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Abstract

Geocoding is the task of converting location
mentions in text into structured data that en-
codes the geospatial semantics. We propose
a new architecture for geocoding, GeoNorm.
GeoNorm first uses information retrieval tech-
niques to generate a list of candidate entries
from the geospatial ontology. Then it reranks
the candidate entries using a transformer-based
neural network that incorporates information
from the ontology such as the entry’s popula-
tion. This generate-and-rerank process is ap-
plied twice: first to resolve the less ambigu-
ous countries, states, and counties, and sec-
ond to resolve the remaining location men-
tions, using the identified countries, states, and
counties as context. Our proposed toponym
resolution framework achieves state-of-the-art
performance on multiple datasets. Code and
models are available at https://github.
com/clulab/geonorm.

1 Introduction

Geospatial information extraction is a type of se-
mantic extraction that plays a critical role in tasks
such as geographical document classification and
retrieval (Bhargava et al., 2017), historical event
analysis based on location data (Tateosian et al.,
2017), tracking the evolution and emergence of
infectious diseases (Hay et al., 2013), and disas-
ter response mechanisms (Ashktorab et al., 2014;
de Bruijn et al., 2018). Such information extraction
can be challenging because different geographical
locations can be referred to by the same place name
(e.g., San Jose in Costa Rica vs. San Jose in Cali-
fornia, USA), and different place names can refer
to the same geographical location (e.g., Leeuwar-
den and Ljouwert are two names for the same city
in the Netherlands). It is thus critical to resolve
these place names by linking them with their cor-
responding coordinates from a geospatial ontology
or knowledge base.

Geocoding, also called toponym resolution or
toponym disambiguation, is the subtask of geop-
arsing that disambiguates place names (known as
toponyms) in text. Given a textual mention of a
location, a geocoder chooses the corresponding
geospatial coordinates, geospatial polygon, or en-
try in a geospatial database. Approaches to geocod-
ing include generate-and-rank systems that first
use information retrieval systems to generate can-
didate entries and then rerank them with hand-
engineered heuristics and/or supervised classifiers
(e.g., Grover et al., 2010; Speriosu and Baldridge,
2013; Wang et al., 2019), vector-space systems that
use deep neural networks to encode place names
and database entries as vectors and measure their
similarity (e.g., Hosseini et al., 2020; Ardanuy
et al., 2020), and tile-classification systems that use
deep neural networks to directly predict small tiles
of the map rather than ontology entries (e.g., Gritta
et al., 2018a; Cardoso et al., 2019; Kulkarni et al.,
2021). The deep neural network tile-classification
approaches have been the most successful, but they
do not naturally produce an ontology entry, which
contains semantic metadata needed by users.

We propose a new architecture, GeoNorm,
shown in Figure 1, which builds on all of these
lines of research: it uses pre-trained deep neural
networks for the improved robustness in matching
place names, while leveraging a generate-then-rank
architecture to produce ontology entries as output.
It couples this generate-and-rank process with a
two-stage approach that first resolves the less am-
biguous countries, states, and counties, and then
resolves the remaining location mentions, using the
identified countries, states, and counties as context.

Our work makes the following contributions:

• Our proposed architecture for geocoding
achieves new state-of-the-art performance,
outperforming prior work by large margins on
toponym resolution corpora: 19.6% improve-
ment on Local Global Lexicon (LGL), 9.0%
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Alberta’s capital city sits in eighth place out of 10 Canadian cities for its socio-economic and physical health . . . for whatever reason, is quite high in Ed-
monton compared to other cities . . . The Conference Board of Canada cautioned that benchmarking is not an end onto itself. . .
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Figure 1: The architecture of our model, GeoNorm, applied to a sample text. The location mentions to be resolved
are in bold.

on GeoWebNews, and 16.8% on TR-News.
• Our candidate generator alone, based on sim-

ple information retrieval techniques, outper-
forms more complex neural models, demon-
strating the importance of establishing strong
baselines for evaluation.

• Our reranker is the first application of pre-
trained transformers for encoding location
mentions and context for toponym resolution.

• Our two-stage resolution provides a simple
and effective new approach to incorporating
document-level context for geocoding.

