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Abstract

Knowledge selection is the key in knowledge-
grounded dialogues (KGD), which aims to se-
lect an appropriate knowledge snippet to be
used in the utterance based on dialogue his-
tory. Previous studies mainly employ the clas-
sification approach to classify each candidate
snippet as “relevant” or “irrelevant” indepen-
dently. However, such approaches neglect
the interactions between snippets, leading to
difficulties in inferring the meaning of snip-
pets. Moreover, they lack modeling of the dis-
course structure of dialogue-knowledge interac-
tions. We propose a simple yet effective gener-
ative approach for knowledge selection, called
GENKS. GENKS learns to select snippets by
generating their identifiers with a sequence-to-
sequence model. GENKS therefore captures
intra-knowledge interaction inherently through
attention mechanisms. Meanwhile, we devise
a hyperlink mechanism to model the dialogue-
knowledge interactions explicitly. We conduct
experiments on three benchmark datasets, and
verify GENKS achieves the best results on both
knowledge selection and response generation.

1 Introduction

To improve the informativeness in open-domain
dialogue agents (Freitas et al., 2020), knowledge-
grounded dialogues (KGD) are proposed to lever-
age external structured (Liu et al., 2019) and un-
structured (Dinan et al., 2019) knowledge to di-
alogue responses. In KGD, it is pivotal to em-
bed factual and conversationally appropriate knowl-
edge in responses. Two classes of approaches are
considered to embed knowledge: end-to-end and
pipeline. End-to-end models, such as FiD (Izac-
ard and Grave, 2021), process the document and
generate the response in one shot. However, they
tend to misuse knowledge (Adolphs et al., 2021).
Pipeline models address this problem by explic-
itly identifying a specific knowledge snippet to
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<1> Hedy Lamarr (born Hedwig Eva Maria
Kiesler; November 9, 1914 — January 19
2000) was an Austrian-born
American film actress and inventor.

great movie actresses of all time.

<3> She became a film star with her
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(<4> Her MGM films include Lady of the
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Dialogue context
Do you know Hedy ‘ 0
Lamarr?

2 Of course, she has been
" described as one of the
great movie actresses!

Which of her movies |
do you know?

the Tropics in 1939 and ‘
\_Boom Town in 1940. P

Cecil B. DeMille's Bible-inspired Samson

<5> Her greatest success was as Delilah in
and Delilah (1949)

That is interesting! I'm
going to watch these O
.

films!

<6> She was honored with a star on the
Hollywood Walk of Fame in 1960.

<7> At the beginning of World War Il, she
and composer George Antheil
developed a radio guidance system for

<8> This work led to their induction [....]

=~

)

Response

Besides being an actress,
she also developed a radio guida

nce system for Allied torpedoes a
t the beginning of World War II.

Intra-knowledge

interaction

Dialogue-knowledge
interaction

Figure 1: An example of knowledge-grounded dia-
logues. The dialogue agent selects a knowledge snip-
pet (i.e., <7>) from passages and generates a response
based on it. Intra-knowledge interactions and dialogue-
knowledge interactions are denoted by @ and @, respec-
tively.

be used in the response (Adolphs et al., 2021).
Typically, pipeline KGD approaches have two sub-
steps, i.e., knowledge selection and response gen-
eration (Dinan et al., 2019; Kim et al., 2020): The
former aims to select knowledge snippets from pas-
sages, and the latter generates responses based on
them. Knowledge selection plays a vital role in
KGD as it directly determines the content of the re-
sponse (Lian et al., 2019; Meng et al., 2020). In this
paper, we focus on selecting knowledge snippets
for dialogue to enhance pipeline KGD models.

