). For each slice S, if F is sig-
nificant in S, S is desirable to be as homogeneous
as possible with regard to F as we do not want to

put datapoints with different features in one slice;
S is also desirable to be as complete as possible
for F as we want all error-prone datapoints fea-
turing F to be clustered in one slice. In addition,
we also want to find as many error-correlated fea-
tures as possible. Thus we propose four evaluation
metrics: feature-prop, which is the proportion of
features in the benchmark that are detected to be
significant for some slice; average homogeneity
(Homo), which is the average Homo for each
F per slice featuring F ; average completeness
(Comp), which is the average Comp for each F
per slice featuring F ; and average V-score.7

We compare the performance using the aver-
age weighted (avg. weighted) V-score which is
computed as follows:

average weighted V-score =

Σdataset=Dfeature-propD ∗ V-scoreD
number of datasets

(12)

We notice that Edisa performs the best on all
metrics. Edisa-Z also performs well in homo-
geneity scores but poorly at the completeness
scores, which may be due to the model tends to
cluster all sentences with similar semantic infor-
mation together. Edisa-E performs the worst on
all metrics.

5.3 Improve: Experiment Result
In this section, we use selective prediction, flip-
ping, and active learning tasks to evaluate an
SDM performance externally. For all three tasks,
we compare Edisa with confidence baseline as it is
the second accurate baseline in finding error-prone
datapoints shown in Table 4.

5.3.1 Selective Prediction Result
We evaluate selective prediction performance by
two metrics: proportion and improvement. Pro-
portion is the proportion of total step numbers
where an SDM outperforms the baseline model
in model accuracy. When the metric result is
equal to 50.00%, it means only half of the time
SDM performs better than the baseline and thus
the SDM is no better than the baseline; when it
is higher than 50.00%, then most of the time
the SDM is more effective than the baseline

7For each F and each slice S featuring F , a Homo score
is defined by dividing |SF | defined as |{d ∈ S | M(d) 
=
label(d) and f(d) = 1}| by k; a Comp score is defined by
dividing |SF | by |{d ∈ D | M(d) 
= label(d) and f(d) =
1}|; a V-measure is computed as 2∗Homo∗Comp

Homo+Comp .
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NLP model BERT RoBERTa ELECTRA
Method Edisa DOMINO Edisa DOMINO Edisa DOMINO
Metric C-prop C-imp imp C-prop C-imp imp C-prop C-imp imp C-prop C-imp imp C-prop C-imp imp C-prop C-imp imp
CoLA 100.00 0.40 1.58 16.06 −0.62 0.99 100.00 1.58 3.25 76.92 −0.96 −1.82 66.66 0.00 0.13 40.98 −1.02 0.99
QNLI 100.00 0.45 2.07 3.92 −0.42 0.56 100.00 0.65 1.88 34.70 −0.30 1.15 97.80 0.19 0.86 30.10 −0.26 0.52
QQP 99.83 0.19 1.25 0.85 −0.35 1.16 49.85 −0.05 0.40 0.10 −0.31 0.82 100.00 0.06 0.18 0.22 −0.44 0.83
SST-2 96.30 0.35 0.86 71.43 −0.24 0.66 91.30 0.00 0.87 9.09 −0.60 0.75 69.44 0.24 1.22 75.86 0.12 0.90
MNLI 6.04 0.11 1.48 6.45 −0.40 0.10 31.52 −0.06 1.14 0.92 −1.46 1.08 97.27 0.00 0.49 1.60 −0.32 0.22
SST-5 67.47 1.10 5.06 0.13 −0.70 4.32 26.20 −1.94 4.77 0.25 −1.97 3.90 100.00 0.38 0.96 2.71 −0.57 3.40
Jigsaw-gender 99.66 6.91 9.96 100.00 13.91 18.00 97.67 6.87 11.11 100.00 3.85 9.45 0.96 −1.71 1.18 12.87 −0.58 0.66
Jigsaw-race 100.00 8.19 11.17 100.00 4.46 6.52 100.00 10.56 13.12 98.94 8.72 12.07 20.22 0.00 2.56 13.86 −0.60 0.78
Jigsaw-religion 100.00 0.98 2.53 100.00 0.05 0.86 77.46 0.00 1.31 100.00 0.12 0.87 96.39 1.33 2.88 66.12 0.25 1.33

average 85.48 2.08 4.00 44.32 1.74 3.69 74.89 1.96 4.21 46.75 0.85 3.14 72.08 0.05 1.16 27.15 −0.38 1.07

Table 11: Selective prediction result.

Figure 4: Graphs for selective prediction task using
confidence baseline Edisa model: CoLA, QNLI, SST-5,
Jigsaw-religion. The x-axis is the number of rejected
datapoints; the y-axis is the model efficacy.

model. Improvement is the final efficacy im-
provement compared with the original efficacy.
C-proportion and C-improvement are metrics
that adopt confidence as the baseline model for
comparison.