2 Related Work

The current work focuses on mention-level geocod-
ing. Related tasks include document-level geocod-
ing and geotagging. Document-level geocoding
takes as input an entire text and produces as output
a location from a geospatial ontology, as in ge-
olocating Twitter users or microblog posts (Roller

et al., 2012; Rahimi et al., 2015; Lee et al., 2015;
Rahimi et al., 2017; Hoang and Mothe, 2018; Ku-
mar and Singh, 2019; Luo et al., 2020) and geo-
graphic document retrieval and classification (Gey
et al., 2005; Adams and McKenzie, 2018). Geo-
tagging takes as input an entire text and produces
as output a list of location phrases (Gritta et al.,
2018b). Mention-level geocoding, the focus of the
current article, takes as input location phrases from
a text and produces as output their corresponding
locations in a geospatial ontology. This is related
to the task of linking phrases to Wikipedia, though
geospatial ontologies do not have full text articles
for each of their concepts, which are required for
training many recent Wikipedia linking approaches
(e.g., Yamada et al., 2022; Ayoola et al., 2022b).

Early systems for mention-level geocoding used
hand-crafted rules and heuristics to predict geospa-
tial labels for place names: Edinburgh geoparser
(Grover et al., 2010), Tobin et al. (2010), Lieber-
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man et al. (2010), Lieberman and Samet (2011),
CLAVIN (Berico Technologies, 2012), GeoTxt
(Karimzadeh et al., 2013), and Laparra and Bethard
(2020). The most common features and heuristics
were based on string matching, population count,
and type of place (city, country, etc.).

Later geocoding systems used heuristics of
rule-based systems as features in supervised ma-
chine learning models, including logistic regression
(WISTR, Speriosu and Baldridge, 2013), support
vector machines (Martins et al., 2010; Zhang and
Gelernter, 2014), random forests (MG, Freire et al.,
2011; Lieberman and Samet, 2012), stacked Light-
GBMs (DM_NLP, Wang et al., 2019) and other
statistical learning methods (Topocluster, DeLozier
et al., 2015; CBH, SHS, Kamalloo and Rafiei,
2018). These systems typically applied a generate-
then-rerank framework: the mention text is used to
query an information retrieval index of the geospa-
tial ontology and produce candidate ontology en-
tries, then a supervised machine-learning model
reranks the candidates using additional features.

Some deep learning models approach geocoding
as a vector-space problem. Both the mention text
and ontology entries are converted into vectors, and
vector similarity is used to select the most appro-
priate ontology entry for each mention (Hosseini
et al., 2020; Ardanuy et al., 2020). Such approaches
should allow more flexible matching of mentions
to concepts, but we find that simple information
retrieval techniques outperform these models.

Other deep learning models approach geocoding
as a classification problem by dividing the Earth’s
surface into an N×N grid of tiles. Place names and
their features are mapped to one of these tiles us-
ing convolutional (CamCoder, Gritta et al., 2018a;
MLG, Kulkarni et al., 2021) or recurrent neural net-
works (Cardoso et al., 2019). Such approaches can
flexibly match mentions to concepts and can also
incorporate textual context, but do not naturally
produce ontology entries, which contain semantic
metadata needed by users.

Our proposed approach combines the tight ontol-
ogy integration of the generate-and-rerank systems
with the robust text and context encoding of the
deep neural network classifiers.

3 Proposed Methods

We define the task of toponym resolution as fol-
lows. We are given an ontology or knowledge
base with a set of entries E = {e1, e2, ..., e|E|}.

Each input is a text made up of sentences T =
{t1, t2, . . . , t|T |} and a list of location mentions
M = {m1,m2, ...,m|M |} in the text. The goal is
to find a mapping function f(mi) = ej that maps
each location mention in the text to its correspond-
ing entry in the ontology.

We approach toponym resolution using a can-
didate generator followed by a candidate reranker.
The candidate generator, G(m,E) → Em, takes
a mention m and ontology E as input, and gener-
ates a list of candidate entries Em, where Em ⊆ E
and |Em| ≪ |E|. As the candidate generator must
search a large ontology and produce only a short
list of candidates, the goal for G will be high re-
call and high runtime efficiency. The candidate
reranker, R(m,Em) → Êm, takes a mention m
and the list of candidate ontology entries Em, and
sorts them by their relevance or importance to pro-
duce a new list, Êm. As the candidate ranker needs
to work only with a short list of candidates, the
goal for R will be high precision, especially at rank
1, with less of a focus on runtime efficiency.

