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Abstract

Answer selection in open-domain dialogues
aims to select an accurate answer from candi-
dates. The recent success of answer selec-
tion models hinges on training with large
amounts of labeled data. However, collect-
ing large-scale labeled data is labor-intensive
and time-consuming. In this paper, we intro-
duce the predicted intent labels to calibrate
answer labels in a self-training paradigm. Spe-
cifically, we propose intent-calibrated self-
training (ICAST) to improve the quality of
pseudo answer labels through the intent-
calibrated answer selection paradigm, in which
we employ pseudo intent labels to help im-
prove pseudo answer labels. We carry out
extensive experiments on two benchmark
datasets with open-domain dialogues. The ex-
perimental results show that ICAST outper-
forms baselines consistently with 1%, 5%, and
10% labeled data. Specifically, it improves
2.06% and 1.00% of F1 score on the two da-
tasets, compared with the strongest baseline
with only 5% labeled data.

1 Introduction

Open-domain dialogue systems (ODSs) interact
with users by dialogues in open-ended domains
(Huang et al., 2020). The responses in ODS can be
divided into different types, such as answer, grat-
itude, greeting, and junk (Qu et al., 2018). In this
paper, we focus on the selection of answers, which
aims to identify the correct answer from a pool
of candidates given a dialogue context. Typically,
there are two main branches of approaches to pro-
duce answers, i.e., generation-based methods and
selection-based methods (Park et al., 2022). The
former generate a response token by token; and the

*Corresponding author.

latter select a response from a pool of candidates.
Currently, pure generation methods such as Chat-
GPT still face challenges: (1) They may generate
incorrect content. (2) They cannot generate timely
answers. Thus, it still needs selection-based meth-
ods to improve the correctness and timeliness of
generation-based method.

Figure 1 illustrates our idea by comparing the
answer selection paradigms of (a) context-aware
methods, (b) intent-awaremethods, and (c) intent-
calibrated methods. Context-aware methods (see
Figure 1(a)) capture the context of the ongo-
ing dialogue for understanding users’ information
needs to select the most relevant responses from
answer candidates (Jeong et al., 2021). Unlike
task-oriented dialogue systems, it is much more
challenging for ODSs to infer users’ information
needs due to their open-ended goals (Huang et al.,
2020).

To this end, user intents, i.e., a taxonomy of ut-
terances, are introduced to guide the information-
seeking process (Qu et al., 2018, 2019a; Yang
et al., 2020). If the intent of the previous (OQ) is
not satisfied by the (PA) provided by a system,
then the users’ next intent is more likely to be
information request (IR). For example, if the user
asks: ‘‘Can you send me a website, so I can read
more information?’’, the user’s intent is IR. If
the system does not consider the intent label IR,
then it may provide an answer which does not
satisfy the user’s request.

Intent-aware methods (see Figure 1(b)) adopt
intents as an extra input to better understand
users’ information needs in an utterance (Yang
et al., 2020). However, they require sufficient
human-annotated intent labels for training, the
construction of which is time-consuming and
labor-intensive.

1232

Transactions of the Association for Computational Linguistics, vol. 11, pp. 1232-1249, 2023. https://doi.org/10.1162/tacl_a_00599
Action Editor: Beata Beigman Klebanov. Submission batch: 1/2023; Revision batch: 5/2023; Published 9/2023.
(© 2023 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.


mailto:wentao.deng@mail.sdu.edu.cn
mailto:zhaochun.ren@sdu.edu.cn
mailto:chenzhumin@sdu.edu.cn
mailto:renpengjie@sdu.edu.cn
mailto:Jiahuan.Pei@cwi.nl
https://doi.org/10.1162/tacl_a_00599

Ongoing Ongoing
conversation conversation
l Intent-aware
G onTor i aware answer selection
answer selection Intent
—_—
Context-aware Intent-aware
(a) (b)

answer selection answer selection

r—
Ongoin Context-aware a
convgrsat?on > answer selection —>  Intent-calibrated
answer selection
l ) Intent-calibrated
Intent Intent-aware | || sqf-training

answer selection
—

(c)Intent-calibrated answer selection

Figure 1: Comparison between previous answer se-
lection models and our proposed framework. (a)
Context-aware answer selection. (b) Intent-aware an-
swer selection. (c¢) Intent-calibrated answer selection.

Self-training has been widely used to mitigate
label scarcity problem (Liu et al., 2022; Yang et al.,
2022; Zhang et al., 2022a). But it is still under-
explored for answer selection in ODSs. The prin-
ciple of self-training is to iteratively learn a model
by assigning pseudo-labels for large-scaled unla-
beled data to extend the training set (Amini et al.,
2022). The teacher-student self-training frame-
work has been widely used in much recent work,
where the teacher generates pseudo-labels and
the student makes predictions (Xie et al., 2020;
Ghiasi et al., 2021; Li et al., 2021; Karamanolakis
et al., 2021). However, noisy pseudo labels incur
error propagation across iterations, so the key chal-
lenge is how to assure both quality and quantity
of pseudo labels (Karamanolakis et al., 2021).

In this paper, we introduce an intent-calibrated
answer selection paradigm, as in Figure 1(c).
It first conducts both context-aware and intent-
aware answer selection to predict pseudo intent
and answer labels, and then it selects high-quality
intent labels to calibrate final answer labels. To be
more specific, we develop an intent-calibrated
self-training (ICAST) algorithm based on the
teacher-student self-training and intent-calibrated
answer selection paradigm.

The core procedure is: First, we train a teacher
model on the labeled data and predict pseudo in-
tent labels for the unlabeled data. Second, we se-
lect high-quality intent labels by estimating intent
confidence gain and then add selected intents to
the input of the answer selection model. The in-
tent confidence gain measures how much infor-
mation a candidate intent label can bring to the

model. Third, we re-train a student model on both
the labeled and pseudo-labeled data. Intuitively,
ICAST synthesizes pseudo intent and answer la-
bels and integrates them into teacher-student self-
training, which can assure synthetic answer quality
by high-quality intents.

We conduct experiments on two datasets: MS-
DIALOG ' (Quetal., 2018) and MANTIS? (Penha
et al., 2019). The experimental results show that
ICAST outperforms the state-of-the-art baseline
by 2.51%/0.63% of F1 score on the MSDIA-
LOG/MANTIS dataset, with 1% labeled data. The
results demonstrate the effectiveness of ICAST
which selects accurate answers with incorporat-
ing high-quality predicted intent labels.

