
An Algebraic Characterization of Total Input Strictly Local Functions

Dakotah Lambert
Université Jean Monnet Saint-Étienne, CNRS

Institut d Optique Graduate School
Laboratoire Hubert Curien UMR 5516

F-42023, Saint-Étienne, France
dakotahlambert@acm.org

Jeffrey Heinz
Stony Brook University

Department of Linguistics
Institute for Advanced Computational Science
jeffrey.heinz@stonybrook.edu

Abstract

This paper provides an algebraic characteriza-
tion of the total input strictly local functions.
Simultaneous, noniterative rules of the form
A→B/C D, common in phonology, are defin-
able as functions in this class whenever CAD
represents a finite set of strings. The algebraic
characterization highlights a fundamental con-
nection between input strictly local functions
and the simple class of definite string languages,
as well as connections to string functions stud-
ied in the computer science literature, the def-
inite functions and local functions. No effec-
tive decision procedure for the input strictly
local maps was previously available, but one
arises directly from this characterization. This
work also shows that, unlike the full class, a
restricted subclass is closed under composition.
Additionally, some products are defined which
may yield new factorization methods.

1 Introduction

The strictly local languages are those in which
membership is decidable by the substrings up to
some fixed width k of its words (McNaughton and
Papert, 1971; Rogers and Pullum, 2011). Such lan-
guages are useful in the description of phonotactic
patterns. Edlefsen et al. (2008) demonstrated that
75% of the patterns in the StressTyp2 database of
stress patterns (Goedemans et al., 2015) are strictly
local for k less than or equal to 6, reminiscent of
Miller’s Law on working memory, that an aver-
age person can hold roughly seven plus or minus
two objects in short-term working memory (Miller,
1956). Even k ⩽ 3 suffices to capture nearly half of
the patterns (see also Rogers and Lambert, 2019).

Chandlee et al. (2014) define the input strictly
local functions to extend this notion to maps. They
provide an efficient learner identifying functions
in this class in the limit from positive data alone,
using polynomial time and space. These mappings
describe phonologically natural processes in which
the output associated with a particular input sym-
bol is uniquely determined by some local context
around that symbol. Evidencing this naturality, 95
percent of maps in the P-Base database of phono-
logical patterns (Mielke, 2008) lie in this class
(Chandlee and Heinz, 2018). Related to this are
the output strictly local maps, in which the out-
put contributed by an input symbol is determined
by the most recent symbols in the previous output
(Chandlee et al., 2015).

One aspect of the study of formal languages is a
deep connection between logic, automata, and alge-
bra (Pin, 1997). Many classes of formal languages
are characterized by decidable properties of an alge-
braic structure associated with each language in the
class. The connection between algebraic structures
and string languages can be extended to string-to-
string maps based on the transducers that generate
them (Filiot et al., 2016; Lambert, 2022).

This paper is structured as follows. Determinis-
tic (sometimes called “unambiguous”) finite-state
acceptors (DFA) and transducers as well as the al-
gebraic structures they induce are described in sec-
tion 2. The formal definition of input strictly local
maps is provided in section 3. The primary result,
an algebraic characterization of this class, is given
there alongside the polytime decision algorithm
that it induces. This section also draws the connec-
tion to research in computer science which studied

25
Proceedings of the Society for Computation in Linguistics (SCiL) 2023, pages 25-34.

Amherst, Massachusetts, June 15-17, 2023

these functions under different names. Next in
section 4 we discuss closure properties and an algo-
rithm for composing transducers. We demonstrate
that input strictly local functions are not closed
under composition, but a subclass of them is so
closed. Other operations under which the full class,
perhaps with extensions, is closed are discussed in
section 5. We conclude with discussion of these
results in section 6.

2 Structures and Machines

A semigroup is a set S closed under some binary
operation · (often denoted by adjacency) which is
associative: a · (b · c) = (a · b) · c. Given some
finite alphabet Σ, the set of all nonempty sequences
made up of those letters forms a semigroup with
the concatenation operation. This is the free semi-
group generated by Σ. A monoid is a semigroup
in which there exists some element e such that for
all x, e · x = x · e = x. Typically this identity
element is represented by 1. The free semigroup
generated by Σ can be adapted to the free monoid
generated by Σ by including the empty sequence
(denoted by λ), the identity for concatenation. The
free semigroup and free monoid generated by Σ
are often denoted Σ+ and Σ∗, respectively.

A formal language L over Σ is some subset of
this free monoid. Two useful equivalence relations
can be defined based on L. Nerode equivalence is
defined such that a N∼ b iff for all v ∈ Σ∗ it holds
that av ∈ L ⇔ bv ∈ L (Nerode, 1958). This is
often called the Myhill-Nerode equivalence rela-
tion, as the well-known Myhill-Nerode theorem
states that a language is regular iff its set of equiv-
alence classes is finite. However, Myhill used a
finer partition to achieve the same result: Myhill
equivalence is defined such that a M∼ b iff for all
u ∈ Σ∗, ua N∼ ub; alternatively, for all u, v ∈ Σ∗,
uav ∈ L ⇔ ubv ∈ L (Rabin and Scott, 1959).
Being a coarser partition, N∼ can never define more
classes than M∼, and the number of classes defined
by M∼ is in the worst case exponential in that de-
fined by N∼ (Holzer and König, 2004), so finiteness
in one translates to the other.