3.1 Candidate Generator
Our candidate generator is inspired by prior work
on geocoding in using information retrieval tech-
niques to search for candidates in the ontology
(Grover et al., 2010; Berico Technologies, 2012).
Accurate candidate generation is essential, since
the generator’s recall is the ceiling performance
for the reranker. As we will see in section 5, our
proposed candidate generator alone is competitive
with complex end-to-end systems from prior work.

Our sieve-based approach, detailed in alg. 1,
tries searches ordered from least precise to most
precise until we find ontology entries that match
the location mention. Intuitively, our goal is for
mentions like Austria to match the entry AUSTRIA

[2782113] in GeoNames before it matches AUS-
TRALIA [2077456], but still allow a typo like Aus-
trala to match AUSTRALIA [2077456].

We create one document in the index for each
name ne of an entry e in the GeoNames ontology.
A location mention m is matched to a name ne

by attempting a search with each of the following
matching strategies, in order:

EXACT m exactly matches (ignoring whitespace)
the string ne

FUZZY m is within a 2 character Levenshtein edit
distance (ignoring whitespace) of ne
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Algorithm 1: Candidate generator.
Input: a location mention, m

a maximum number of candidates, k
the GeoNames ontology, E

Output: a list of candidate entries Em

// Index ontology
1 I ← ∅
2 for e ∈ E do
3 name← CANONICALNAME(E, e)
4 synonyms← SYNONYMS(E, e)
5 for n ∈ {name} ∪ synonyms do
6 I ← I ∪ {CREATEDOCUMENT(n, e)}
// Search for candidates

7 Em ← ∅
8 for t ∈ { EXACT, FUZZY, CHARACTERNGRAM,

TOKEN, ABBREVIATION, COUNTRYCODE } do
9 Em ← SEARCH(I,m, t)

10 if Em ̸= ∅ then
11 break
// Select top entries by population

12 Em ← SORT(Em, KEY=e→ POPULATION(E, e))
13 return top k elements of Em

CHARACTERNGRAM m has at least one charac-
ter 3-gram overlap with ne

TOKEN m has at least one token (according to the
Lucene StandardAnalyzer) overlap with ne

ABBREVIATION m exactly matches the capital
letters of ne

COUNTRYCODE e is a country and m exactly
matches a e’s country code

Once one of the searches has retrieved a list of
matching names, we recover the ontology entry
for each name, sort those ontology entries by their
population in the GeoNames ontology, and return
the k most populous ontology entries. This list,
Em is then the input to the candidate reranker.

3.2 Candidate Reranker
Our candidate reranker is inspired by work on med-
ical concept normalization (Xu et al., 2020; Ji et al.,
2020). The reranker takes a mention, m, and the
list of candidate entities from the candidate gen-
erator, Em, encodes them with a transformer net-
work, and uses these encoded representations to
perform classification over the list to select the
most probable entry. Formally, the model predic-
tion, GEONORM(m,Em) = ê, is calculated as:

si = TOINPUT(m,Ei
m)

Ai = TRANSFORMER(si)

bi = Ai
0 ⊕ log(POP(E,Ei

m))⊕ TYPE(E,Ei
m)

ci = (biWT
1 )W

T
2

ŷ = softmax(c0 ⊕ . . .⊕ ck)

where:

• Ei
m is the ith candidate entry for mention m

• TOINPUT(m, e) produces a string of the form
[CLS] m [SEP] C(E, e) [SEP] S(E, e)1
[SEP] . . . [SEP] S(E, e)|S(E,e)| [SEP],
where C(E, e) is the canonical name of e in
the ontology, and S(E, e) is the list of alter-
nate names of e in the ontology.

• TRANSFORMER(s) tokenizes the string s into
word-pieces and produces contextualized em-
beddings for each of the word-pieces.

• Ai
0 is the contexualized representation for the

[CLS] token of candidate entry i’s input string
• POP(E, e) is the population of concept e in

the ontology E
• TYPE(E, e) is a one-hot vector identifying

which of the T types in the ontology E the
concept represents1

• ⊕ denotes vector concatenation
• W1 ∈ R150×(H+1+T ) and W2 ∈ R1×150 are

learned weight matrices, where H is the trans-
former’s hidden dimension

• ŷ is a probability distribution over the k en-
tries proposed by the candidate generator

We represent the mention text + candidate entity
synonyms with the contextualized representation
of the [CLS] token, similar to applications of trans-
formers to text classification. We include the pop-
ulation feature to allow the model to learn that
locations in text are more likely to refer to high
population than low population places (e.g., Paris,
France vs. Paris, Texas, USA), and we take the log-
arithm of the population under the assumption that
it is more important to capture the order of magni-
tude (e.g., thousands vs. millions) than the exact
number. We include the type feature to allow the
model to learn that locations in text are more likely
to refer to some types of geographical features than
others (e.g., San José, the capital of Costa Rica, vs.
San José, the province).