For the confidence baseline, we reorder the
datapoints by the confidence score from low to
high and rejects the top-|ESDM | datapoints.

Table 11 reports the result on Edisa across
the three models on all datasets: the aver-
age C-proportion is 77.48 (higher than 50.00),
C-improvement is 1.36, and improvement is 3.12,
all demonstrating the advantage of Edisa.

Visualization on the results of four diverse
datasets based on BERT models are pre-
sented in Figure 4: CoLA, QNLI, SST-5, and
Jigsaw-religion, where CoLA and QNLI come
from the GLUE benchmark; SST-5 is a multi-class
dataset, and Jigsaw-religion comes from Jigsaw
dataset. In each figure, the x-axis represents the

number of datapoints rejected and the y-axis rep-
resents the efficacy of the remaining dataset.
They demonstrate the change of efficacy step-
wise comparing Edisa and confidence baseline:
Edisa performs better at almost all steps, show-
ing that it can always pick error-prone datapoints
more accurately.

5.3.2 Flipping Result
The flipping task uses the same metrics as in
the selective prediction task. Notice that SST-5
and MNLI are multi-class datasets: for SST-5,
the validated confidence threshold to flip an
error-prone datapoint is 0.35 for BERT, 0.37 for
RoBERTa, and 0.5 for ELECTRA; for MNLI,
the validated confidence threshold is 0.7 for
BERT, 0.35 for RoBERTa, and 0.5 for ELECTRA.
Based on Table 12, the average C-proportion is
79.83 (above 50.00), average C-improvement is
2.63 and average improvement is 1.84, show-
ing that Edisa is able to improve the model
directly.

Figure 5 contains four graphs of flipping on
RoBERTa models: Edisa performs better on
almost all steps and can indeed help model perfor-
mance on the original test dataset. On the contrary,
the confidence baseline and DOMINO baseline are
not efficacious enough in selecting error-prone
datapoints to improve model performance: the
efficacy performance either holds almost constant
or decreases.

5.3.3 Active Learning Result
In the active learning simulation, we adopt
three other simulations as baselines: DOMINO,
confidence learning, and random learning. Con-
fidence learning selects a certain number of
low-confidence extra datapoints to train per
step; random learning randomly selects a certain
number of extra datapoints to train per step.
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NLP model BERT RoBERTa ELECTRA
Method Edisa DOMINO Edisa DOMINO Edisa DOMINO
Metric C-prop C-imp imp C-prop C-imp imp C-prop C-imp imp C-prop C-imp imp C-prop C-imp imp C-prop C-imp imp
CoLA 100.00 0.58 0.86 14.81 −1.15 −2.68 100.00 2.68 2.01 76.92 −0.96 −1.82 66.66 0.00 0.00 39.3 −2.11 −2.49
QNLI 100.00 0.81 1.13 3.43 −0.84 −0.64 100.00 1.21 0.57 34.48 −0.55 −1.89 97.80 0.37 0.33 29.13 −0.55 −0.51
QQP 99.83 0.36 0.12 0.81 −0.66 −0.89 49.85 −0.09 −0.06 0.94 −0.60 −0.79 100.00 0.12 0.07 0.15 −0.84 −0.95
SST-2 96.30 0.46 0.00 68.57 −0.46 −1.15 91.30 0.00 0.00 60.61 −1.15 −0.69 69.44 0.46 −0.11 75.86 0.23 −0.46
MNLI 52.64 0.99 0.04 52.90 −0.50 −0.79 31.52 −0.05 0.02 0.51 −1.69 −2.52 100.00 0.04 0.02 1.32 −0.66 0.12
SST-5 77.47 2.67 0.27 62.44 0.98 0.02 70.00 0.00 0.18 68.18 0.00 0.08 68.90 0.18 0.13 2.38 −0.74 0.27
Jigsaw-gender 99.66 9.51 9.64 100.00 16.60 16.17 97.68 8.81 10.67 100.00 4.46 6.53 0.64 −3.17 −4.17 12.12 −1.13 −1.32
Jigsaw-race 100.00 12.37 11.66 100.00 15.58 12.98 100.00 14.92 13.48 98.84 11.00 9.09 19.94 −1.42 −1.02 13.25 −1.13 −1.16
Jigsaw-religion 100.00 1.87 1.45 100.00 0.30 0.18 77.46 0.00 −0.57 100.00 0.18 −0.09 96.39 2.47 2.86 66.12 0.48 0.78

average 91.77 3.29 2.80 55.87 3.28 2.58 78.87 4.71 2.92 60.06 1.19 0.21 68.86 −0.11 −0.21 26.63 −0.72 −0.64

Table 12: Flipping result.