2 Related Work

In this section, we summarize related work in
terms of three categories, i.e., traditional answer
selection models, intent-aware answer selection
models, and self-training for data argumentation.

2.1 Traditional Answer Selection Models

The dominant work focuses on modeling the
representation of dialogue contexts, responses,
and their relevance to select appropriate answers
(Zhou et al., 2016, 2018; Chaudhuri et al., 2018).
Wang et al. (2019) propose a sequential matching
network to model the relation between the con-
textual utterances and the response by a cross-
attention matrix. Yang and Choi (2019) encode
dialogue contexts and responses for answer ut-
terance selection and answer span selection using
multiple self-attention models, e.g., R-Net (Wang
et al., 2017) based on RNN and QANet (Yu et al.,
2018) based on CNN. Many researchers also ex-
plore to enhance the dialogue contexts or candi-
date responses. Medved et al. (2020) extend the
input candidate sentence with selected informa-
tion from preceding sentence context. Fu et al.
(2020) extend the contexts of the responses and
integrate the context-to-context matching with
context-to-response matching. Several studies
(Ohmura and Eskenazi, 2018; Barz and Sonntag,
2021) also propose to improve the quality of an-
swers by re-ranking answer candidates.

More recently, transformer-based pre-trained
models have been the state-of-the-art paradigms

"https://ciir.cs.umass.edu/downloads/msdialog/ .
https://github.com/guzpenha/mantis.
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(Kim et al., 2019; Henderson et al., 2019a; Tao
etal.,2021). Researchers (Henderson et al.,2019b;
Yang and Choi, 2019) apply a BERT encoder
(Devlin et al., 2019) pre-trained on large-scaled
open-domain dialogue corpus and fine-tune the
model on small-scale in-domain dataset to capture
the nuances. Likewise, Whang et al. (2020) also
use a BERT encoder and perform context-response
matching, but they also introduce the next utter-
ance prediction and masked language modeling
tasks during the post-training. Gu et al. (2020) in-
corporate speaker-aware embeddings into BERT
to help with context understanding in multi-turn
dialogues. Liu et al. (2021a) conduct utterance-
aware and speaker-aware representations for dia-
logue contexts based on masking mechanisms in
transformer-based pre-trained models, including
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019b), and ELECTRA (Clark et al., 2019).

There are several studies which use auxil-
iary tasks to enhance answer selection. Wu et al.
(2020) incorporate a BERT-based response selec-
tion model with a contrastive learning objective
and multiple auxiliary learning tasks, i.e., inten-
tion recognition, dialogue state tracking, and di-
alogue act prediction. Xu et al. (2021) enhance
the response selection task with several auxiliary
tasks, which can bring in extra supervised signals
in multi-task learning manner. Pei et al. (2021)
jointly learn missing user profiles with personal-
ized response selection, which can improve re-
sponse equality gradually based on enriched user
profiles and neighboring dialogues.

2.2 Intent-aware Answer Selection Models

Intent detection is a key prior to understand users’
intent for answer selection, especially in multiple
turn dialogues (Gu et al., 2020; Park et al., 2022).
Various deep NLP models have been adopted to
classify intents (Chenetal.,2017; Liuetal.,2019a;
Weld et al., 2021; Wang et al., 2021a). Chen et al.
(2016) generate new intents to bridge the seman-
tic relation across domains for intent expansion
and classification. Wu et al. (2020) improve pre-
trained BERT with an extra contrastive objec-
tive for intention recognition. The key challenge
is natural language understanding with the state-
of-the-art NLP models, e.g., CNNs (Chen et al.,
2016), RNNs (Firdaus et al., 2021), transform-
ers (Zhao et al., 2020), and pretrained language
models (PLMs) (Wuet al., 2020; Yan et al., 2022).

Intent calibration research attempts to predict
additional information to resolve users’ ambigu-
ous or uncertain intents. Lin and Xu (2019) cal-
ibrate the confidence of the softmax outputs for
unknown intent detection. Gong et al. (2022) rep-
resent labels in hyperspherical space uniformly
and calibrate confidence to trade-off accuracy and
uncertainty. However, none of the above research
has adapted the detected intents to answer selec-
tion. The most related work is IART (Yang et al.,
2020), which weights the context by attending
predicted intents for response selection.

Unlike the above methods, we propose to im-
prove the performance of answer selection by
using a large amount of unlabeled data. We de-
vise the intent-calibrated self-training to improve
the quality of pseudo answer labels by consider-
ing user intents.

2.3 Self-training for Answer Selection

Self-training has received remarkable attention
in natural language processing (Luo, 2022) and
machine learning (Karamanolakis et al., 2021;
Amini et al., 2022). In general, the core idea is
to augment the model training with pseudo super-
vision signals (Wu et al., 2020; Yan et al., 2022).

Sachan and Xing (2018) introduce a self-
training algorithm for jointly learning to answer
and generate questions, which augments labeled
question-answer pairs with unlabeled text. Wu
et al. (2018) introduce a pre-trained sequence-to-
sequence model as an annotator to generate pseudo
labels for unlabeled data to supervise the training
process. Deng et al. (2021) propose to use the
fine-tuned question generator and answer genera-
tor to generate pseudo question-answer pairs. Lin
et al. (2020) introduce a fine-tuned generation-
base model to generate gray-scale data.

Differently, the proposed ICAST in this work
seeks to improve the quality of pseudo answer la-
bels by introducing the intent-calibrated pseudo
labeling mechanism which uses high-quality
pseudo intent label to calibrate pseudo answer
labels.

3 Preliminary

3.1 Answer Selection Task

We form answer selection as a binary classfi-
cation task (Yang et al., 2020). We denote the
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labeled dataset D' = {([x;, e;], yl)}ugl and unla-

beled dataset D" = {x;}| ‘fjf . For the i-th sam-
ple, x; = (u;,a;) is a context-candidate pair,
which consists of as a sequence of utterances as
the context w; = [uy,--- ,upy,)] and a candidate
answer a; € A (a set of all candidate answers).
e; = [e1, -+ ,epy,] is a sequence of user intent
labels. y; € {0,1} is the answer label, y; = 1
denotes a; is a correct answer, otherwise ; = 0.