The Classification paradigm dominates knowl-
edge selection studies. In this paradigm, each snip-
pet is independently classified as “relevant” or “‘ir-
relevant” (Dinan et al., 2019; Zhao et al., 2020b).
However, these approaches ignore knowledge in-
teractions, which refer to flows of information
within the knowledge or between knowledge and
dialogues. As shown in Figure 1, we identify two
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types of knowledge interactions in KGD:

Intra-knowledge interaction Intra-knowledge
interaction refers to the interactions between
snippets. It is worth noting that the meaning
of a knowledge snippet is context-dependent
and can be ambiguous when taken individually.
For example, the <8> snippet in Figure 1 “This
work led to their” has a referential element their,
and is difficult to identify its meaning without
knowing the remaining context of the sentence.
However, with the existence of the remaining
context, we can quickly infer that it refers to
Lamarr and George Antheil. This problem
challenges existing methods when selecting
knowledge on new topics.

Dialogue-Knowledge interaction Previous
works also neglect interactions between dia-
logue and knowledge. There is a discourse
structure and smooth transition of involved
knowledge in multi-turn dialogue. For example,
Lamarr’s profession mentioned in the dialogue
in Figure 1 is demonstrated in a parallel and
multi-perspective manner, while some other
cases follow a shallow-to-deep structure in
dialogue.

Some recent efforts attempt to fix these problems
within the classification paradigm; for example, Li
et al. (2022) build a semantic graph for passages
to capture intra-knowledge interaction, Kim et al.
(2020) propose sequential knowledge selection to
model the dialogue-knowledge interaction as latent
variables. However, they are complicated, lack
deep semantic interactions, and are challenging
to model the two types of knowledge interaction
simultaneously.

In this work, we propose GENKS (Generative
Knowledge Selection), a simple yet effective gen-
erative model that addresses these challenges.
GENKS first assigns an identifier to each snip-
pet, feeds all the snippets into the model simul-
taneously, and then selects snippets by generat-
ing their identifiers with a sequence-to-sequence
Transformer model (e.g., BART (Lewis et al.,
2020a)). Compared with KGD methods with the
classification paradigm, GENKS captures inter-
actions between knowledge snippets through the
self-attention mechanism in Transformer (Vaswani
et al., 2017). Therefore, GENKS can obviate the
ambiguity in snippets with the existence of the rest
context and improve the understanding of knowl-
edge. Moreover, we propose a hyperlink method to

capture the dialogue-knowledge interactions ex-
plicitly and effectively. Finally, we propose to
joint knowledge selection and response generation
within one generative model.

We evaluate our proposed method on three pub-
lic KGD datasets: Wizard of Wikipedia (Dinan
et al., 2019), Holl-E (Moghe et al., 2018), and
CMU_DoG (Zhou et al., 2018). The experimental
results show that GENKS significantly improves
the accuracy of knowledge selection as well as the
quality of response generation, by establishing new
state-of-the-art on KGD benchmarks. Improve-
ments are particularly significant on unseen topics,
outperforming the BART classification model by
up to 8.1% absolute. GENKS also achieves the best
results as the number of dialogue turns increased,
with an average of 10% improvements over the
BART classification model in the last three turns.
We also compare our model with recent SOTA end-
to-end methods (Shuster et al., 2021), and find our
model can generate responses with fewer hallu-
cinations while having better controllability and
interpretability. The effectiveness of the proposed
method is also validated through human evaluation
and ablative experiments.

Our contributions are summarized as follows:
(1) We propose GENKS, which is the first at-
tempt at generative knowledge selection in KGD.
(2) GENKS captures intra-knowledge and dialogue—
knowledge interactions simultaneously. (3) We
propose a hyperlink method to enhance the inter-
actions between dialogue and knowledge. (4) Ex-
periments verify that GENKS establishes a new
state-of-the-art on KGD!.

2 Related work

Knowledge-grounded dialogues With the ad-
vances in large-scale language models, dialogue
agents can now generate high-quality responses us-
ing parametric knowledge (Thoppilan et al., 2022;
Freitas et al., 2020; Bao et al., 2021). How-
ever, hallucination remains a challenge, which
means that the language model tends to gener-
ate plausible-looking statements that are factually
incorrect (Shuster et al., 2021). To address this
problem, knowledge-augmented approaches are ap-
plied in dialogue generation (Lewis et al., 2020b).
In knowledge-grounded dialogues (KGD), the dia-
logue models first select a knowledge snippet from

'The code is available at:
sunnweiwei/GenKS

https://github.com/
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passages and then generate the responses (Liu et al.,
2018; Dinan et al., 2019).