2.1 Illustrating Nerode and Myhill Relations

Consider the example language over {a, b, c} con-
sisting of all and only those words that do not con-
tain an ab substring. Consider which classes must
exist. JabK is the set of words containing an ab
substring. These are rejected, and no suffix can

save them. So if x, y ∈ JabK, for all v it holds
that xv ̸∈ L and yv ̸∈ L. All of these words
are related, and distinct from any accepted words.
But the accepted words partition into two classes:
words that end in a (JaK) and others (JλK). The for-
mer are rejected after adding a b suffix, while the
latter remain accepted after adding a b suffix. No
suffix distinguishes words within these classes, so
the three can define a minimal DFA for L (Nerode,
1958), as will be discussed shortly.

There are then at least three Myhill classes. But
some classes split. An a prefix distinguishes the
strings a and ba, and this generalizes. The class of
accepted words ending in a splits to two: words
ending in a that begin with b (JbaK) and other words
ending in a (JaK). The other class of accepted
words splits to three: words beginning in b (JbK),
nonempty words not beginning in b (JcK), and the
empty word (JλK). An a prefix distinguishes the
first of these from the other two, while the a b
circumfix distinguishes the last from JcK. The six
M∼ classes are JλK, JaK, JbK, JcK, JbaK, and JabK.

The N∼ classes may have ill-defined concatena-
tion. If u N∼ u′, then uv N∼ u′v (it is a left congru-
ence), but it may be that v N∼ v′ while uv ̸N∼ uv′ (it
is not a right congruence). In the current example,
b N∼ c but ab ̸N∼ ac. In contrast, M∼ is compatible
with concatenation (it is a congruence): if u M∼ u′

and v M∼ v′, it follows that uv M∼ u′v′. That means
these equivalence classes form the elements of a
submonoid of Σ∗. The quotient monoid Σ∗/M∼
(these equivalence classes under concatenation) is
the syntactic monoid of L. If L is a regular lan-
guage, then this is the smallest monoid which can
be used as a DFA accepting L (Rabin and Scott,
1959). The syntactic semigroup is Σ+/M∼.

A string language is rational if and only if it
has finitely many Myhill classes (Rabin and Scott,
1959). A variety of finite semigroups is a class
closed under subsemigroup, quotients and finitary
direct product (Pin, 1997). This implies closure un-
der Boolean operations. Eilenberg’s theorem states
that these varieties uniquely define subclasses of
rational languages (Eilenberg and Schützenberger,
1976). As we explain later they can also charac-
terize subclasses of rational functions, such as the
input strictly local functions.

2.2 String Acceptors

A DFA is a five-tuple ⟨Σ, Q, δ, q0, F ⟩ where Σ is a
finite alphabet, Q a finite state set, δ : Σ×Q→ Q

26

b, c

a

a

b
c

a, b, c

λ

a

c

b

ab

ba

a

b

c

a

b

c

a
b, c

a

b, c

a

b

c

a, b, c

Figure 1: A DFA forbidding ab substrings induced by
N∼ (above) and M∼ (below). States are labeled by class
representatives. Doubly circled states are accepting and
extra thick borders designate initial states.

a transition function, q0 an initial state, and F a
set of accepting states. A word is read one symbol
at a time. If computation is in state q, the remain-
ing string is σw, and δ(σ, q) = r, then after one
step, the computation will be in state r with re-
maining string w. Given the equivalence classes
under N∼ or M∼, we can construct such an acceptor.
Σ is the alphabet, Q the set of equivalence classes,
δ(σ, q) the equivalence class of qσ, q0 whichever
class contains the empty sequence, and F the set
of equivalence classes containing accepted words.
Hopcroft and Ullman (1979) discuss a dynamic
programming algorithm to reduce an arbitrary DFA

to that induced by N∼. Another procedure, which
will be described later, derives the Myhill relation
from this form.

Figure 1 shows the acceptors induced by N∼ and
M∼ for the example language over {a, b, c} in which
no word contains an ab substring. That induced by
M∼ is a right Cayley graph of the syntactic monoid
(see Zelinka, 1981), augmented with information
about whether classes are accepting.

2.3 String-to-String Transducers
Oncina et al. (1993) discuss one method of general-
izing these acceptors into functions. A sequential
transducer is a five-tuple ⟨Σ,∆, Q, δ, q0⟩, where
Σ is the alphabet of the input, ∆ that of the output,
Q a finite set of states, δ : Σ×Q→ ∆∗×Q a tran-
sition function, and q0 an initial state. This behaves
like an acceptor, where all strings in the domain are
accepted and every edge traversed appends to an
accumulating output. Sequential functions are total.
A subsequential transducer generalizes this by as-
sociating outputs with states (Oncina et al., 1993);
if an input word ends in state q, the output receives

the suffix associated with q. The function σ map-
ping states to suffixes is added as a sixth element:
⟨Σ,∆, Q, δ, q0, σ⟩. The names and order of these
components here are not the same as those used in
the original work, but seem to have become com-
monly used in later work. Adding another element,
a string prefixed to all output strings, adds nothing
because it could be added to each edge out of q0 and
to that state’s output. So in this work, this univer-
sal prefix π will be assumed: ⟨Σ,∆, Q, δ, q0, π, σ⟩.
This change leaves most definitions unaffected.