Our task is to learn a model f = [f®, f7].
The intent generation module f* predicts a set
of intents €; given a context-candidate pair, pa-
rameterized by a; The answer selection module
f? predicts an answer label given context and the
predicted intents, parameterized by (3. Formally,
we estimate the following probabilities:

[ = P(ei|u;, a;, @), (D
17 = P(yilu;, &, a5, B). )

3.2 BERT for Answer Selection

BERT (Devlin et al., 2019) is widely used to
model the semantic dependency between context
and candidate answers in recent research (Qu
et al., 2019b; Li et al., 2019; Matsubara et al.,
2020; Yang et al., 2020). First, we format the in-
put of BERT as x; = [[CLS];u;; [SEP];ail,
where the special token [C'LS] indicates the be-
ginning of a context-candidate pair, and [SEP]
is a separator. Then, we use BERT to encode x;
and get the representation of [C'LS] token h¢%5.
Next, let hZCLS pass through a linear layer fol-
lowed by an activation function to compute the
probability p; of a candidate answer. Formally,

pi = o(Wh{'L9 4+ b), 3)
¢S = BERT (x;), (4)

where W and b are trainable parameters, o is
sigmoid function.

3.3 Teacher-Student Self-training
Framework

The teacher-student self-training framework (Li
et al., 2021) is shown in Figure 2(a). It first trains
the teacher model with the labeled data D!
to predict correct answer probabilities. Then at
each iteration, the pseudo labeling module selects
samples by using teacher’s predictions to assign
pseudo answer labels. Finally, the student model

Labeled Pseudo

(a) Teacher-student self-training

Intent-calibrated pseudo labeling

Xi, €; »Gi = 9(vi, 0%i, €:) vEs

¢ Probability
A=gi—g @
1 : Confidence

Xi > gi=g(yi,0x:) ~NO > Answer label
calibration

PLM =

Intent confidence gain estimation

(b) Intent-calibrated self-training

Figure 2: Comparison of self-training frameworks.
(a) Teacher-student self-training framework. (b)
Intent-calibrated self-training framework. The dashed
thin line and solid thin line represent the workflow
of teacher model and student model, respectively.
The dashed thick line and solid thick line represent
intent-aware and context-aware workflow.

is trained with the labeled data and pseudo-labeled
data. At the next iteration, the student model is
used as a new teacher model.

Pseudo Labeling Module. The principle is to
determine a subset of samples and assign the un-
labeled samples with pseudo answer labels. Fol-
lowing Tur et al. (2005) and Amini et al. (2022),
we introduce thresholds A* and A~ for the positive
and the negative classes to select a subset of un-
labeled data with which the classifier is the most
confident. For each unlabeled data, the selection
criterion is defined as:

d=3p; >A")71:0, (5)

where 3! means exists one and only one. If there
exists one and only one candidate answer, the
probability p; (see Eq. 3) of which is larger than
the positive threshold A*, then d = 1 and we
add the current sample to the subset for pseudo
labeling. Then, the pseudo answer label y; of
each sample x; € X is assigned by:

17 pi > AT

. 6
0, pi<)\_ ©)

Y = ¢()\+7>\_7pi) = t{

If the probability p; is sufficiently high (p; > A1),
then positive label ‘‘1’’ is assigned to y;; if the
probability p; is sufficiently low (p; < A7), then
negative label ‘0’ is assigned to y;; otherwise
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Algorithm 1: Intent-calibrated self-training

input : Dataset w/ and wo/ labels [D!,D"],
teacher model f = [f<, f],
threshold A of intent confidence gain.

output: Student model f .

1 Train teacher model f with Dt

2 for each x; € D" do

3 €; < [*(x;); // Predict intents (Eq.7)

4 g; < g(yi, ﬁ |Xi); // Context-aware confidence
(Eq.10)

5 G g(yu B|Xi, ei); /I Intent-aware confidence
(Eq.11)

6 A= gl — g; , // Intent confidence gain

7 if A > ) then

8 ‘ )~Ci — (Xi, ei) ; // Update input with intents

9 else

10 ‘ X; ¢ Xi;

11 end

12 end

13 Select samples by Eq.5 and Eq.12;
14 Assign a label for each sample by Eq.14 and

— I(% |DP],
collect a dataset D? = {(X;,y:) }|;—; 5
15 Re-train f on D' U DP with 5 epochs;
16 f — f; /I Update teacher model with student model
17 Back to line 2 to iterate line 2-16 until the

maximum epoch.

pi € [A7,\T], y; cannot be assigned a pseudo
answer label, and this sample will not be used to
train the student model.

4 Intent-calibrated Self-training

4.1 Overview

We illustrate the proposed (ICAST), as shown in
Figure 2(b). First, we train a teacher model on
labeled data D' to predict pseudo intent labels for
unlabeled data D“ (see §4.2). Second, we con-
duct intent-calibrated pseudo labeling (See £4.3).
Specifically, we estimate intent confidence gain
to select samples with high-quality intent labels,
and we calibrate the answer labels by incorpo-
rating selected intent labels as an extra input for
answer selection. Third, we train the student model
with labeled and pseudo-labeled data (See §4.4).
We summarize the proposed intent-calibrated self-
training in Algorithm 1.

4.2 Teacher Model Training

We first train a teacher model f = [f®, f¥]
with the labeled dataset D'. The intent generation
module f* constructs its input as a sequence of to-
kens, i.e., X; = [u1; €1+ ;Upy,|; €u,|; [SEP]]. It
generates an intent label e; by computing the
probability of a candidate intent label, where
j €1, Juil]:

pi = o(Whi"" 4+ b), (7)
h?EF = BERT (x;). (8)

The answer selection module f? con-
structs its input as a sequence of tokens, i.e.,
x; = [[CLSluisers- - 5 Uy €, [SEP]; ag)]
and computes the probability of a candidate
answer as Eq. 3 to decide if it is the correct
answer.