Knowledge selection As the critical step in KGD,
knowledge selection has received many studies.
The exiting methods mainly employ classification
model with dual-encoder (Dinan et al., 2019; Kim
et al., 2020) or cross-encoder (Zhao et al., 2020b)
architecture. However, the classification paradigm
is unable to capture the knowledge interaction in
KGD (Kim et al., 2020; Li et al., 2022). To address
this problem, Li et al. (2022) propose a graph-based
method to capture the relationship between candi-
date snippets, Zhan et al. (2021a) and Wu et al.
(2021) employ machine reading comprehension
model to extract span from long document. Sequen-
tial knowledge selection has also been proposed to
capture the topic transition in conversations (Kim
et al., 2020; Zhan et al., 2021b; Zheng et al., 2020;
Meng et al., 2020; Yang et al., 2022). Despite
their effectiveness, the existing methods have two
drawbacks: (1) they use compact vectors to repre-
sent dialogue and knowledge and thus lack deep
semantic interactions; (2) they are complicated
and challenging to capture intra-knowledge and
dialogue-knowledge interactions simultaneously.
We address these drawbacks by shifting the model-
ing paradigm of knowledge selection to identifier
generation (Sun et al., 2022), and propose GENKS
to capture the two types of interaction simultane-
ously using Transformer (Vaswani et al., 2017).

Generative knowledge selection A generative
paradigm for knowledge selection is not foreign
to the NLP community; for example, sequence-
to-sequence models have been applied on en-
tity retrieval (Cao et al., 2021), document rank-
ing (Nogueira et al., 2020; Tay et al., 2022), multi-
evidence retrieval (Min et al., 2021; Yavuz et al.,
2022), and etc. Our proposed model GENKS dif-
fers from existing methods in the following ways:
(1) we are the first to explore generative knowledge
selection in KGD; (2) we consider the effectiveness
of intra-knowledge interaction; (3) we design hy-
perlinks to capture the interaction between knowl-
edge and dialogue.

3 GENKS

We provide an overview of GENKS in Figure 2. As
shown in Figure 2, the dialogue data is first serial-
ized into a sequence. Then a sequence-to-sequence
model (i.e., BART) is employed to select knowl-

edge and get the response by generating the target
sequence autoregressively. In this section, we first
formulate the task in Section 3.1. Then, we de-
tail the serialization (Section 3.2) and optimization
(Section 3.3) methods.

3.1 Problem formulation

Suppose that we have a case of knowledge-
grounded dialogues (C,K,r), where C =
(c1,.--,¢|c)) is a dialogue context that contains
|C| utterances, r is the response to C, K =
(K1, ..., K|x|) denotes |K| passages that are rel-
evant to C; for each i, K; = (ki 1, ..., k;|k,|) de-
notes a passage that contains |K;| snippets. We
definem = > L’i‘l | ;| as the total number of snip-
pets in K. A knowledge-grounded dialogue agent
is decoupled into two modules: a knowledge selec-
tion module P(k|C, K) that selects a snippet from
KC; a response generation module P(r|C, KC, ks)
where k; is the selected snippet from knowledge
selection module.

3.2 Serialization

We formulate the knowledge selection task as a pro-
cedure of sequence generation. As shown in Fig-
ure 2, the dialogue context C' and knowledge can-
didates K are mapped into a sequence and then fed
into a sequence-to-sequence model. The model’s
output is converted back to the selected knowledge
k or the response 7.

Specifically, we first assign an identifier to each
snippet in K, sequentially starting from <k1> to
<km>. Then we convert passages K into a sequence
using a template that packages snippets with the
corresponding identifiers and concatenates them in
order; see the green block in Figure 2. Similarly,
the dialogue context C' is serialized by adding task
prompts, i.e., task description and speaker name,
as shown in the blue block in Figure 2.

