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Abstract

This paper explores knowledge distillation
for multi-domain neural machine transla-
tion (NMT). We focus on the Estonian-
English translation direction and experi-
ment with distilling the knowledge of mul-
tiple domain-specific teacher models into
a single student model that is tiny and ef-
ficient. Our experiments use a large par-
allel dataset of 18 million sentence pairs,
consisting of 10 corpora, divided into 6
domain groups based on source similarity,
and incorporate forward-translated mono-
lingual data. Results show that tiny stu-
dent models can cope with multiple do-
mains even in case of large corpora, with
different approaches benefiting frequent
and low-resource domains.

1 Introduction

The quality of neural machine translation (NMT,
Vaswani et al., 2017) systems heavily depends on
training data and the text domains covered in it.
Large-scale NMT Transformer models are usu-
ally trained on multiple corpora representing dif-
ferent domains (Kocmi et al., 2022), which in turn
requires training models with higher representa-
tion capacity and an exceedingly large number of
parameters, sometimes in the tens of billions for
the largest models (Fan et al., 2020; NLLB Team
et al., 2022).

However, using such models for inference in
a production setting becomes more costly and
cumbersome with increasing size. In parallel to
the challenge of using more representational and
learning power, a constraint from the practical side
is to have models be as small and fast as possible
for efficient deployment in production.

An additional challenge arises from the variabil-
ity of natural language and different text domains

and styles. While methods for training an NMT
model to perform well on a particular type of text
are relatively straightforward, the requirement of
having a single NMT model translate multiple va-
rieties of input text without a significant loss of
quality on any of them due to interference between
the domains in the training data remains more dif-
ficult.

In this paper, we aim to bridge the gap be-
tween previous research and systems applicable in
production by experimenting with multi-domain
knowledge distillation for NMT on the example
of Estonian-English translation. We show that
even for tiny NMT student-models and large-scale
training data, it is efficient to train a single stu-
dent model on data distilled by multiple fine-tuned
domain-specific teacher models.

Our contributions are:

• we experiment with distilling the knowledge
of multiple domain-specific teacher models
within a single student model, focusing on
very small student models;

• we use a sizeable parallel dataset of 18M sen-
tence pairs, consisting of 10 corpora, which
we divide into 6 groups based on similarity
of their sources;

• we release our student models, test set trans-
lations, and generation code1.

2 Related Work

Knowledge Distillation for Machine Transla-
tion Knowledge distillation (Bucila et al., 2006;
Hinton et al., 2015) is the technique of com-
pressing the knowledge learned by a large model
with high capacity and a large number of param-
eters or by an ensemble of models into a single
smaller model. Knowledge distillation allows for

1https://github.com/TartuNLP/
multidomain-students
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increased speed and efficiency at inference time,
while aiming to not sacrifice the quality of model
performance to a significant extent.

Knowledge distillation methods were extended
to the task of machine translation by Kim and
Rush (2016). One of the methods they proposed
is interpolated sequence-level knowledge distilla-
tion, consisting of several steps:

• a large teacher model is trained on a corpus
of parallel texts;

• the teacher model is used to translate the
source side of the parallel corpus into the tar-
get language;

• a smaller student model is trained using
the original data as source and the teacher-
generated (distilled) data as target.

In this way, the student model is trained with the
goal of imitating the teacher model’s probability
distribution over the translations, thus constrain-
ing the task from the full space of natural language
translations to the much smaller space of transla-
tions generated by the teacher, and making it more
easily achievable for the small student model.

We follow the sequence-level knowledge dis-
tillation procedure proposed by Kim and Rush
(2016) in our knowledge distillation experiments.

Recent advances in efficient MT have extended
the limits of small and fast NMT models (Junczys-
Dowmunt et al., 2018; Kim et al., 2019a; Heafield
et al., 2021, 2022), using knowledge distillation,
increasingly lightweight architectures and CPU
optimization for faster inference, while suffering
increasingly small quality decrease compared to
full-scale models. However, these experiments
are typically focused on single-domain or general-
domain translation; we build on the findings of
MT efficiency research and use them in a multi-
domain scenario.