4.3 Intent-calibrated Pseudo Labeling

4.3.1 Intent Confidence Gain Estimation

The intent-aware calibrator selects high-quality
intent labels by estimating intent confidence gain.
Intent confidence gain refers to the increase in
confidence score after considering the predicted
intents. A larger intent confidence gain indicates
that the predicted intent can bring a greater in-
crease in confidence score. We define the intent
confidence gain as:

where [ is the model parameters sampled by
(MC dropout). Eq. 9 is formulated as the differ-
ence of two terms. The first term §(y;, 5|x;, €;)
is the confidence score of MC dropout with pre-
dicted intents, while the second term g(v;, 3|x;)
is the confidence score of MC dropout alone. The
difference of two terms refers to the increase in
confidence score after considering the predicted
intents.

The ¢(yi, B]x) is the confidence score of MC
dropout (Gal et al., 2017), which measures the
decrease in Shannon entropy of answer predic-
tion after using MC dropout sampling, i.e., the
difference between the entropy of posterior and
the expectation of the entropy of posteriors with

1236



MC dropout. Formally, it can be defined and
approximated as:

g(yzv 6|Xz)
=Hly;|x;] — Epg)[H[yi|x:; 5]]
~H[Ep s [yilxi; 8]] — Eps)[Hyilxi; 8]

T
1 10
t'lOgT;pt (10)

~
~

+ = t'logpt7

1 I
TP
t=1
T

1
TP
t=1
where the H[-|-] is the Shannon entropy. The
confidence score of MC dropout is calculated by
the difference of two terms: the first term is the
Shannon entropy with MC dropout, and the sec-

ond term is the mean value of Shannon entropy
with multiple MC dropout samplings.

Similarly, the confidence score of MC dropout
with predicted intents g(y;, 5|x;,e;) can be de-
fined and approximated as:

9(yi, Blxi, €;)
=H[y;|x;, ei] — Epg)[Hyi|x;, e;; B]]
~H[Epg)[yi|xi, ei; B]] — Ep(g) [H|yi|xi, e; F]]

1 o 1
~ = ) pibelog 7 D iy
t=1 t=1
1 I
+ o > PiBe log i,
t=1
QY
the confidence score of MC dropout with pre-
dicted intents indicates the decrease of Shannon
entropy of answer prediction after using MC drop-
out sampling with considering predicted intents.
It includes the predicted intents as inputs to the
model, which is different from Eq. 10.

The first term of intent confidence gain is the
confidence score of MC dropout after consider-
ing pseudo intents and the second term of intent
confidence gain is the confidence score of MC
dropout. The intent confidence gain is to mea-
sure how much confidence can pseudo intents can
bring to the model with MC dropout. The higher
the intent confidence gain, the more improvement
that predicted intents can bring to the confidence
score. We set a threshold A to determine if the
predicted intents can bring enough improvement
to the confidence score. If the intent confidence

gain is larger than A, we conclude that the pre-
dicted intents can improve the confidence score
sufficiently and add them to the model’s inputs.
Specifically, if A > ), then we update the input
with extra predicted intent labels e;, i.e., X; =
[x;,€;], which is expected to bring higher con-
fidence score to the model, otherwise x; = x;.

4.3.2 Answer Label Calibration

To make use of more unlabeled samples, we
introduce and extra three thresholds 5\+, 5\_, and
M to revise Eq. 5 as:

d=(p; > A" A (g > M\")?1:0, (12)
where A= < A~ < AT < A* and therefore we
can consider extra samples with probabilities p; €
[A™, A*]. The probability p; is approximated by
T times MC dropout. The threshold A" is to
select samples with high confidence g;. Formally,
p; and g; are defined as:

T
P =7 Zlﬁtpf»gi = g(vi, Blxi,€i), A > X

o7

pi =7 > 1.9 =9, Blxi), A< A
t=1

(13)
To calibrate an answer label for each sample x;,
we revise Eq. 6 as:

. (I)()‘+7)‘_aﬁi),pi € [O) )‘_) U ()‘+7 1]
T @0 A ) i e VAT

(14)

Afterward, we can get a pseudo labeled dataset
DP = {ii,yi}llff‘-

Note that line 13 in Algorithm 1 shows the
process of selecting pseudo answer labels for re-
training the answer selection module of the stu-
dent model: Eq. 5 is used to determine if we
add a sample to the subset for pseudo labeling.
Eq. 12 is a revision of Eq. 5, which aims to make
use of more unlabeled samples by introducing
extra three thresholds. The goal of selecting sam-
ples by criteria of Eq. 5 and Eq. 12 (line 13 of
Algorithm 1) is to prepare a set of candidates in
primaries for high-quality pseudo labeling.

4.4 Student Model Re-training

We re-train the student model f = [f®, f”]
with the extended dataset D' U DP. We minimize
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three types of binary cross entropy losses, i.e.,
intent generation loss L, answer selection loss
without intent labels £;, and answer selection
loss with intent labels Zi, which are calculated as
follows:

LS = —e;log fo%; + (1 —e;) log(1 — f(x;)),
L; = —y;log fPx; + (1 — y;) log(1 — 7 (x;)),
Li = —yilog f7(xi, e;)

+ (1 —y;) log(1 — fP(xi,)).
(15)

The intent generation loss L calculates the cross
entropy loss between predicted intents and ground-
truth intents. It can be used to optimize the intent
generation module f.

The answer selection loss without intent labels
L; calculates the cross entropy loss between pre-
dicted answers and ground-truth answers. It can
be used to optimize the answer selection module
f? when the intent confidence gain is lower than
the threshold.

The answer selection loss with intent labels
L; calculates the cross entropy loss between pre-
dicted answers and ground-truth answers. It can
be used to optimize the answer selection module
f' # when the intent confidence gain is larger than
the threshold.

5 Experimental Setup

5.1 Datasets and Evaluation Metrics

We test all methods on our extension of two bench-
mark datasets: MSDIALOG (Qu et al., 2018) and
MANTIS (Penha et al., 2019). The MSDIALOG
dataset contains multi-turn question answering
across 4 topics collected from the Microsoft com-
munity.® It has 12 different types of intents. The
MANTIS dataset provides multi-turn dialogs with
user intent labels across 14 domains crawled from
Stack Exchange.* It has 10 different types of in-
tents. Note that we require a small number of
data with intent labels in our experiments. There
are other response selection datasets (e.g., UDC
[Lowe et al., 2015]), however, they do not con-
tain dialogues with intent labels. To this end,
we select the MSDIALOG and MANTIS data-
sets which contain a small amount of data with

3https ://answers.microsoft.com.
4https ://stackexchange.com/.