The candidate reranker is trained with a standard
classification loss:

LR = y · log(ŷ)

where y ∈ R|Em| is a one-hot vector representing
the correct candidate entry.

1GeoNames has T = 681 types. For example, PPLC
means capital of a political entity. Definitions for all types
(“feature codes”) are at http://download.geonames.
org/export/dump/featureCodes_en.txt
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3.3 Context Incorporation
The text around a mention may provide clues (e.g.,
the context Minnesota State Patrol urges motorists
to drive with caution. . . in Becker, Clay, and Dou-
glas suggests that Clay refers to Clay County, Min-
nesota, even though Clay County, Missouri is more
populous). Thus, we consider two approaches to
incorporating context.

context=csent A simple approach is to take the
c-sentence window surrounding the mention m and
encode it with the the same transformer as was used
to encode m + e. The contextualized representa-
tion of the c-sentence window’s [CLS] token can
then be concatenated into b alongside the other fea-
tures. The 512 word-piece limit on the size of the
transformer input means that this approach cannot
incorporate the entire document.

context=2stage To include the full document
context, we take advantage of the fact (demon-
strated in appendix A.1) that toponyms at the top
of the hierarchy, like countries and states, can often
be resolved precisely without context as they are
less ambiguous. We thus propose Algorithm 2, a
two-stage approach to geocoding. Lines 3-7 are the
context-free stage, where GeoNorm is first applied
to all location mentions. If the feature type of a
predicted entry, TYPE(e), is an administrative dis-
trict 1-3 (i.e., the top of the geographic hierarchy:
countries, states, or counties), then the prediction
is accepted. Such predictions are converted to their
administrative codes (e.g., United States → US)
and added to the context. Lines 8-11 are the second
stage, where the geocoding system is applied to all
remaining location mentions but this time incorpo-
rating the collected context. The context is formed
by concatenating together the collected toponym
codes, where for example, if Canada (CA) and Al-
berta (01) were found in the document as in fig. 1,
the context string would look like “CA || 01”.

4 Experiments

4.1 Datasets
We conduct experiments on three toponym resolu-
tion datasets. Local Global Lexicon (LGL; Lieber-
man et al., 2010) was constructed from 588 news
articles from local and small U.S. news sources.
GeoWebNews (Gritta et al., 2019) was constructed
from 200 articles from 200 globally distributed
news sites. TR-News (Kamalloo and Rafiei, 2018)
was constructed from 118 articles from various

Algorithm 2: Two-stage toponym resolu-
tion using document-level context.

Input: location mentions, M
GeoNames ontology, E

1 R̂← {}
2 C ← ∅
// Resolve toponyms without context

3 for m ∈M do
4 ê← GEONORM(m,E)
5 if TYPE(ê) ∈ {adm1,adm2,adm3} then
6 R̂[m]← ê
7 C ← C ∪ {CODE(ê)}
// Resolve toponyms with context

8 c← "||".join(C)
9 for m ∈M do

10 if m ̸∈ R̂ then
11 R̂[m]← GEONORM(m+ c, E)

12 return R̂

Dataset Train Dev. Test

Topo. Art. Topo. Art. Topo. Art.

LGL 3112 411 419 58 931 119
GeoWebNews 1641 140 281 20 477 40
TR-News 925 82 68 11 282 25

Table 1: Numbers of articles (Art.) and manually anno-
tated toponyms (Topo.) in the train, development, and
test splits of the toponym resolution corpora.

global and local news sources. As there are no
standard publicly available splits for these datasets,
we split each dataset into a train, development, and
test set according to a 70%, 10% , and 20% ratio.
To enable replicability, we will release these splits
upon publication. The statistics of all datasets are
shown in table 1.