Knowledge Distillation for Multi-Domain Ma-
chine Translation While training a neural ma-
chine translation model to perform reasonably
well on one specific type of text is relatively
straightforward, generalizing to multiple domains
within a single model is more challenging. Typ-
ically, full-scale NMT models are trained on vast
amounts of parallel data representing various text
domains (Akhbardeh et al., 2021; Kocmi et al.,
2022). Numerous methods which aim to improve

multi-domain MT performance have been pro-
posed (Kobus et al., 2017; Tars and Fishel, 2018;
Britz et al., 2017; Zeng et al., 2018).

The task of achieving good performance on
multiple text domains, together with the need for
fast and efficient translation, have lead to combin-
ing the methods of multi-domain neural machine
translation and knowledge distillation.

Wang et al. (2019) focus on the task of multi-
domain translation, using knowledge distillation
for additional domain supervision: the probabil-
ities (soft targets) produced by domain-specific
models are used when training the unified multi-
domain model.

Gordon and Duh (2020) adapt student models
to one text domain at a time. They suggest dis-
tilling general-domain data to improve the perfor-
mance of the general-domain student model, fine-
tuning the best obtained model to in-domain data,
and fine-tuning the teacher model to a specific do-
main and distilling this in-domain model. In our
experiments, we follow Gordon and Duh in fine-
tuning teacher models to domain-specific corpora
and distilling them.

Our work shares the most similarities with Cur-
rey et al. (2020). Similarly to them, we fine-tune
a general teacher to obtain several domain-specific
teachers, which we then distill into a single student
model. However, our work is closer to a real-world
production scenario: we use a significantly larger
training corpus which combines more individual
parallel corpora from different sources, as well
as much smaller student models, whereas Currey
et al. train teacher models with 12 encoder and 12
decoder layers (roughly 100M model parameters),
and their student models follow the Transformer-
base configuration (6 encoder and 6 decoder lay-
ers, around 60M parameters).

Concurrently to Currey et al. (2020), Mghab-
bar and Ratnamogan (2020) also explore distill-
ing several domain-specific teachers into a sin-
gle student model, but use word-level instead of
sentence-level knowledge distillation, and do not
focus on decreasing the size of student models.

3 Methods

In our experiments, we aim to create neural ma-
chine translation models which 1) perform well on
several data domains, and 2) are small and effi-
cient.

To distill NMT models, we follow the sequence-
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level knowledge distillation framework initially
proposed by Kim and Rush (2016), where a
smaller student model is trained using the syn-
thetic target-side data produced by a larger teacher
model, and experiment with distilling multiple
domain-specific teacher models into a single stu-
dent model.

We follow Currey et al. (2020) in employing a
straightforward strategy:

1. train a general-domain teacher model,

2. fine-tune the teacher model to partitions of
the data to obtain multiple domain-specific
teacher models,

3. use the domain-specific teachers to forward-
translate the data,

4. distill the domain-specific teachers into a sin-
gle student model.

However, our student models are much smaller
than the student models used by Currey et al.
(2020), and we use significantly more data, bring-
ing our setup closer to a full-scale real-world sce-
nario.

3.1 Data

The experiments are performed on the Estonian-
English language pair. We use 10 parallel corpora:
Europarl (Koehn, 2005), JRC-Acquis (Steinberger
et al., 2006), OpenSubtitles (Lison and Tiede-
mann, 2016), ParaCrawl (Esplà et al., 2019),
EMEA, DGT, infopankki, GNOME, KDE4, and
Ubuntu (Tiedemann, 2012). We divide the cor-
pora into 6 groups as shown in Table 1. Eu-
roparl forms its own group of parliament proceed-
ings texts (EU), EMEA a group of medical texts
(MED), and OpenSubtitles a group of film and
TV subtitles (SUBS). We merge the DGT and
JRC-Acquis corpora into a group representing le-
gal texts (LEGAL), ParaCrawl and infopankki rep-
resent texts crawled from the web (WEB), and,
finally, GNOME, KDE4, and Ubuntu form the
group of software localization texts (IT).