Figure 5: Graphs for the flipping task using confi-
dence baseline and Edisa model: CoLA, QNLI, SST-5,
Jigsaw-gender. The x-axis is the number of flipped
datapoints; the y-axis is the model efficacy.

We demonstrate performance on this task by
working on the QNLI BERT model in Figure 6.
The x-axis is the number of datapoints used to
train and the y-axis is the NLP model’s accuracy.
We use 1% datapoints of the original training
dataset as seed. For confidence learning and ran-
dom learning, we select 500 more datapoints for
each step; for active learnings with Edisa and
DOMINO, the SDM (Edisa or DOMINO) decides
how many extra datapoints to train on. All active
learning processes have run 10 times with different
random seeds using up to 16k datapoints (about
30 learning steps) when active learning and confi-
dence learning converge. The y-axis demonstrates
the average accuracies in the 10 experiments.

The figure demonstrates that active learning us-
ing Edisa performs noticeably better. Edisa and
confidence learning converge to similar accuracy
after learning on 16k datapoints. We perform the
paired Student’s t-test protocol with p-value <
0.05 to show that the Edisa process’s accura-
cies on the steps from 3k to 10k datapoints are
significantly higher than accuracies of baselines.

Figure 6: Active learning on QNLI dataset.

6 Conclusion

In this paper, we take the first step to build a
comprehensive slice detection framework DEIM

on NLP with principled evaluation tasks, linguis-
tic tools, and metrics. It discovers error-prone
datapoints, clusters datapoints in an error slice
under the interpretable concept, and directly im-
proves model performance on unlabeled datasets.
It shows that discovering error slices can pro-
vide not only insights into model behaviors but
also actionable and automatic model improve-
ment methods. Experiments show that Edisa is a
more efficacious model than current baselines. We
hope this benchmark can facilitate further research
in SDM.

7 Limitation and Future Work

This study presents an all-encompassing bench-
mark designed to evaluate slice detection models
from three distinct perspectives. As a pioneering
endeavor in benchmarking SDMs, it is important
to recognize certain limitations, which provide
avenues for improvement in subsequent research:
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1. The Edisa model currently only works for
encoder-only models, while not directly ap-
plicable to encoder-decoder models such as
T5 and the prevalent decoder-only models
such as GPT series models. Future work
should extend slice detection models such as
Edisa to more model structures.

2. The Edisa model currently focuses on
classification datasets. Future work should
consider extending to tasks such as logistic
regression and text generation.

3. The Edisa model assigns each datapoint to
one slice and DEIM benchmark assumes that
a single feature can represent each slice.
This oversimplification may not suffice for
the intricacies of expansive language models
prevalent in today’s NLP landscape. Future
endeavors should contemplate refining this
approach in the SDM and evaluation by either
(1) attributing each data point to multiple
slices, or (2) denoting each slice with several
features, or a combination of both.

We hope forthcoming research can be built
based on Edisa model and the benchmark and
thereby deepening our understanding of model
performance.
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A Appendix

A.1 Datasets in Experiments

CoLA: The Corpus of Linguistic Acceptabil-
ity is a binary classification dataset aiming
at distinguishing ungrammatical sentences from
grammatical sentences, consisting of 10657
sentences from 23 linguistics publications.

QNLI: The Question-answering Natural Lan-
guage Inference dataset is a binary classification
dataset aiming at judging whether the context
sentence contains the answer to the question, au-
tomatically derived from the Stanford Question
Answering Dataset v1.1.

QQP: Quora Question Pairs dataset is a bi-
nary classification task aiming at judging whether
the two questions are paraphrases of each other,
consisting of over 400,000 question pairs.

SST-2: The Stanford Sentiment Treebank is a
binary classification task analyzing the effects of
sentiment consisting of 215,154 sentences.

MNLI: The Multi-Genre Natural Language In-
ference corpus is a thee-class classification task
consisting of 433k sentence pairs annotated with
textual entailment information.

SST-5: The Stanford Sentiment Treebank is a
fine-grained five-class classification task analyz-
ing the effects of sentiment in language.

The above datasets are based on GLUE. We
did not train on other GLUE datasets due to their
small training data size, such as RTE and WNLI.

Jigsaw: The Jigsaw dataset is a binary classi-
fication dataset aiming to detect toxic comments
and minimize unintended model bias consisting
of about 180k datapoints. We constructed three
sub-datasets based on Jigsaw, each focusing on
one type of potential model bias: gender (male,
female and other gender), race (black, white,
Asian, etc.), and religion (atheist, Christian, Mus-
lim, etc.). We also re-balance the dataset so that
50% of the datapoints have a non-trivial value
on at least one feature. The Jigsaw-gender con-
sists of 37k datapoints, Jigsaw-race consists of
40k datapoints, Jigsaw-religion consists of 183k
datapoints.
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