4.2 Database
Our datasets use GeoNames2, a crowdsourced
database of geospatial locations, with almost 7 mil-
lion entries and a variety of information such as
geographic coordinates (latitude and longitude), al-
ternative names, feature type (country, city, river,
mountain, etc.), population, elevation, and posi-
tions within a political geographic hierarchy. An
example entry from GeoNames is shown in fig. 2.

4.3 Evaluation Metrics
There is not yet agreement in the field of toponym
resolution on a single evaluation metric. Therefore,
we gather metrics from prior work and use all of
them for evaluation.

2https://www.geonames.org/
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Figure 2: An entry for Tucson in GeoNames

Accuracy is the number of location mentions
where the system predicted the correct database en-
try ID, divided by the number of location mentions.
Higher is better, and a perfect model would have
accuracy of 1.0.

Accuracy@161km measures the fraction of
system-predicted (latitude, longitude) points that
were less than 161 km (100 miles) away from
the human-annotated (latitude, longitude) points.
Higher is better, and a perfect model would have
Accuracy@161km of 1.0.

Mean error distance calculates the mean over
all predictions of the distance between each system-
predicted and human-annotated (latitude, longi-
tude) point. Lower is better, and a perfect model
would have a mean error distance of 0.0.

Area Under the Curve calculates the area under
the curve of the distribution of geocoding error
distances. Lower is better, and a perfect model
would have an area under the curve of 0.0.

4.4 Implementation details
We implement the candidate reranker with Lucene3

v8.4.1 under Java 1.8. When indexing Geo-
Names, we also index countries under their ad-
jectival forms in Wikipedia4. We implement
the candidate reranker with the PyTorch5 v1.7.0
APIs in Huggingface Transformers v2.11.0 (Wolf
et al., 2020), using either bert-base-uncased or
bert-multilingual-uncased. We train with the
Adam optimizer, a learning rate of 1e-5, a maxi-
mum sequence length of 128 tokens, and a num-
ber of epochs of 30. We explored a small num-
ber of learning rates (1e-5, 1e-6, 5e-6) and epoch

3https://lucene.apache.org/
4https://en.wikipedia.org/wiki/List_

of_adjectival_and_demonymic_forms_for_
countries_and_nations

5https://pytorch.org/

numbers (10, 20, 30, 40) on the development data.
When training without context, we use one Tesla
V100 GPU with 32GB memory and a batch size of
8. When training with context, we use four Tesla
V100 GPU with 32GB memory and a batch size of
32. The total number of parameters in our model is
168M and the training time is about 3 hours.

4.5 Systems
We compare to a variety of geocoding systems:

Edinburgh Grover et al. (2010) introduced a
rule-based extraction and disambiguation system
that uses heuristics such as population count, spa-
tial minimization, type, country, and some contex-
tual information (containment, proximity, locality,
clustering) to score, rank, and choose a candidate.

Mordecai Halterman (2017) introduced a
generate-and-rank approach that uses Elasticsearch
to generate candidates and neural networks based
on word2vec (Mikolov et al., 2013) to rerank them.
Its models are trained on proprietary data.

CamCoder Gritta et al. (2018a) introduced a tile-
classification approach that combines a convolu-
tional network over the target mention and 400
tokens of context with a population vector derived
from location mentions in the context and popula-
tions from GeoNames. CamCoder predicts one of
7823 tiles of the earth’s surface. See appendix A.2
for further CamCoder details.

DeezyMatch Hosseini et al. (2020) introduced
a vector-space approach that first pre-trains an
LSTM-based classifier on GeoNames taking string
pairs as input, and then fine-tunes the pair classi-
fier on the target dataset. The trained DeezyMatch
model compares mentions to database entries by
generating vector representations for both and mea-
suring their L2-norm distance or cosine similarity.

SAPBERT Liu et al. (2021) introduced a vector-
space approach that pretrains a transformer network
on the database using a self-alignment metric learn-
ing objective and online hard pairs mining to cluster
synonyms of the same concept together and move
different concepts further away. The pre-trained
SAPBERT is then fine-tuned on the target dataset.
SAPBERT was trained for the biomedical domain,
but is easily retrained for other domains. We pre-
train SAPBERT on GeoNames and finetune it on
the toponym resolution datasets.
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Model LGL (test) GeoWebNews (test) TR-News (test)

R@1 R@20 R@1 R@20 R@1 R@20

DeezyMatch (Hosseini et al., 2020) .172 .538 .262 .671 .206 .702
SAPBERT (Liu et al., 2021) .245 .742 .428 .746 .355 .780
GeoNorm (+gen, -rank) .606 .962 .694 .866 .716 .965

Table 2: Performance of candidate generators on the test sets. R@1 is useful for measuring the accuracy of the
candidate generator when used directly as a geocoder. R@20 is useful for estimating the ceiling performance of a
top-20 reranker based on that candidate generator.