Table 1 also shows the number of sentence pairs
in each group and corpus after cleaning; the total
size of the parallel training corpus is ∼18M sen-
tence pairs. The resulting corpus is highly un-
balanced, with sizes of the groups varying from
∼100K examples for IT to ∼7.5M for WEB,
which is realistic in a production scenario. From

each corpus, we separate a development set of
1000 sentence pairs and a test set of 500 sentence
pairs. In addition to the held-out development sets,
we also include the development split of WMT18
ET-EN set in the validation set. The test part of
WMT18 ET-EN is used as an external test set.

3.2 Models

To train our models, we use the Marian framework
(Junczys-Dowmunt et al., 2018). First, we train a
teacher model from scratch using the 18M train-
ing data described above (this model is denoted
as T-18M in Table 2). The teacher is a Trans-
former model, with shared SentencePiece (Kudo
and Richardson, 2018) vocabulary of size 32,000
units, 6 encoder and 6 decoder layers, embedding
dimension 512, feed-forward dimension 2048, 8
attention heads. The training is stopped when ei-
ther BLEU (Papineni et al., 2002) or the mean
word cross-entropy score on the validation set has
not improved for 10 checkpoints, and the best
checkpoint is chosen based on validation BLEU.

We then fine-tune the obtained teacher to each
of the six data groups (the resulting domain-
specific teachers are denoted, for example, T-EU
or T-SUBS in Table 2). Fine-tuning is stopped
when the validation metrics have not improved
for 15 checkpoints. Next, we follow the interpo-
lated sequence-level knowledge-distillation proce-
dure (Kim and Rush, 2016): we forward-translate
the parallel training data with the original general-
domain teacher or with the corresponding fine-
tuned teachers, generating 8-best lists for each
source example. The best translation for each sen-
tence is chosen based on its similarity to the orig-
inal target sentence according to sentence-level
BLEU.

In addition to the parallel data described above,
we forward-translate 1M Estonian sentence pairs
from the News Crawl corpus (articles from 2019
and 2020) and add those to the data the student
models are trained on. (In this case, we can-
not choose the translations which are closest to
the original target, as no original target exists.)
We also try fine-tuning the teacher model to these
news data, where the target side was generated by
the teacher itself.

Finally, we train several student models using
the original source data and synthetic forward-
translations obtained using the teacher models.
For efficiency purposes, we follow Kim et al.
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group/corpus corpus size group size domain

EU
Europarl 593,637 593,637 parliament proceedings

LEGAL
DGT 2,241,448

2,637,222 legislation
JRC-Acquis 395,774

MED
EMEA 211,722 211,722 pharmaceutical documents

SUBS
OpenSubtitles 6,868,517 6,868,517 film & television subtitles

WEB
ParaCrawl 7,601,013

7,614,325 Web-crawled texts
infopankki 13,312

IT
GNOME 3,036

105,906 software localizationsKDE4 99,808
Ubuntu 3,062

Total 18,031,329

Table 1: Sizes of corpora and corpus groups (number of sentence pairs) used for training the ET-EN
teacher and student models, after cleaning

(2019b) and replace the self-attention mechanism
in the Transformer encoders, which have 6 lay-
ers, with GRU-based cells, and use Simpler Sim-
ple Recurrent Units in the transformer decoders,
which consist of 2 layers. The training is stopped
if the metrics have not improved for 20 check-
points. The resulting student models have disk
size of 65 megabytes. S0 is the model trained us-
ing data produced by the initial teacher. S-FT uses
the data forward-translated by the corresponding
fine-tuned teacher for each of the corpora. S-FT-
bal uses the same data, but after balancing the cor-
pora: the total size of the training data is kept
approximately the same as before, but each data
group is downsampled or upsampled so that the
sizes of all groups are approximately equal. The
last model, S-ORIG, is trained for comparison on
original (not forward-translated) parallel data.