Train Validation Test
Labeled Unlabeled

1% 1,410 140,420 5,000 21,280

MSDIALOG 5% 7,050 134,780 5,000 21,280
10% 14,100 127,730 5,000 21,280

1% 2,640 260,990 12,000 50,000

MANTIS 5% 13,200 250,430 12,000 50,000
10% 26,400 237,230 12,000 50,000

Table 1: The statistics of experimental datasets,
where labeled proportion denotes the proportion
of labeled data in the training set.

intent labels, which can satisfy our experimental
requirements.

In particular, we extend both datasets with un-
labeled data. For MSDIALOG, we treat data with-
out intent labels as unlabeled data; for MANTIS,
we crawl unlabeled data from Stack Exchange®
from 2021 to 2022. For fair comparison with
baselines, we follow previous work (Zhang et al.,
2022b; Yang et al., 2020; Han et al., 2021): We
use the ground-truth label as positive sample and
use BM25 algorithm (Robertson and Zaragoza,
2009) to retrieve 9 relevant samples from different
dialogues as negative samples. There could be a
small number of negatives that are false-negatives,
because there are cases which have same answers
in different dialogues, so false-negatives may ex-
ist, but the number is very small. Besides, we use
a different data partitioning strategy: First, we
only extract conversations containing accurate an-
swers, and the ground truth labels of all data are
accurate answers. This is because we focus on the
answer selection task, while the prior works focus
on the response selection task. Note that not all
the responses can serve as answers to users’ ques-
tions. Second, we put the data with intent labels
into the training set. This is because the amount
the data with intent labels is small, and we want
to fully utilize the intent labels. In order to com-
pare different methods in low-resource settings,
we design three different low-resource simula-
tion experiments: including 1%, 5%, and 10% la-
beled data and a large amount of unlabeled data.
The statistics of the extended datasets is shown
in Table 1.

We use 2 types of metrics to evaluate the mod-
els: classification metrics, i.e., Precision (P), Re-
call (R), and F1 score, and ranking metrics (Yang
et al., 2020; Pan et al., 2021), i.e., mean average
precision (MAP) and Recall @k (R @k).
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5.2 Baselines

We compare the proposed ICAST with recent
state-of-the-art methods that have reported re-
sults on the MSDIALOG and MANTIS datasets,
respectively.

e IART (Yang et al.,, 2020) proposes the
intent-aware attention mechanism to weight
the utterances in context.

e SAM (Zhang et al., 2022b) captures semantic
and similarity features to enhance answer
selection.

e JM (Zhang et al., 2021) concatenates the
context and all candidate responses as input
to select the most proper response.

e BIG (Deng et al., 2021) uses the bilateral
generation method to augment data and de-
signs a contrastive loss function for training.

¢ GRN (Liu et al., 2021b) uses NUP and UOP
pre-training tasks, and combines the graph
network and sequence network to model the
reasoning process of multi-turn response
selection.

e GRAY (Lin et al., 2020) generates grayscale
data by a fine-tuned generation model and
proposes a multi-level ranking loss function
for training.

e BERT _FP (Whang et al., 2020) learns the
interactions between utterances in context to
enhance answer selection.

e BERT (Devlin et al., 2019) is a general clas-
sification framework, which predicts answer
labels on the vector of [C'LS] token.

e Teacher-student self-training (TSST) (Li
et al., 2021) is a semi-supervised method, a
teacher model is first trained with small, la-
beled data to generate pseudo labels on a
large unlabeled dataset and then train a stu-
dent model with pseudo labels.

5.3 Implementation Details

All models are implemented based on PyTorch’
and HuggingFace.® We conduct hyper-parameter
tuning on the validation dataset and report results
on the test dataset. We use BERT-base-uncased
model (Devlin et al., 2019) as an encoder in both

Shttps://pytorch.org/.
Shttps://huggingface.co/.

f® and f?, where the parameters are shared. We
use AdamW (Loshchilov and Hutter, 2017) as op-
timizer. The batch size is 16, initial learning rate
is 5e-5, and weight decay is 0.01. The maximum
number of context turn is set to 4. The maximum
length of context and answer are set to 400 and
100. The dropout ratios is 0.1. ICAST generates
pseudo labels every 5 epochs. MC dropout con-
ducts sampling by T' = 5 times. For thresholds
of pseudo labeling, we set A™ = 0.8, A= = 0.1,
AT =0.5,\" = 0.5and \* = 0.2. For the thresh-
old of intent confidence gain, we set A = 0.0 for
MANTIS dataset with 5% and 10% labeled data,
otherwise, A = 0.02.

For each parameter, we fix other hyper-
parameters and select a specific value for the
best performance on validation datasets. A=, A™,
and \" are selected in (0, 1), the grid is 0.1. A
and \T are selected in (0.1, 0.8), the grid is 0.1.
X is selected in (0,0.05), the grid is 0.01. The
number of ICAST’s parameters is 109,493,005.
We train ICAST on 2 2080Ti GPUs with random
seed 42, and the time cost is 48 hours.

6 Results

6.1 Overall Performance

We compare the overall performance of ICAST
against the baseline methods. We also report the
results of ICAST(Teacher). ICAST(Teacher) uses
intent labels but BERT and BERT_FP do not,
which is not a fair comparison. We conduct these
experiments to see whether our method can out-
perform baselines without using unlabeled data.
The results of overall performance are shown in
Table 2.