Bruyère and Reutenauer (1999) argue that the
subsequential notion is more deserving of the sta-
tus as the basic object, and refer to such functions
as simply sequential, a practice followed by Lom-
bardy and Sakarovitch (2006), among others. A
subsequential machine is equivalent to a sequen-
tial machine over a larger alphabet that includes
explicit boundary symbols, and a well-formed ver-
sion of the latter can be rewritten as the former.
Given this bijection, the remainder of this work
will follow this recent notational trend.

Sequentiality may depend on the direction in
which the input is read. Iterative regressive har-
mony patterns cannot be described by left-to-right
sequential functions as they admit unbounded delay
between seeing a harmonizing symbol and finding
the trigger that determines its surface form (Heinz
and Lai, 2013; Mohri, 1997). However, this pro-
cess can be expressed as a right-to-left sequential
function. This is equivalent to reversing the output
of a left-to-right transducer applied to the input’s
reversal. Or one could say the machine reads the
string from right to left, prefixing to the output. If
SQ is the sequential class, we denote the left-to-
right class→SQ and its right-to-left variant←SQ,
with the arrow indicating directionality.

The longest common prefix (denoted lcp) of a
set of strings S is the unique string u such that
u is a prefix of every string in S and that u is
longer than every other string u′ which prefixes
every string in S. A transducer is onward if it emits
output as early as it can: for all states p, lcp({y ∈
∆∗: δ(a, p) = ⟨y, q⟩} ∪ {σ(p)}) = λ. The Nerode
equivalence relation extends naturally to functions
by means of the tails of input strings. The set
of tails of x in a function f , Tf (x), is defined as
follows:

Tf (x) = {⟨y, v⟩: f(xy) = lcp(f(xΣ∗))v}.
Two strings are related iff their tails are equal. We
write this relation as N∼, emphasizing connection to

27

Nerode equivalence for string sets. A transducer
in canonical form is onward and has one state per
N∼ class. A two-sided extension generalizes Myhill
equivalence. The contexts of x in f are as follows:

Cf (x) = {⟨w, y, v⟩: f(wxy) = lcp(f(wxΣ∗))v}.

The subset where w = λ is essentially equivalent
to Tf (x), so the M∼ relation derived from C forms,
as with string sets, a refinement of N∼.

2.4 Monoids from Canonical Machines

The canonical form of a machine derives states
from the N∼ relation. The M∼ relation accounts for
the influence of prefixes. So, to construct a machine
over M∼ from a canonical machine, i.e. to construct
a right Cayley graph of its associated monoid, we
look to see where each input symbol takes each
of the states. In other words, what is the action of
each symbol over the states? This is the transition
congruence (Filiot et al., 2016). McNaughton and
Papert (1971) use this same construction.

Consider the automata of Figure 1. Assign an
arbitrary number to each state of the automaton
induced by N∼: JλK is 1, JaK is 2, and JabK is 3.
Denote by ⟨x, y, z⟩ the function mapping 1 to x,
2 to y, and 3 to z. The identity function, ⟨1, 2, 3⟩,
corresponds to λ. From there, a, b, and c act as
⟨2, 2, 3⟩, ⟨1, 3, 3⟩ and ⟨1, 1, 3⟩, respectively. The
complete structure extends from these. Consider
ab: this first applies the a mapping, then applies
that of b to its result. So ⟨1, 2, 3⟩ maps first to
⟨2, 2, 3⟩ by a then to ⟨3, 3, 3⟩ by b. By the same
process, we find that aa = ca = a, ac = cb =
cc = c, bb = bc = b and ba is a new state ⟨2, 3, 3⟩.
Extending ab = ⟨3, 3, 3⟩ and ba = ⟨2, 3, 3⟩, we
find ab·a = ab·b = ab·c = ba·b = ab, ba·a = ba
and finally ba · c = b. Iteration generated no new
states, so the process is complete. This conforms
to the structure shown in Figure 1, whose Cayley
graph is shown at the top in Table 1.

Note that the complement of the language forbid-
ding ab substrings – the language of words with ab
substrings – shares the same syntactic semigroup.
This holds in general: an automaton and its com-
plement share the same algebraic structure, as state
parity is independent from the actions of transitions.
It follows that classes defined purely by semigroup
properties must be closed under complement.

Now consider the transducer of Figure 2. This
transducer is a representation of intervocalic voic-
ing, a phonological process where voiceless obstru-

a b c ab ba
a a ab c ab ab
b ba b b ab ba
c a c c ab a

ab ab ab ab ab ab
ba ba ab b ab ab

T V D VT
T D V D VT
V VT V D VT
D D V D VT

VT D V D VT

Table 1: The Cayley table for the syntactic semigroups
in Figure 1 (above) and Figure 2 (below).

ents become voiced between vowels. As a phono-
logical rule this is T→D/V V. For example, this
transducer maps the string TVTVD to TVDVD.