We provide our S0, S-FT, and S-FT-bal stu-
dent models, test set translations generated by
them, and code used to generate and evaluate
those translations at https://github.com/
TartuNLP/multidomain-students.

4 Results

Table 2 shows the BLEU scores (Papineni et al.,
2002) our teacher and student models achieve on

the held-out and WMT18 test sets2. We can ob-
serve that fine-tuning on a data group noticeably
improves the performance of the teacher model
on held-out test sets within that data group. Not
unexpectedly, the effect is more pronounced for
smaller corpora, which are less represented in the
whole corpus on which the original mixed-domain
teacher is trained. We assume that the second im-
portant factor is the extent to which the corpus is
narrowly specialized. For example, on the test set
extracted from the very small and highly specific
Ubuntu corpus, the performance of the fine-tuned
teacher model is higher than that of the general
teacher by a huge margin of 17.9 BLEU points,
while the same performance gap is 3.1 points for
OpenSubtitles and 1.9 points for Europarl.

It seems that fine-tuning the teacher on forward-
translated monolingual data yields no positive ef-
fect. BLEU score on the WMT18 test set remains
the same as for the general teacher, while scores on
the held-out test set drop. This is not unexpected,
as, while the teacher stops encountering data from
other domains during fine-tuning, it also only en-
counters the data from the news domain that it
forward-translated itself, and most likely cannot
learn to exhibit any new behaviour on these data.

2sacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.3.1
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group EU IT LEGAL MED SUBS WEB NEWS
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T-18M 40.9 33.8 29.7 37.8 44.2 57.5 46.8 31.9 50.5 30.9 30.4 39.491

T-EU 42.8 11.0 11.7 13.8 27.6 36.9 17.6 18.4 23.9 20.3 22.6
T-IT 9.2 61.2 40.6 55.7 6.9 6.5 10.4 10.5 14.3 9.2 9.0
T-LEGAL 29.4 17.1 12.7 18.3 49.7 64.6 24.3 8.1 23.8 16.9 16.5
T-MED 9.6 9.4 7.3 8.4 12.7 15.4 66.3 4.4 10.7 7.3 7.2 48.727
T-SUBS 22.2 14.6 10.4 15.3 10.8 10.4 12.3 35.0 21.7 16.6 24.7
T-WEB 38.2 29.5 23.5 33.0 36.4 50.2 39.4 24.9 52.3 37.4 30.8
T-NEWS 37.7 24.3 20.9 27.1 28.8 38.4 29.5 28.7 35.4 27.0 30.4

S0 38.4 29.3 25.2 31.4 40.4 54.3 42.6 29.7 47 28.8 28.3 35.945
S-FT 38.3 29 25 31.6 41.3* 54.5 41.3 29.7 48.6* 30.6* 28.5 36.218
S-FT-bal 38.2 45.6* 23.7 45.3* 38.8† 50.9† 49.3* 27.3† 41.6† 25† 26.2† 37.445