LGL (test) GeoWebNews (test) TR-News (test)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

Edinburgh (Grover et al., 2010) .611 - - - .738 - - - .750 - - -
CamCoder (Gritta et al., 2018a) .580 .651 82 .288 .572 .665 155 .290 .660 .778 89 .196
Mordecai (Halterman, 2017) .322 .375 926 .594 .291 .333 1072 .633 .472 .553 6558 .427
DeezyMatch (Hosseini et al., 2020) .172 .182 654 .704 .262 .323 537 .601 .206 .220 741 .705
SAPBERT (Liu et al., 2021) .245 .260 566 .630 .428 .499 357 .446 .355 .362 595 .568
ReFinED (Ayoola et al., 2022a) .576 - - - .658 - - - .720 - - -
ReFinED (fine-tuned) .786 - - - .782 - - - .858 - - -

GeoNorm (+gen -rank) .606 .685 119 .263 .694 .774 92 .194 .716 .812 95 .169
GeoNorm (+gen +rank, -context) .761 .785 59 .167 .788 .834 61 .131 .798 .816 89 .154
GeoNorm (+gen +rank, +context=2stage) .807 .824 46 .135 .828 .862 55 .114 .918 .933 34 .057

GeoNorm (+gen +rank, +context=2stage, +alldata) .799 .828 52 .136 .832 .876 54 .104 .897 .911 36 .073

Table 3: Performance on the test sets. Higher is better for accuracy (Acc) and accuracy@161km (A161). Lower is
better for mean error (Err) and area under the error distances curve (AUC). We do not report distance-based metrics
for Edinburgh or ReFinED as these extraction+disambiguation systems do not make predictions for all mentions.
The best performance on each dataset+metric is in bold (excluding the final model that was trained on more data).

ReFinED Ayoola et al. (2022a) introduced a
vector-space approach for joint extraction and dis-
ambiguation of Wikipedia entities. One trans-
former network generates contextualized embed-
dings for tokens in the text, another generates em-
beddings for entries in the ontology, and tokens are
matched to entries by comparing dot products over
embeddings. ReFinED was trained on Wikipedia,
and Wikipedia entries for place names have Geo-
Names IDs, so ReFinED can be used as a geocoder.

ReFinED (fine-tuned) ReFinED can also be fine-
tuned, so we take the released version of ReFinED
and fine-tune it for geocoding on each of the to-
ponym datasets.

5 Results

We first evaluate our context-free candidate genera-
tor, comparing it to recent context-free candidate
generators. Table 2 shows that our approach out-
performs approaches from prior work by large mar-
gins, both in accuracy of the top entry (R@1) and
whether the correct entry is in the top 20 (R@20).

We next evaluate our complete generate-and-
rank system against other geocoders. We first per-

form model selection on the development set as
described in appendix A.3 to select four models to
run on the test set: the candidate generator alone,
the best generate-and-rank system with no context,
and the best generate-and-rank system with con-
text. Table 3 shows that our proposed GeoNorm
model outperforms all prior work across all to-
ponym resolution test sets on all metrics. Even
without incorporating context, our generate-and-
rank framework meets or exceeds the performance
of almost all models from prior work. The excep-
tion is ReFinED, where our context-free model
outperforms ReFinED out-of-the-box, but slightly
underperforms our finetuned version of ReFinED.
However, adding the novel two-stage document-
level context yields large gains over the context
free version of our model, and outperforms even
the finetuned ReFinED. The final row the table
shows the peformance of a model trained on the
combined training data from all datasets, which we
release for English geocoding under the Apache
License v2.0, for off-the-shelf use at https://
github.com/clulab/geonorm.
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Example Candidate Rank

Name Pop. Type State RF G GR GRC3 GRCD

1 The educational philosophy at the Washing-
ton Latin School in Alexandria is somewhat
similar to Ahlstrom’s previous endeavors.