The transducer above is in canonical form, where
each state represents one N∼ class. State 2 is all
those strings that end in V, state 3 those ending
in VT, and state 1 all others. The five actions are
the identity ⟨1, 2, 3⟩ corresponding to λ, ⟨1, 1, 1⟩,
⟨1, 3, 1⟩, and ⟨2, 2, 2⟩ corresponding to D, T, and
V, respectively, and finally ⟨3, 3, 3⟩ for VT. One
can verify that for each class, some context distin-
guishes its words from words in each other class,
and that no context distinguishes words within a
class. For example, a V V context separates
λ and T, as for λ the following V contributes V
alone while for T it contributes DV. Technically,
⟨V,V,V⟩ ∈ C(λ) while ⟨V,V,DV⟩ ∈ C(T), but
by determinism the triples are unique in their first
two components. A VT λ context separates λ
and D, as the λ contributes T to the former but λ
to the latter. That no context distinguishes strings
within a class is guaranteed by the construction.
The Cayley graph corresponding to the monoid in
Figure 2 is shown at bottom in Table 1.

This construction appears to discard output in-
formation, but it is recoverable. Outputs may be
compatibly assigned to the states and edges and the
result used as a transducer. Its structure is the same
as that of the string language in which all words
end in “VT”. This notion of structural equivalence
gives rise to a deep theory of function complexity.

2.5 Definite Algebraic Structure

A string language L is definite if can be defined
by a finite set X of permitted suffixes: L = {wv :

28

:T

T:T,D:D
V:V

V:V

D:D

T:λ

T:TT,D:TD
V:DV

λ T

V

D

VTT

V

D

V

D,T

V

T

D

D,T

V

D,T

V

Figure 2: Transducer and monoid for “T becomes D
directly between two V”.

w ∈ Σ∗, v ∈ X} (Perles et al., 1963). The class of
definite languages is denoted D. Because X is a
finite set it holds some longest string of length n.
Whether a string belongs to L can be decided by
examining its last n symbols. Such languages are
called n-definite. More generally, as the canonical
acceptor for a definite language processes strings,
the states correspond to strings in Σn representing
the most recent history. In the sense of Jurafsky
and Martin (2008) then, the state space of definite
languages is Markovian.

The definite languages were one of the early
classes of formal languages to be given an algebraic
characterization (Brzozowski and Simon, 1973; Br-
zozowski and Fich, 1984). Many algebraic struc-
tures are defined in terms of idempotents. An ele-
ment e of a monoid is idempotent if e · e = e. As
an example, the idempotents of the syntactic semi-
groups shown in 1 are {a, b, c, ab} and {V,D,VT},
respectively. Denote by E the set of idempotents.

An algebraic property characterizes exactly the
definite languages (Brzozowski and Simon, 1973;
Brzozowski and Fich, 1984). Syntactic semigroups
of definite languages have the property that for all
e ∈ E, x ∈ S, it holds that xe = e, often written
Se = e with universal quantification left implicit.

The string language which forbids ab substrings
is not definite. This follows from the algebraic
characterization and from the Cayley table for this
language in Table 1. While b is an idempotent
(since b · b = b), a · b = ab ̸= b. Thus Se ̸= e.

For intervocalic voicing it holds that Se = e for
all its idempotents e ∈ {V,D,VT}. One verifies
this by examining their columns in the Cayley table
in Table 1. As its minimal transducer processes
input, the most recently read symbols fix its state.

The syntactic semigroups such that Se = e form
the variety D (Brzozowski and Simon, 1973; Brzo-
zowski and Fich, 1984). It follows they are closed
under subsemigroup, quotients, finite direct prod-
ucts, and thus the Boolean operations. This variety
has played a key role in developing an algebraic the-
ory of recognizable languages (Straubing, 1985).

3 Input Strictly Local Functions

Chandlee et al. (2014) define input strictly local
transducers by a restriction on the tails, inducing
a canonical structure. A function is input strictly
local iff for some natural number k, the function is
definable by a sequential transducer whose states
are labeled by Σ<k, q0 is the state labeled by λ, and
edges are of the form δ(a, q) = ⟨w,Suffk−1(qa)⟩.
The suffix function is defined as expected:

Suffn(w) =





λ if n ⩽ 0,
w if |w| ⩽ n,
v if w = uv for u ∈ Σ∗, v ∈ Σn.

This canonical form is a monoid. The operation
u · v = Suffk−1(u · v) is associative, and λ is the
identity. Let f be a function,

−→
S and

←−
S be the semi-

groups of the left-to-right and right-to-left trans-
ducers associated with f , respectively, and e range
over idempotents of the appropriate semigroup.

Theorem 1. The following are equivalent:

• f is a total input strictly local function

• f is→ D:
−→
S e = e

• f is← D:
←−
S e = e

Proof. The nonidentity idempotent elements of this
monoid are Σk−1, as if x ∈ Σk−1 we have x =
Suffk−1(x) = Suffk−1(xx) and if x ∈ Σ<k−1 we
instead have x ̸= Suffk−1(xx). If x ∈ Σk−1 we
have that Suffk−1(ux) = x for all u ∈ Σ∗, so for
all elements s it holds that s·x = x. In other words,
Se = e for all idempotent elements e in the syntac-
tic semigroup (which excludes the identity). This
is the property characterizing definite languages,
defined by a set of permitted suffixes (Brzozowski
and Simon, 1973; Brzozowski and Fich, 1984).