S-ORIG 35.2 28.1 24.1 29.9 38.3 51.2 40.6 29.1 44.5 29.6 24.2 34.073

Table 2: BLEU scores of teacher and student models trained on 18M ET-EN sentence pairs as measured
on different test sets. The columns represent the groups and corpora to which the test sets belong, and
the rows indicate models. T-18M denotes the initial mixed-domain teacher model. T-EU, T-IT, etc.
are teacher models fine-tuned on the corresponding groups of datasets. S0 is a distilled student model
trained on texts forward-translated by T-18M. S-FT is a student model trained on data produced by the
fine-tuned, domain-specific teacher models. S-FT-bal is trained on the same data as S-FT, but each
data group is upsampled or downsampled so that all groups are of equal size, while the total number of
training examples stays the same. S-ORIG is a model of the same configuration as the student models,
but trained on original (not forward-translated) texts for comparison as a sanity check. The ”avg” column
shows each model’s BLEU, averaged over all test sets (for fine-tuned teachers, we report a single average
over the scores of each teacher’s translations of test sets belonging to the corresponding group). Bold
numbers indicate the highest BLEU scores for each test set among the teacher and among the student
models. Individual test set results that show statistically significant improvements (p ≤ 0.05) of S-FT
and S-FT-bal in comparison to S0 are marked with *, while results that are significantly lower than S0
are marked with †.
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While the behaviour of fine-tuned teachers is
rather straightforward, the performance of student
models is more varied. Comparing S0 and S-
FT, we observe relatively similar performance: the
difference on various test sets ranges from none
(OpenSubtitles) to 1.8 (infopankki) BLEU points.
The BLEU score averaged over all test sets is bet-
ter for S-FT, but not by a very large margin. On
the external WMT18 test set, S-FT performs best,
although it only outperforms S0 by 0.2 BLEU
points. On 6 test sets out of 11, S-FT is better
than S0, although only on 3 of those the differ-
ence is statistically significant (Koehn, 2004), and
on one more test set (OpenSubtitles) their result is
the same.

The extremely small GNOME and Ubuntu cor-
pora obviously benefit from balancing the data,
and the scores on their test sets improve signifi-
cantly compared to the unbalanced S-FT. Perfor-
mance on the EMEA corpus, which comprises the
second smallest data group, also noticeably ben-
efits from upsampling. At the same time, if we
compare the results obtained by S-FT and S-FT-
bal on other corpora, we notice drops of 0.1-7.0
BLEU points.

The best average BLEU score is achieved by
S-FT-bal, the student trained on data which is
forward-translated by the fine-tuned teacher mod-
els and balanced.

5 Qualitative Analysis

Table 3 shows several example sentences from test
sets belonging to each of the data groups, as well
as their reference translations, translations gener-
ated by S0, S-FT, and S-FT-bal student models,
and sentence-level chrF scores (Popović, 2015). In
this section, we provide a brief description of vary-
ing model behavior on these examples.

In example 1, which comes from the Ubuntu
corpus, only the model trained on balanced data
manages to translate ”ruutu soldat” as ”jack of dia-
monds”, while both S0 and S-FT translate ”ruutu”
literally (”squares”), and S0 translates ”soldat” in-
correctly (”solder” instead of the direct translation
”soldier”, which is likely due to subword interac-
tion).

In example 2, the S-FT-bal model shows signs
of overfitting: the content part of the sentence is
identical to the reference, and the number ”63” is
generated at the start of the text, where the refer-
ence sentence has ”53”. However, there is no num-

ber in the source sentence. Sentences produced by
the S0 and S-FT models are, in fact, more exact
translations of the Estonian source sentence (”you
have the feeling”/”you feel” vs. ”you think” and
”the effect of Vivanza”/”Vivanza’s effect” vs. ”Vi-
vanza”).

In the infopankki example (3), all models man-
age to convey the original meaning of the source
sentence, but S-FT-bal does so in a more infor-
mal style and with simpler grammar that the ref-
erence and the translations by S0 and S-FT (e.g.
”work and business office” vs. ”Employment and
Economic Development Office”, and ”helps” vs.
”Help is available”/”You can get help”).

In the example from the OpenSubtitles corpus
(4), all models use ”his” instead of ”her” (the Es-
tonian pronoun ”ta” does not have grammatical
gender, so the correct English pronoun can only
be inferred from wider context). The S-FT model
uses the more informal contraction ”it’s”, which is
appropriate for the domain. The S-FT-bal model
fails to translate a part of the compound word
”kõnepost” and generates ”voice” instead of the
correct ”voicemail”.