Alexandria 159467 PPLA2 1
City of Alexandria 139966 ADM2 1

2
It was Los Angeles police officers she at-
tempted to blow up.

Los Angeles County 9818605 ADM2 1 2
Los Angeles 3971883 PPLA2 2 1
Los Angeles 125430 PPLA2 3 3
Los Angeles 4217 PPL 4 4

3 the Minnesota State Patrol urges motorists to
drive with caution as flooding continues to
affect area highways. Water over the road-
way is currently affecting the following areas
in Becker, Clay, and Douglas

Clay County 221939 Missouri 1 4
Clay County 190865 Florida 2 3
Clay County 58999 Minnesota 3 1
Clay County 26890 Indiana 4 2

4
he writes, as do my efforts to insure
New London is a safe community.

New London County 274055 ADM2 1 3 4
New London 27179 PPL 2 1 1
New London 7172 PPL 3 2 3
New London 1882 PPL 4 4 2

Table 4: Examples of predictions from ReFinED (RF), our candidate generator alone (G), our generate-and-rerank
system without context (GR), our system with sentence context (GRC3), and our system with 2-stage document
context (GRCD). Target location mentions are underlined. Human annotated ontology entries are in bold.

6 Qualitative Analysis

Table 4 shows some qualitative analysis of errors
that ReFinED and different variants of GeoNorm
made. Row 1 shows an example where ReFinED
fails but GeoNorm succeeds, by more effectively
using geospatial metadata such as population and
feature type. Row 2 shows an example where
GeoNorm fails with a candidate generator alone
but succeeds with a context-free reranker, by not
relying on population alone and instead jointly con-
sidering the name, population, and feature type
information (ADM2 represents a county, PPLA2
represents a city). Row 3 shows an example where
GeoNorm fails without context but succeeds with
context, by taking advantage of the Minnesota in
the context to select the Clay County that would
otherwise seem implausible due to its lower pop-
ulation. Finally, row 4 shows an example where
our best GeoNorm model still fails. The candidate
generator includes the correct ontology entry in its
top-k list, but neither the name, population, fea-
ture code, nor nearby context suggest the correct
candidate. The global context includes toponyms
from the same state, allowing the model with docu-
ment context to move the correct answer up from
rank 4 to rank 2. But fully addressing this issue
would likely require predicting countries and states
of toponyms in the text before resolving them.

7 Limitations

GeoNorm’s candidate generator is based on infor-
mation retrieval. This is efficient but not very flexi-
ble in string matching, and when the candidate gen-
erator fails to produce the correct candidate entry,
the candidate reranker also necessarily fails. For
example, as table 2 shows, GeoNorm’s reranker
achieves only .866 recall@20 on the GeoWebNews
dataset, meaning that 13.4% of the time, the correct
candidate is not in the top 20 results returned by
the candidate generator. One solution might be to
replace the information retrieval based candidate
generator with a neural network to provide more
robust string matching, though the neural network
candidate generators from prior work in table 2
actually perform worse than GeoNorm’s candidate
generator. Another solution may be to find smarter
ways to filter the generated candidates, perhaps by
building on the two-stage resolution approach to
use document-level context to filter the candidates
to those in appropriate countries and states.

GeoNorm is also limited by its training and eval-
uation data, which covers only thousands of En-
glish toponyms from news articles, while there are
many millions of toponyms in many different lan-
guages across the world. It is likely that there are
regional differences in GeoNorm’s accuracy that
will need to be addressed by future research.
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8 Conclusion

We propose a new toponym resolution architecture,
GeoNorm, that combines the tight ontology integra-
tion of generate-and-rerank systems with the robust
text encoding of deep neural networks. GeoNorm
consists of an information retrieval-based candi-
date generator, a BERT-based reranker that incor-
porates features important to toponym resolution
such as population and type of location, and a
novel two-stage resolution strategy that incorpo-
rates document-level context. We evaluate our
proposed architecture against prior state-of-the-
art, using multiple evaluation metrics and multiple
datasets. GeoNorm achieves new state-of-the-art
performance on all datasets.
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A Appendix

A.1 Performance by toponym type
Table A1 shows that without context, GeoNorm is
most precise at resolving toponyms at the top of
the hierarchy, like countries and states.

A.2 CamCoder details
The original CamCoder code, when querying Geo-
Names to construct its input population vector from
location mentions in the context, assumes it has
been given canonical names for those locations.
Since canonical names are not known before loca-
tions have been resolved to entries in the ontology,
we have CamCoder use mention strings instead of
canonical names for querying GeoNames.