First, in terms of all classification metrics,
ICAST and ICAST (Teacher) outperform the
baselines in each setting, excluding only one set-
ting: The R score of ICAST (Teacher) is 0.42%
lower than BERT trained on 10% labeled MSDI-
ALOG dataset. Specifically, on the MSDIALOG
dataset, ICAST with 1%, 5%, and 10% labeled
data improves their corresponding strongest base-
lines by 2.51%,2.06%, and 2.12% of F1 scores. On
the MANTIS dataset, ICAST with 1%, 5%, and
10% labeled data improves their corresponding
strongest baselines by 0.63%, 1.00%, and 0.62%
of F1 scores. This demonstrates the effectiveness
of ICAST on the performance of classifying cor-
rect answers. We believe there are two reasons:
(i) the predicted intent labels can provide more
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MSDIALOG MANTIS
Setting Model P R Fl R@l R@2 R@5 MAP p R Fl R@l R@2 R@5 MAP
IART! 2218 4675 3008 2565 4628 7758 4774 4829 5222 50.18 5040 6834 8622  66.12
sAMf 4417 4436 4426 4689 5906 77.02 6072 5775 5862 5818 6510 7632  88.54  75.60
1% labeled Mt 4480 4459 4470 4454 6076 8430 6126 6295 6262 6278 6264 7732 9230 7525
BIG! 4407 4478 4442 5093 6630 8750  66.15 5791 5742 57.66 7022 83.04 9512 8078
GRAY? 4168 4215 4191 5126 6640 8562 6610 6130 6072 6101 6467 77.34 8832 7557
GRN! 4341 4337 4339 4328 6160 8646  61.19 6175 6110 6142  61.06 76.64  93.66  74.56
BERT_FP 4432 4295 4362 5676 7208 9125 7090 6626 6286 6451 7562 8614 9522 8411
BERT? 4856 4534 4690 5479 6832 8580  68.04 6728 6562 6644 7482 8300 9216 8241
ICAST (Teacher) ~ 49.82 4633  48.01  56.86 67.81 8538  69.03 6848 6612 6728 77.28 8612 9498 8298
1% labeled TSSTE 5372 5258  53.04  61.04 7391 8970  73.04 7373 7260 73.16 8294 9108  97.88  89.18
+all unlabeled ~ ICAST 5705 5432 5565 6221 7631 9107 7377 7489 7272 7379  83.68 90.68 9642 8831
IART! 2352 4938  31.86  28.80 4802 7993 4997 5024 5360 5186 5156 7066 8952 6775
samf 4952 5145 5047 5427 6766 8303 6732 59.16 57.82 5848 6652 7688  89.28  76.51
5% labeled Mt 5098 4981 5039 5037  67.62 8947 6656  67.16  66.82 6699 6692 80.83 9494 7847
BIG! 50.82 5093 5088  58.12  73.07 89.80 7153 6134  60.88  61.11 7422 8758 9694  84.02
GRAY? 4899 4826 4862 5516  69.54 8623 6875 6253 6650 6445 7024 80.92  90.62  79.48
GRN! 4928  50.04  49.66 4976 6677 8952 6604 6427 6300 6362 6378 7860 9338 7627
BERT_FP! 4974 5093 5033 6296 77.16 9276 7541 7004 6832 69.17 8022 8936 9730 87.37
BERT! 5201 4967 5081 6123 7260 8519 7213 7117 6756 6932 7770 8682 9548 8520
ICAST (Teacher) 5422 51.83  53.00 6259 7438 9036 7416 7313 6920 7111  80.82 88.12 9586 8427
5% labeled TSST! 5834 5878 5856  64.89 7462 8641 7461 7433 7292 7361 8162 8932 9610  87.83
+all unlabeled  ICAST 61.54 5972 60.62 69.54 8035 93.09 7729 7460 7462 7461 8438 90.76  97.06  89.78
IART? 3438 4722 3979 39.05 5831 8477 5800 5077  53.04 5188  51.80 7120  89.28  68.04
sAMf 5563 5427 5494 5953 7062 8505 7100 6139  60.00 60.69 6688 7792  90.84  77.08
10% labeled Ve 57.64 5756 5760 57.61 7312 9097 7170  68.06 6898 6852 6822 8046 9404  79.02
BIG! 56.15 5596 5606 6296 7678  90.08 7492 6274 6234 6254 7660 87.62 9628  85.08
GRAY?! 5446  53.05 5375 6245 7608  90.60 7451 6520 6526 6523 7480 8574 9466 8351
GRN! 5406 5343 5374 5352 7067  90.08 6896 6601 6492 6546  66.10  80.60 9334  77.83
BERT_FP! 5795 5681 5738 6748  80.16 9407 7856  71.04 6820  69.59  80.72 8938  96.82  87.59
BERT?! 6194 6019 6105 6438 7377 8599 7412 7033  69.56  69.94 8212 91.00 9770  88.72
ICAST (Teacher) 6241  59.77  61.06  66.54  76.55  89.09 7643 7189 7024 7105 8192 9002  97.12 8829
10% labeled TSSTH 6328 6334 6331 7091 8195 9318 8037 7617 7334 7473 8370 91.18 9750  89.43
+all unlabeled ~ ICAST 6598  64.89 6543 7227 8195 9163 79.63 7743 7336 7535  84.60 9152 9736 8859

Table 2: Overall performance of answer selection. Bold and underlined fonts indicate leading and
compared results in each setting. 1%, 5%, and 10% are the proportion of labeled data in training
dataset. The symbol 1 indicates the baselines reproduced by the released source codes and i indictates
the baselines we implemented based on the papers. Note that we cannot fairly compare with the
reported results in the IART paper, because we use a different data partitioning for a different task

(see Section 5.1).

information that are useful for selecting correct
answers; and (ii) the self-training paradigm can
calibrate answer labels for continuous improve-
ment. For example, with self-training on 10%
labeled MSDIALOG dataset and all unlabeled
data, the R score of ICAST is 4.70%/1.55% higher
than BERT/TSST, respectively.

Second, in terms of ranking metrics, we have the
following observations: (i) ICAST outperforms all
baselines in terms of R@1 score in each setting.
Specifically, on the MSDIALOG dataset, ICAST
with 1%, 5%, and 10% labeled data achieve
1.17%, 4.65%, and 1.36% higher of R@1 scores
than their corresponding strongest baselines, re-
spectively. On the MANTIS dataset, ICAST with
1%, 5%, and 10% labeled data achieve 0.74%,
2.76%, and 0.90% higher of R@1 scores than their
corresponding strongest baselines, respectively. It
indicates that ICAST can rank an accurate answer
on top. (ii) For R@2, R@5, and MAP, ICAST
achieves the highest scores in most of the set-