The directionality statement follows from the
fact that input strictly local functions are not direc-
tional (Chandlee and Heinz, 2018).

The canonical form of an input strictly local
transducer is the same as that of a definite string

29

language (Perles et al., 1963). Both are defined
by the k most recent symbols encountered fixing
the state, with no long-distance effects. Indeed,
this class has been discussed as the definite (Krohn
et al., 1967; Stiffler, 1973) or local (Vaysse, 1986)
functions decades before Chandlee et al. (2014)
introduced them to linguists as input strictly local.

We invoke this characterization of input strictly
local functions as definite structures to provide an
effective decision procedure for the class. First, it
is converted to a canonical sequential form by the
algorithm of Mohri (1997). If conversion fails, the
map is certainly not in the class, as it is not even
sequential. Otherwise, the syntactic semigroup is
constructible by the algorithms shown in section 2
(McNaughton and Papert, 1971). Finally one needs
only to check that for each idempotent e and each
element s, se = e. Recall that the identity is in the
semigroup iff it is reachable by a nonempty string.

Strictly local string languages follow the same
structure but additionally allow transition to a re-
jecting sink in lieu of some otherwise expected
transitions. These changes do not necessarily re-
tain the algebraic structure, but a semigroup can be
regenerated by the usual method. Accounting for
whether a factor in some fixed set has ever occurred
admits some long-distance dependency.

4 Composing Functions

Closure properties provide important insight into
classes of languages. An intersection-closed class
admits new patterns satisfying its properties defined
by coöccurrence of patterns in that class. Many sub-
regular classes are so closed, and learning a strictly
piecewise pattern as a coöccurrence of constraints
has proven more effective than learning a single pat-
tern (Heinz and Rogers, 2013). (Pseudo)varieties
of finite semigroups are closed under finitary prod-
ucts, subsemigroups, and quotients (Eilenberg and
Schützenberger, 1976). Intersections and unions
of automata are computed from a product, extract-
ing the reachable subsemigroup and minimizing
the result by a quotient. Automata share structure
with their complements, so varieties define classes
closed under Boolean operations. The property
defining definite languages, that Se = e for all
idempotents e, yields a variety, D, of finite semi-
groups. These languages are then Boolean-closed.

If coöccurring factors are a basic unit of string
languages, composed rules might be a basic unit of

A = V
T

D

V
T

D

V

D

T

V

T
D:T

V

D

T:D

B =

D,T
V

D,T
V:λ

A ◦B = λ V T

D

DV

TV

V

D

T
V:λ

T

D

T

V
D

D V

T

V:λ

T

D:T

V:λ

D
T:D

Figure 3: ISL is not composition-closed.

functions. Let δ∗ denote the transitive closure of δ:

δ∗(w, x) =





⟨λ, x⟩ w = λ

⟨uv, y⟩ w = aw′, a ∈ Σ,

⟨u, x′⟩ = δ(a, x),

⟨v, y⟩ = δ∗(w′, x′)

Then if f = ⟨∆,Γ, Qf , δf , q0f , πf , σf ⟩ and g =
⟨Σ,∆, Qg, δg, q0g, πg, σg⟩, the composition f ◦ g
computes the result of applying f to the output
of g. This composition is effectively constructible
(Mohri, 1997). A construction is as follows:

f ◦ g = ⟨Σ,Γ, Qf ×Qg, δ◦, qi, πfα, σ◦⟩
⟨α, r⟩ = δ∗f (πg, q0f)

qi = ⟨r, q0g⟩
δ◦(a, ⟨m,n⟩) =

{〈
w, ⟨s, t⟩

〉
: δg(a, n) = ⟨u, t⟩,
δ∗f (u,m) = ⟨w, s⟩

}

σ◦(⟨m,n⟩) = σf (δ
∗
f (m,σg(n))1)

This composition is not a direct product in the
algebraic sense. The state space is the product
space, but the action is not the natural pointwise ac-
tion defining the direct product. Thus, composition
closure is not free and in general does not hold.

The transducers shown in Figure 3 exhibit this
nonclosure for definite functions. The first, A, is

30

simultaneous application of two rules, D→T/TV
and T→D/DV , a voicing assimilation across a
single vowel. Then B is a vowel-span truncation:
V→∅/V . By applying B and then A, the con-
text in which T or D changes becomes unboundedly
long. The strings Vn and DVn have the same n-
suffix for any n, but a suffixed T contributes a T to
the first and a D to the latter. The two have differ-
ing tails, failing to satisfy input strict locality. In
semigroup terms, V is idempotent as V and VV lie
in the same class, but DVV is DV and not V. Thus
Se ̸= e and the function is not definite. In fact, the
resulting monoid is not even locally a semilattice
(locally testable, Brzozowski and Simon, 1973) nor
J -trivial (piecewise testable, Simon, 1975). It is
everywhere-idempotent, which in string languages
would imply definability in two-variable first-order
logic of general precedence alone (Brzozowski and
Fich, 1984; Kufleitner and Weil, 2010).

One subclass of definite functions is composition
closed: that where only bounded spans may delete.