A.3 Model selection
We performed model selection on the development
sets as shown in table A2. All GeoNorm mod-
els that included a reranker (R) outperformed the
candidate generator (G) alone. We explored the
population (P) and type (T) features in models with-
out context, and found that they helped slightly on
LGL and GeoWebNews but hurt slightly on TR-
News. For models with context, rerankers fine-
tuned from bert-multilingual-uncased (M)
slightly outperformed models fined-tuned from
bert-base-uncased. Adding sentence level con-
text (C1/C3/C5) to the rerankers helped on TR-
News, but did not help on LGL or GeoWebNews.
Applying the two-stage algorithm for document-
level context led to large gains on LGL and TR-
News, but did not help on GeoWebNews.

We thus selected the following models for
evaluation: GeoNorm G, GeoNorm GRPT, and
GeoNorm GRPTMCD.

A.4 Artifact intended use and coverage
The intended use of bert-base-uncased and
bert-multilingual-uncased is to be “fine-tuned
on tasks that use the whole sentence”6. We have
used them for that purpose when encoding the con-
text, but also for the related task of encoding place
names, which are usually short phrases. These ar-
tifacts are trained on English books and English
Wikipedia and released under an Apache 2.0 li-
cense which is compatible with our use.

The intended use of our geocoding model is
matching English place names in text to the Geo-

6https://huggingface.co/
bert-base-uncased

Names ontology. Though GeoNames covers mil-
lions of place names, our evaluation corpora cover
only English news articles, and thus the perfor-
mance we report is only predictive of performance
in that domain.
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Dataset Precision Recall

Country State County Other Country State County Other

LGL 0.968 0.806 0.829 0.745 0.893 0.915 0.739 0.763
GWN 1.000 0.765 0.778 0.752 0.966 0.591 1.000 0.810
TR-News 1.000 1.000 0.000 0.830 1.000 1.000 0.000 0.830

Table A1: Precision and recall of GeoNorm (without context) on three geocoding development sets.

LGL (dev) GeoWebNews (dev) TR-News (dev)

Model Acc A161 Err AUC Acc A161 Err AUC Acc A161 Err AUC

GeoNorm G .594 .671 201 .289 .644 .858 73 .165 .677 .735 187 .242

GeoNorm GR .802 .819 64 .141 .865 .925 39.5 .072 .897 .912 64.0 .081
GeoNorm GRP .792 .819 68 .141 .861 .918 34.7 .072 .868 .882 65.7 .100
GeoNorm GRT .807 .828 61 .134 .865 .915 31.9 .073 .897 .912 42.7 .074
GeoNorm GRPT .797 .821 57 .140 .886 .940 29.8 .060 .882 .897 63.5 .090
GeoNorm GRPTM .814 .828 60 .132 .879 .922 43.2 .072 .882 .897 65.0 .092

GeoNorm GRPTC1 .807 .823 55 .132 .865 .915 39.3 .075 .882 .882 110 .109
GeoNorm GRPTC3 .807 .816 65 .142 .868 .918 40.3 .073 .882 .897 64.9 .092
GeoNorm GRPTC5 .802 .814 68 .145 .865 .911 42.8 .078 .897 .912 64.0 .081
GeoNorm GRPTMC1 .816 .831 62 .133 .872 .940 23.5 .057 .882 .897 64.6 .090
GeoNorm GRPTMC3 .809 .833 59 .129 .875 .922 35.4 .073 .912 .927 40.6 .063
GeoNorm GRPTMC5 .807 .823 61 .137 .872 .940 29.4 .060 .868 .882 72.6 .103
GeoNorm GRPTMCD .885 .897 29 .079 .879 .925 31.0 .065 .971 .985 6.8 .010

Table A2: Performance on the development sets. Higher is better for accuracy (Acc) and accuracy@161km
(A161). Lower is better for mean error (Err) and area under the error distances curve (AUC). The top score in each
group is in bold, the second best score is underlined. Model features are indicated by the string of characters: G
means the candidate generator was applied, R means a reranker was applied, P means the reranker included the
population feature, T means the reranker included the type feature, M means the reranker was fine-tuned from
bert-multilingual-uncased instead of bert-base-uncased, C1/C3/C5 means the reranker included 1/3/5
sentences of context, and CD means the reranker included the two-stage document-level context algorithm.
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