tings, excluding: On the MSDIALOG dataset,
with 10% labeled data and all unlabeled data,
R@5 and MAP scores decrease 1.55% and 0.74%.
On the MANTIS dataset, with 1% labeled data
and all unlabeled data, R@2, R@5, and MAP
scores decrease 0.40%, 1.46%, and 0.87%; with
10% labeled data and all unlabeled data, R@5
and MAP scores decrease 0.14% and 0.84%. Our
method does not possess a significant advantage
in terms of R@2, R@5, and MAP, as the pri-
mary objective of answer selection is to iden-
tify the answer rather than generating a ranking
list. Hence, the fundamental performance mea-
surements are precision, recall, and the F1-score
(Wangetal.,2021b). Accordingly, we evaluate the
models using standard evaluation metrics for a
fair comparison. Additionally, we present sup-
plementary ranking metrics (i.e., R@2, R@5,
MAP) to assess whether improvements in se-
lection metrics result in a noteworthy decline
in ranking metrics. The results demonstrate that
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Setting Model P R F1 R@l1 R@2 R@5 MAP P R Fl1 R@l R@2 R@s5 MAP
ICAST 57.05 5432 55.65 62.21 76.31 91.07 73.77 74.89 7272 7379 83.68 90.68 96.42 88.31

1% labeled

+all unlabeled  -ICGE 54.81  54.04 54.42 60.24 72.85 86.46 71.83 7444 7178 73.08 81.68 89.02 94.86 1 87.55
-ICGE-ALC  54.13  53.52 53.82 60.801 73771 893871 72867 74.00 71967 7296 826671 90.82{ 1T 977211 88.941 1
-1G 5372 52.58 53.14 61.04 73.91 89.70 73.04 7373 72.60 73.16 8294 91.08 1 97.88 1 89.18 1
ICAST 61.54  59.72 60.62 69.54 80.35 93.09 77.29 74.60  74.62 74.61 8438 90.76 97.06 89.78

5% labeled

+all unlabeled  -ICGE 60.66  58.55 59.58 64.94 76.31 90.32 75.61 7435 7412 7423 83.18 91.14 1 97.50 1 89.29
-ICGE-ALC  59.94 58921 5943 66301 778217 91.631 768671 7419 73.56 73.87 8280  90.72 96.66 88.81
-1G 5834 5878 58.56 64.89 74.62 86.41 74.61 7433 7292 73.61 81.62  89.32 96.10 87.83
ICAST 65.98  64.89 65.43 7227 81.95 91.63 79.63 7746  73.36 7535 8460  91.52 97.36 88.59

10% labeled

+all unlabeled  -ICGE 65.71  62.78 64.21 71.42 81.53 93.70fr  80.511 76.19 73.821 7498 83.82 91.26 96.98 89.46 1
-ICGE-ALC 6427  64.09 64.18 1 70.63 81.95 92.95 80.15 75.60  74.26 7492 8406 9138 97.32 89.69
-1G 63.28 63.34 63.31 70.91 81.95 93.18 1 80371 76.17 73.34 7473 8370  91.18 97.50 ) 89.43

Table 3: Ablation study. Impact of different modules in our proposed framework. {} and 1 indicate an
increase of the performance compared with ICAST and ICAST-ICGE, respectively.

our method exhibits no considerable decrease in
ranking metrics.

Third, using self-training with unlabeled data
has the largest impact on all settings in terms of
both classification and ranking metrics. Specifi-
cally, on the MSDIALOG dataset with 1%, 5%,
and 10% labeled data, F1 scores increase 7.64%,
7.62%, and 4.37%; MAP scores increase 2.87%,
1.88%, and 1.81%. On the MANTIS dataset with
1%, 5%, and 10% labeled data, F1 scores in-
crease 6.51%, 3.50%, and 4.30%; MAP scores
increase 5.07%, 2.41%, and 0.71%. This reveals
that ICAST benefits from making good use of
unlabeled data with self-training. Besides, the
influence of classification performance is larger
than the ranking performance in each setting.

Last but not least, we do not require too much
data with intent labels. This also motivates us to
conduct experiments on only a small amount of
data with labels (1%, 5%, 10%). For example, with
1% labeled data, our method outperforms the base-
lines with only 141 and 264 intent labels on the
MSDIALOG and MANTIS datasets, respectively.
Thus, it is possible to apply our method in practice,
even without a large amount of intent labels.

6.2 Ablation Study

To better understand the contribution of each
functional component of ICAST, i.e., intent con-
fidence gain estimation (ICGE), answer label cal-
ibration (ALC), and intent generation (IG), we
conduct the following ablation studies: After re-
moving the IG (denoted as ‘‘-IG’’), ICGE and
ALC do not work, so ICAST degenerates to the
TSST model. The ICGE estimates intent con-
fidence gain according to the predicted intents
which are the outputs of the IG module. The

ALC uses the intent confidence scores to select
unlabeled samples, the computation of intent con-
fidence scores also needs the predicted intents.
After removing the ICGE (denoted as ‘‘-ICGE’’),
the model does not select the predicted intents
according to the intent confidence gain and adds
all of predicted intent labels into the inputs. Af-
ter removing the ICGE and ALC (denoted as
““.ICGE-ALC’’), the model does not select unla-
beled data with intent confidence score and de-
generates into the TSST with adding all predicted
intents into inputs. Table 3 reports the results of
the ablation studies.

First, intent confidence gain estimation (ICGE),
answer label calibration (ALC), and intent genera-
tion (IG) have positive influence on overall per-
formance of classification in all settings on both
the MSDIALOG and MANTIS datasets with
1%, 5%, and 10% labeled data, respectively.
Removing IG from ICAST, F1 scores decrease
2.51%/2.06%/2.12% on the MSDIALOG dataset
and 0.63%/1.00%/0.62% on the MANTIS data-
set. This proves our hypothesis that the generated
intents can provide more useful information for
selecting correct answers. Removing ICGE from
ICAST, F1 scores decrease 1.23%/1.04%/1.22% on
the MSDIALOG dataset and 0.71%/0.38%/0.37%
on the MANTIS dataset. This reveals that intent
confidence gain can select high-quality intent la-
bels that are helpful to select correct answers.
Removing ALC from ICAST without ICGE, F1
scores decrease 0.60%/0.15%/0.03%. This shows
that ALC can bring extra improvement even
though ICGE is absent. Meanwhile, it works better
together with the other two components.