Theorem 2. If f and g are definite functions and if
all input sequences of length k to g are guaranteed
to produce nonempty output, then f ◦ g is definite.

Proof. If f is m-definite, g is n-definite, and in-
put sequences of g are guaranteed to contribute
nonempty output after at most k symbols, then af-
ter mk input symbols, g must have produced at
least m intermediate output symbols. This fixes the
state in f . The state of g is fixed after n or more
symbols. So the degree of definiteness of f ◦ g is
at most the greater of n and mk.

Corollary 1. The subclass of definite functions
deleting only bounded spans is composition closed.

Proof. If f and g are definite and guarantee
nonempty output after reading at most k and ℓ sym-
bols, respectively, then f◦g yields nonempty output
after reading at most ℓk symbols. The composition
remains in this subclass.

The machines of Figure 3 do not compose to a
definite machine because unbounded spans of V
delete, collapsing to just V no matter their length.

Many phonologically relevant patterns lie in this
subclass, including some that optimality theory has
struggled to analyze (Chandlee et al., 2018). Inter-
consonantal schwa deletion, intervocalic voicing,
and word-final devoicing are each computed by
transducers where all input sequences of length
two contribute nonempty output. In this order, their

composition is shown in Figure 4, and it is definite
of degree four: every string of length three synchro-
nizes the machine. Moreover all length four input
sequences produce nonempty output.

Readers familiar with the literature on local func-
tions may recall results that seem stronger than
our Theorem 2. For example, Sakarovitch (2009,
p. 664) states that if g is a proper local function of
degree d and f a local function of degree d′, then
the composition f ◦ g is local of degree d+ d′. In
that work, a proper local function is one in which
no deletion occurs. This is a more restrictive con-
straint than our own, as we allow for deletion in
bounded spans. Similarly, Vaysse (1986, p. 168)
states that the composition of any local function f
of degree d and any local function g of degree d′

is local of degree d+ d′ − 1. This, however, takes
place in a richer setting in which transitions not
only might append symbols to the output, but also
might delete previous symbols. Neither previous
result is directly applicable here.

5 Other Kinds of Operations

Although a subclass of the definite functions is
closed under composition, the class as a whole is
not. In general, function composition does not pre-
serve algebraic properties. This section discusses
a general type of machine that unifies transducers,
DFAs, weighted automata, and more. Operations
on these general automata that behave like prod-
ucts will preserve algebraic properties and allow
complex systems to be factored in an algebraically
natural way. Some such operations are shown here.

The outputs of a transducer influence its semi-
group structure only by preventing state merges.
Mohri (Lothaire, 2005) describes a more general
notion of a transducer whose outputs are elements
in some semiring rather than mere strings. Se-
quential transducers are input-deterministic, so the
operation combining paths is unnecessary. We can
think about machines whose output lies in some
monoid. Standard transducers satisfy this property:
if the output alphabet is ∆ then the output monoid
is ∆∗ under concatenation.

Consider then a system in which the output
monoid is not ∆∗ but regular languages over ∆.
The form of the output is irrelevant, but for con-
creteness suppose we are dealing with DFAs over
∆. A definite transducer may be translated directly
into this form by replacing the output strings with a
DFA accepting that string alone, with one state more

31

: e

:T :D e

:T :D e

T

D:λ

V, e

T

D:λ
V

e:λ
T

D:λ

V: eV, e: ee

T:λ

D:λ

V, e

T:TT

D:T
V:DV

e:λ

T:TT

D:T
V:D eV, e:D ee

T:DT

D

V:DV

e:λ

T:DT

D

V:D eV, e:D ee

Figure 4: Interconsonantal schwa deletion, then intervocalic voicing, then word-final devoicing, all composed.

than the string’s length. We define three distinct
products over this structure: pointwise evaluation,
union, and parallel application with preference. In
the following discussion, machines are defined with
an output monoid in place of an output alphabet.

If we have f = ⟨Σ,∆∗, Qf , δf , q0f , πf , σf ⟩ and
g = ⟨Σ,Γ∗, Qg, δg, q0g, πg, σg⟩, we define their
pointwise evaluation product, f ⊙ g, as follows:

f ⊙ g =
〈
Σ,∆∗ × Γ∗, Qf ×Qg, δf⊙g,

⟨q0f , q0g⟩, ⟨πf , πg⟩, σf⊙g

〉
,

where σf⊙g(⟨q, r⟩) = ⟨σf (q), σg(r)⟩, pointwise
application of suffixing, and if δf (a, q) = ⟨u, q′⟩
and δg(a, r) = ⟨v, r′⟩ then δf⊙g(a, ⟨q, r⟩) =
⟨⟨u, v⟩, ⟨q′, r′⟩⟩. The operation is pointwise con-
catenation: ⟨a, b⟩ · ⟨c, d⟩ = ⟨ac, bd⟩. The pair that
f ⊙ g derives from an input w juxtaposes the result
of applying f to w or that of applying g to w.