In example 5 (Europarl), the S-FT-bal model is
the only one not to use contractions (”We have”
vs. ”We’ve”), which do not typically occur in the
formal style of parliament proceedings. However,
all three model hypotheses are faithful.

The DGT example (6) sees the S-FT model
translate very similarly to the reference, while
both S0 and S-FT-bal overgenerate repetitively
(”and ovens and ovens” and ”Non-electric non-
electric non-electric”).

Finally, in the WMT18 example, all models fail
to use the specific correct word ”minesweeper”,
and instead translate the compound word ”miini-
jahtija” more literally as ”mine hunter”. Other-
wise, the S-FT hypothesis is the only one to con-
vey the full meaning of the source correctly.

6 Discussion

We observe that the fine-tuned teacher mod-
els predictably suffer from forgetting the general
teacher’s knowledge on domains other than the
one the particular teacher is fine-tuned to. The ex-
tent of this forgetting varies, e.g. the teacher fine-
tuned to Web-crawled text performs 2.7 BLEU
points worse than the mixed-domain teacher on
the Europarl test set, while the teacher fine-tuned
to medical documents is 27.5 points worse on the
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corpus model sentence chrF

U
bu

nt
u

SRC ruutu soldat
REF jack of diamonds

1 S0 squares solder 4.8
S-FT squares of the jack 18.4
S-FT-bal the jack of diamonds 95.0

2

E
M

E
A

SRC Kui teil on tunne, et Vivanza toime on liiga tugev või liiga nõrk, pidage nõu oma arstiga.
REF 53 Tell the doctor if you think Vivanza is too strong or too weak.
S0 If you have the feeling that the effect of Vivanza is too strong or too weak, talk to your

doctor.
58.2

S-FT If you feel that Vivanza’s effect is too strong or too weak, talk to your doctor. 54.7
S-FT-bal 63 Tell the doctor if you think Vivanza is too strong or too weak. 98.0

3

in
fo

pa
nk

ki

SRC Töö otsimisel saab abi Töö- ja ettevõtlusbüroost.
REF The Employment and Economic Development Office provides help with your job hunt-

ing.
S0 Help is available in the Employment and Economic Development Office. 60.6
S-FT You can get help in finding a job at the Employment and Economic Development Office. 62.2
S-FT-bal The work and business office helps to seek the job. 16.1

O
pe

nS
ub

tit
le

s SRC See on ta kõnepost.
REF It’s her voicemail.

4 S0 This is his voice mail. 52.6
S-FT It’s his voice mail. 67.1
S-FT-bal This is his voice. 21.6

E
ur

op
ar

l SRC Oleme palju ära teinud, kuid töö ei ole veel läbi.
REF We have come a very long way, but the work is not yet complete.

5 S0 We’ve done a lot, but the work is not over. 39.0
S-FT We’ve done a lot, but the job’s not over. 22.7
S-FT-bal We have done a lot, but the work is not over. 44.4

D
G

T

SRC Mitte-elektriliste töötus- ja laboriahjude ja -põletuskambrite osad
REF Parts for non-electric industrial or laboratory furnaces and ovens

6 S0 Parts of non-electrical furnaces and ovens and ovens 51.3
S-FT Parts of non-electric industrial or laboratory furnaces and ovens 90.9
S-FT-bal Non-electric non-electric non-electric furnaces and oven parts 46.8

W
M

T
18

SRC Sel poolaastal kuulub rahvusvahelise üksuse koosseisu ka Eesti mereväe miinijahtija
Sakala.