Second, in terms of ranking performance, R@1
decreases when removing ICGE, ALC, and IG
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Figure 3: F1 scores (w.r.t. the line) and average
number of selected intents for answer label cal-
ibration (w.r.t. the bar) with different values of
A =[0.00,0.01,0.02,0.03] on MSDIALOG (left) and
MANTIS (right) with 1% labeled data.

from ICAST in all settings on the MSDIALOG
and MANTIS datasets. Removing ICGE/ALC/IG
with 1%, 5%, and 10% labeled data, R@1
drops 1.97%/1.41%/1.17%, 4.60%/3.24%/4.65%,
and 0.85%/1.64%/1.36% on the MSDIALOG
dataset; R@1 drops 2.00%/1.02%/0.74%, 1.20/
1.58/2.76%, and 0.78%/0.54%/0.90% on the
MANTIS dataset. This shows that the three func-
tional components are helpful to rank correct
answers on top.

6.3 Analysis

Figure 3 shows the impact of threshold of intent
confidence gain A\ on classification performance
of ICAST. We can see that as )\ increases, the
average number of selected intents decreases.
Meanwhile, F1 scores increase first, achieve top
at A = 0.02, and then descend, because with a
larger A\, more intents are selected to calibrate
the answer labels, which leads to an increase of
F1 scores. Then, adding more generated intents
might also introduce noise for answer selection,
which is the possible reason for the decrease of F1.
Thus, A can balance between more predicted in-
tents and less noisy intents.

6.4 Case Study

Table 4 shows a case study of how ICAST and
TSST select different answers for the same given
context.

In general, a model chooses the candidate an-
swer with the highest probability among all can-
didate answers as the correct answer. In this case,
the strongest baseline TSST incorrectly chooses
the second candidate answer (A2) with the prob-
ability of 0.96, instead of the first candidate an-
swer (Al) which has a probability of 0.00. It
shows that selecting answers based solely on their

Context Utterances Intents

User: How does a photon picture make the pattern? 0Q

Agent: Photons in mainstream physics, are quantum mechanical
entities which in great numbers build up the classical electromagnetic PA
radiation...

User: Do you know why the photon which is hitting forward is causing

IR
an electron to move up-down?

Candidate Answers Model ICG Probablity
Al: The theories of quantum mechanics TSST / 0.00
for electron photon interactions can

be found in https://www.website.com. ICAST 0.14 0.99
A2: The energy of a photon is equal to TSST / 0.96
the level spacing of a two-level system.

It is a result of energy conservation... ICAST -0.13 0.71

Table 4: canswers by the ICAST and TSST mod-
els. Each model chooses the candidate answer with
the highest probability among all candidate an-
swers as the correct answer. If ICG is larger than
A, then ICAST combines the intents and context
to select answer. Here, A = 0.00. Note that the
first candidate answer (A1) is the correct answer.

probabilities can result in significant bias. ICAST
calibrates the probabilities based on ICG, and it
correctly chooses A1 with the probability of 0.99,
while skipping A2 with the probability of 0.71.
ICAST computes ICGs by combining context and
its predicted intents, and each candidate answer.
The ICG of the correct answer is larger than A,
which indicates that ICAST can capture the intent
information from the correct answer, so ICAST
increases the probability of correct answer from
0.00 to 0.99. Meanwhile, the ICG of the incor-
rect answer is less than A, which indicates ICAST
cannot capture the intent information from and
incorrect answer, so ICAST decreases the prob-
ability of incorrect answer from 0.96 to 0.71.
Furthermore, we explain the intuition. In context
utterances, the user asks the (OQ), and then the
agent gives a (PA) which can explain the original
question, but the user still raises the (IR) to ask
the agent for more detailed information. Next, the
user anticipates an answer that includes a link or
document providing more detailed information,
instead of a continuous explanation in text. Intu-
itively, the predicted intents can aid in monitor-
ing changes in the user’s expectations throughout
the utterances.

7 Conclusion and Future Work

In this paper, we propose intent-calibrated self-
training (ICAST) based on the teacher-student
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self-training and intent-calibrated answer selec-
tion: We train a teacher model on labeled data
to predict intent labels on unlabeled data; select
high-quality intents by intent confidence gain to
enrich inputs and predict pseudo answer labels;
and retrain a student model on both the labeled
and pseudo-labeled data. We conduct massive
experiments on two benchmark datasets and the
results show that ICAST outperforms baselines
even with small but similar proportions (i.e., 1%,
5%, and 10%) of labeled data, respectively. Note
that we understand that a greater proportion of
labeled data may lead to an increase of perfor-
mance, e.g., BERT-FP with 10% labeled data
beat ICAST with 1% labeled data for across
all metrics for MSDIALOG. However, we focus
on verifying if the proposed ICAST outperforms
other methods given a very few amounts of la-
beled data. In some cases, ICAST can outper-
form baselines with fewer labeled data. In the
future work, we will explore more predictable
dialogue context (e.g., user profiles) than intents.

8 Reproducibility

To facilitate reproducibility of the results reported
in this paper, the code and data used are available
at https://github.com/dengwentao99
/ICAST.

Limitations

Our proposed ICAST also has the following lim-
itations. First, [CAST only considers user intents
to enhance answer selection. It is limited because
we only capture the user’s expectations from the
predicted intent labels, without considering other
user-centered factors, such as user profiles and
user feedback. Second, like retrieval-based meth-
ods that have been shown to have a good effect
in professional question-answering fields, ICAST
also has limitations when it comes to diversity. For
example, ICAST cannot retrieve multiple correct
answers with different expressions given the same
context. Third, since our model needs to predict
the intent labels, to complete this task, the model
needs a few additional parameters.

Ethics Considerations

We realize that there are risks in developing the
dialogue system, so it is necessary to pay attention

to the ethics issues of the dialogue system. It is
crucial for a dialogue system to give correct an-
swers to the users while avoiding ethical problems
such as privacy preservation problems. Due to the
fact that we have used public datasets to train
our model, these datasets are carefully processed
by publishers to ensure that there are no ethical
problems. Specifically, the dataset publishers per-
formed user ID anonymization on all datasets, and
only the tokens ‘‘user’” and ‘‘agent’’ are used
to represent the roles in the conversation. The
utterances do not contain any user privacy infor-
mation (e.g., names, phone numbers, addresses)
to prevent privacy disclosure.
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