Let AX represent the DFAs over alphabet X . If
we have f = ⟨Σ,A∆, Qf , δf , q0f , πf , σf ⟩ and g =
⟨Σ,AΓ, Qg, δg, q0g, πg, σg⟩, we define the unioned
product of f and g, f ⊡ g as follows:

f ⊡ g =
〈
Σ,A∆∪Γ, Qf ×Qg, δf⊡g,

⟨q0f , q0g⟩, {πf , πg}, σf⊡g

〉
,

where σf⊡g(⟨q, r⟩) = {σf (q), σg(r)}, the union
of the outputs of the two suffixing functions, and
if δf (a, q) = ⟨u, q′⟩ and δg(a, r) = ⟨v, r′⟩ then
δf⊡g(a, ⟨q, r⟩) = ⟨u ∪ v, ⟨q′, r′⟩⟩. Every input
symbol admits choice, applying either f or g.

For homogeneous functions we have a final oper-
ation: apply both at once, outputting from the left

machine if it changes the input, else from the right
machine. Let f = ⟨Σ,Σ∗, Qf , δf , q0f , πf , σf ⟩ and
g = ⟨Σ,Σ∗, Qg, δg, q0g, πg, σg⟩, and define this
change-preferring product as follows:

f♢g =
〈
Σ,Σ∗, Qf ×Qg, δf♢g,

⟨q0f , q0g⟩, πf♢g, σf♢g

〉
,

where πf♢g is equal to πf unless that is λ in which
case it is equal to πg, and similarly σf♢g(⟨q, r⟩) is
equal to σf (q) unless that is λ in which case it is
equal to σg(r), and finally if δf (a, q) = ⟨u, q′⟩
and δg(a, r) = ⟨v, r′⟩ then δf♢g(a, ⟨q, r⟩) =
⟨w, ⟨q′, r′⟩⟩, where w = v if u = a or else w = u.
For two processes that do not affect one another,
this is algebraic-property preserving composition.

These combinators are built on the product con-
struction that Rabin and Scott (1959) and Hopcroft
and Ullman (1979) use for unions or intersections
of DFAs. The transition semigroup of the result
is the product of those of the inputs. Definite ma-
chines are defined by a variety, and so are product
closed, which means the ⊙, ⊡, and ♢ combinators
yield definite machines from definite inputs.

Consider then that deletion of schwa between
two consonants is definite, defined by the rule

e→∅/C C. This is a definite function, by the con-
struction used by Chandlee (2014). The identity
function is also definite, having but a single state.
Applying ⊡ yields the (definite) deterministic ra-
tional relation of Figure 5 implementing optional
interconsonantal schwa deletion. Some determinis-
tic rational relations have been studied (Beros and
de la Higuera, 2016), and this algebraic perspective

32

λ C

C e: eV

e

V

e C

V, e

C

C

e:λ

V C:{C, eC}

V: eV, e: ee

C

V

e

Figure 5: Optional schwa deletion between consonants.

offers a general mechanism for dealing with them.

6 Conclusion

Input strictly local maps suffice to describe a
large portion of phonological processes. They
are definite functions (Krohn et al., 1967; Stiffler,
1973). They are local functions (Vaysse, 1986;
Sakarovitch, 2009). Given a minimal sequential
finite-state transducer representing a mapping, we
showed that it is decidable in time polynomial in
the size of the transition semigroup of the machine
whether the process is input strictly local: all idem-
potents must be right zeros. Using this characteri-
zation, we have shown that this class of functions
cannot be closed under composition, but that this
closure does hold for a restricted subclass in which
deletion may occur only in bounded spans.

In these functions, only a local context around
a symbol can influence its output. They do not
exhibit the long-distance effects that strictly local
string languages allow, where a single factor might
cause computation to fall into a sink state for the
remainder of the run. Definite languages are all
strictly local, but so are, say, reverse definite lan-
guages. These have the opposite characterization,
defined by semigroups where eS = e. These are
the functions where Prefk−1(u) = Prefk−1(v) im-
plies u N∼ v, that T (u) = T (v).

Current research involves exploring the func-
tion analogues of some of the other classes that
correspond to subregular string languages, such
as these reverse definite functions, and classify-
ing natural language patterns accordingly (Lam-
bert, 2022). Additional lines of future research
include better understanding how algebraic proper-
ties can fuel grammatical inference of string func-
tions (de la Higuera, 2010), and the factorization
of string functions into component parts along the
lines of Rogers and Lambert (2019).

References
Achilles Beros and Colin de la Higuera. 2016. A canon-

ical semi-deterministic transducer. Fundamenta In-
formaticae, 146(4):431–459.

Véronique Bruyère and Christophe Reutenauer. 1999.
A proof of Choffrut’s theorem on subsequential func-
tions. Theoretical Computer Science, 215(1–2):329–
335.

Janusz Antoni Brzozowski and Faith Ellen Fich. 1984.
On generalized locally testable languages. Discrete
Mathematics, 50:153–169.

Janusz Antoni Brzozowski and Imre Simon. 1973. Char-
acterizations of locally testable events. Discrete
Mathematics, 4(3):243–271.

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential functions.
Transactions of the Association for Computational
Linguistics, 2:491–503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. In Proceedings of the
14th Meeting on the Mathematics of Language, pages
112–125, Chicago, USA. Association for Computa-
tional Linguistics.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality
and phonological maps. Linguistic Inquiry, 49(1):23–
60.