REF This half-year, the Estonian minesweeper Sakala is also part of the international unit.
7 S0 This half-year is also part of the international unit Sakala, a mine hunter of the Estonian

Navy.
34.3

S-FT This half-year the international unit also includes the Estonian naval mine hunter Sakala. 73.7
S-FT-bal In this half, the Estonian Navy mine hunter also includes the Estonian Navy mine hunter. 63.7

Table 3: Examples of source-reference pairs from different test sets and corresponding translations
produced by S0 (student model trained on texts forward-translated by a single mixed-domain teacher
model), S-FT (student model trained on data translated by multiple fine-tuned teacher models), and S-
FT-bal (trained on balanced data produced by multiple fine-tuned teachers) models. The last column
shows sentence-level chrF score for each of the translations (sacreBLEU signature: chrF2|nrefs:
1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1).
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OpenSubtitles test set than the original teacher,
its score dropping to 4.4 BLEU, which suggests
that these translations are not too far from random.
The different levels of forgetting could potentially
serve as a clue to domain similarity and guide the
choice of manual data groupings.

There is a sizeable gap between the average per-
formance of teachers fine-tuned to each data group
and the best student model average. While the
difference in capacity becomes even more drastic
when we compare not one, but several large fine-
tuned models to a single small student model, this
gap remains large, and suggests the possibility of
pushing the limits of student models’ performance
further.

Distilling the data clearly benefits the training of
small models, the S-ORIG model lagging behind
other student models. The best average BLEU is
achieved by the student model trained on data dis-
tilled by multiple fine-tuned teachers and balanced
between groups. However, in a real-world sce-
nario trade-offs may still need to be made between
the performance on specific domains, with aver-
age BLEU score not being representative enough
for fine-grained evaluation.

7 Future Work

In our experiments, we used 10 corpora and, for
fine-tuning, split them manually into 6 data groups
based on the assumed similarity of their sources
and topics. However, as demonstrated by Currey
et al. (2020), the known domain labels may be
suboptimal, and assigning the domains automat-
ically can improve the multi-domain MT perfor-
mance. Generating automatic domain labels us-
ing the general-domain model’s internal data rep-
resentations has been shown to further improve in-
domain translation quality (Del et al., 2021). In
future work, we would like to explore these meth-
ods for automatic domain discovery in conjunction
with multi-domain knowledge distillation.

Aiming to bring our experiments closer to a pro-
duction scenario, we tried incorporating forward-
translated monolingual data into our multi-domain
distillation setup. However, large-scale systems
typically use back-translation and round-trip trans-
lation to increase the amount of training data. It
currently remains unclear how to best incorporate
monolingual data into the multi-domain knowl-
edge distillation framework effectively, given the
suboptimal results we achieved when fine-tuning

a mixed-domain teacher model to a forward-
translated news corpus. We hypothesize that the
teacher model cannot learn to exhibit any new be-
haviours when it is fine-tuned on data generated
by itself. Thus, adding monolingual domains to
distilled multi-domain systems is a potential topic
for future exploration.

Another important direction for future work is
extending our research to other language pairs
and translation directions. While we perform
our experiments on the Estonian→English lan-
guage pair, which, to the best of our knowledge,
has not been experimented with in a similar set-
ting before, using other languages, especially low-
resource ones, might lead to different results and
insights.

8 Conclusion

In this work, we explored distilling multi-
ple domain-specific neural machine translation
teacher models into a single student model. While
following procedures proposed in previous work,
we incorporated research findings on model effi-
ciency and focused on obtaining very lightweight
student models. We used a training corpus of 18M
Estonian-English sentence pairs, comprised of 10
unbalanced domains. We separated the domains
into groups based on their perceived similarity, ex-
plored the effects of balancing, and incorporated
monolingual forward-translated data into training
of multi-domain students.

Our experiments show that the knowledge of
several fine-tuned teachers models can be distilled
into a very small student model, with balanced
representation of domains further improving the
average result. The massive total capacity of sev-
eral fine-tuned teacher models has a huge average
gain over the untuned teacher (almost 10 BLEU
points) and the student models with their limited
capacity achieve a much more modest increase in
translation quality. Still, the increase in translation
quality compared to the baseline student is stable
and noticeable (+1.5 BLEU points).
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