Jane Chandlee, Jeffrey Heinz, and Adam Jardine.
2018. Input strictly local opaque maps. Phonology,
35(2):171–205.

Colin de la Higuera. 2010. Grammatical Inference:
Learning Automata and Grammars. Cambridge Uni-
versity Press.

Matt Edlefsen, Dylan Leeman, Nathan Myers, Nathaniel
Smith, Molly Visscher, and David Wellcome. 2008.
Deciding strictly local (SL) languages. In Proceed-
ings of the 2008 Midstates Conference for Undergrad-
uate Research in Computer Science and Mathematics,
pages 66–73.

Samuel Eilenberg and Marcel-Paul Schützenberger.
1976. On pseudovarieties. Advances in Mathematics,
19(3):413–418.

Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote.
2016. First-order definability of rational transduc-
tions: An algebraic approach. In LICS ’16: Proceed-
ings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 387–396. Associa-
tion for Computing Machinery.

R. W. N. Goedemans, Jeffrey Heinz, and Harry van der
Hulst. 2015. StressTyp2.

33

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th
Meeting on the Mathematics of Language, pages 52–
63, Sofia, Bulgaria. Association for Computational
Linguistics.

Jeffrey Heinz and James Rogers. 2013. Learning subreg-
ular classes of languages with factored deterministic
automata. In Proceedings of the 13th Meeting on
the Mathematics of Language, pages 64–71, Sofia,
Bulgaria. Association for Computational Linguistics.

Markus Holzer and Barbara König. 2004. On deter-
ministic finite automata and syntactic monoid size.
Theoretical Computer Science, 327(3):319–347.

John Edward Hopcroft and Jeffrey David Ullman. 1979.
Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

Daniel Jurafsky and James Martin. 2008. Speech and
Language Processing: An Introduction to Natural
Language Processing, Speech Recognition, and Com-
putational Linguistics, 2nd edition. Prentice-Hall,
Upper Saddle River, NJ.

Kenneth Krohn, Richard Mateosian, and John Rhodes.
1967. Methods of the algebraic theory of machines:
Decomposition theorem for generalized machines;
Properties preserved under series and parallel compo-
sitions of machines. Journal of Computer and System
Sciences, 1(1):55–85.

Manfred Kufleitner and Pascal Weil. 2010. On the lat-
tice of sub-pseudovarieties of DA. Semigroup Fo-
rum, 81:243–254.

Dakotah Lambert. 2022. Unifying Classification
Schemes for Languages and Processes with Atten-
tion to Locality and Relativizations Thereof. Ph.D.
thesis, Stony Brook University.

Silvain Lombardy and Jacques Sakarovitch. 2006. Se-
quential? Theoretical Computer Science, 356(1–
2):224–244.

M. Lothaire. 2005. Applied Combinatorics on Words.
Cambridge University Press, New York.

Robert McNaughton and Seymour Aubrey Papert. 1971.
Counter-Free Automata. MIT Press.

Jeff Mielke. 2008. The Emergence of Distinctive Fea-
tures. Oxford University Press, New York, NY.

George Armitage Miller. 1956. The magical number
seven, plus or minus two: Some limits on our capacity
for processing information. Psychological Review,
63(2):81–97.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Lin-
guistics, 23(2):269–311.

Anil Nerode. 1958. Linear automaton transformations.
In Proceedings of the American Mathematical Soci-
ety, volume 9, pages 541–544. American Mathemati-
cal Society.

José Oncina, Pedro García, and Enrique Vidal. 1993.
Learning subsequential transducers for pattern recog-
nition interpretation tasks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15(5):448–
458.

Micha A. Perles, Michael Oser Rabin, and Eliahu
Shamir. 1963. The theory of definite automata. IEEE
Transactions on Electronic Computers, 12(3):233–
243.

Jean-Éric Pin. 1997. Syntactic semigroups. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook
of Formal Languages: Volume 1 Word, Language,
Grammar, pages 679–746. Springer-Verlag, Berlin.

Michael Oser Rabin and Dana Scott. 1959. Finite au-
tomata and their decision problems. IBM Journal of
Research and Development, 3(2):114–125.

James Rogers and Dakotah Lambert. 2019. Extract-
ing Subregular constraints from Regular stringsets.
Journal of Language Modelling, 7(2):143–176.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Informa-
tion, 20(3):329–342.

Jacques Sakarovitch. 2009. Elements of Automata The-
ory. Cambridge University Press.

Imre Simon. 1975. Piecewise testable events. In Hel-
mut Brakhage, editor, Automata Theory and Formal
Languages, volume 33 of Lecture Notes in Computer
Science, pages 214–222. Springer-Verlag, Berlin.

Price Stiffler, Jr. 1973. Extension of the fundamental
theorem of finite semigroups. Advances in Mathe-
matics, 11(2):159–209.

Howard Straubing. 1985. Finite semigroup varieties
of the form V ∗ D. Journal of Pure and Applied
Algebra, 36:53–94.

Odile Vaysse. 1986. Addition molle et fonctions p-
locales. Semigroup Forum, 34:157–175.

Bohdan Zelinka. 1981. Graphs of semigroups. Časopis
pro pěstování matematiky, 106(4):407–408.

34