In multi-turn dialogues, the knowledge appear-
ing in the dialogue history prompts the discourse
structure of knowledge transition and knowledge
expression. Hence we propose a hyperlink method
to capture the dialogue-knowledge interaction ex-
plicitly. We provide an example of the hyperlink
method in Figure 2. We see that the first utterance
of Userl] refers to a snippet (whose identifier is
<k2>) in the passage “Skateboarding”. We thus add
a hyperlink to the utterance. The hyperlink includes
the identifier and the title of the snippet, i.e., anno-
tating [Skateboarding]<k2> at the beginning of
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Model Input

—

Model Output

Background Knowledge
Title: Skateboarding
Intra-knowledge [—<K1> Skateboarding is an action sport [...]. <K1>

interaction

Dialogue-knowledge
interaction

Conversation between two users
Chosen Topic: Skateboarding

<K2> Skateboarding can also be considered [...]. <K2>
—<K3> Skateboarding has been shaped and [...] <K3>
—<K4> A 2009 report found that the skateboarding [...] <K3>

—Userl: [Skateboarding]<k2> | love skateboarding in my free
time. It's a sport where you ride and do tricks on a board.

Transformer (BART) <K4> The skateboarding

kmarket is estimated to be

around 8 billion dollars.

sequence-to-sequence generation

Snippet identifier
Task prompt
Hyperlink
Selected snippet

\Userz: Yeah | have heard it is fun.

J Generated response

Figure 2: Overview of GENKS. The dialogue context and the knowledge are serialized and fed into a seq-to-seq
model, BART. The outputs are the identifier of the selected snippet (i.e., <k5>) and the response.

this utterance (as shown in the red block in Figure
2). Finally, we splice the passages and dialogue
context sequences as input for a Transformer model
(i.e., BART). Therefore, the model can capture the
intra-knowledge and dialogue-knowledge interac-
tions through a self-attention mechanism (Vaswani
etal., 2017).

3.3 Optimization

The knowledge selection model is optimized by
the cross-entropy loss: £ = —log P(kirue|C, K)
, where k. denotes the label knowledge. Since
kirvue needs to be labeled manually and is not avail-
able in some scenarios (Zhou et al., 2018), we con-
struct pseudo-labels for model training following
Zhao et al. (2020b) in cases the knowledge label is
absent. In particular, we calculate the F1 score (Di-
nan et al., 2019) between each knowledge snippet
and the response. We use the snippet with the
highest score as the pseudo label. Such a method is
based on the intuition that human responses provide
hints regarding the relevance of the snippets (Zhao
et al., 2020b; Li et al., 2020).

Since both knowledge selection and response
generation are modeled with the generative
paradigm, we unify the two modules with one
joint generative model. In this joint model, the
knowledge selection and the response generation
are optimized jointly, with shared parameters. To
this end, we splice the knowledge identifier ke
and response 7 into one sequence (as shown in
Figure 2). Then, we optimize the sequence-to-
sequence model using cross-entropy loss on all
the tokens of the target sequence. In inference, the
model generates knowledge identifier ks and re-
sponses 7 in an autoregressive fashion. We note
that the end-to-end model allows the two tasks to
be mutually enhanced and improves the model’s
efficiency.

4 Experimental setup

4.1 Datasets

We conduct experiments on Wizard of Wikipedia
(WoW) (Dinan et al., 2019), Holl-E (Moghe et al.,
2018), and CMU_DoG (Zhou et al., 2018). The
statistical details on these three datasets are shown
in Table 7 in the appendix.

* WoW is an open-domain KGD dataset using
Wikipedia passage as background knowledge.
The test set of Wizard is split into seen and un-
seen versions, where the unseen test set contains
58 new topics not discussed in the training data.

* Holl-E focuses on the movie domain. The
background knowledge consists of plots, com-
ments, and movie reviews collected from dif-
ferent websites. Holl-E has two versions of
the test set: single test and multi-reference test.
In the multi-reference test, there are multiple
human-annotated ground-truth knowledge and
corresponding responses for each instance.

e CMU_DoG focuses on the domain of movies.
The workers discuss a movie in depth given the
background knowledge(e.g., introduction, plots,
and key scenes).

4.2 Baselines

We compare GENKS with baselines of two cate-
gories: (i) End-to-end methods that generate re-
sponse directly without explicit knowledge selec-
tion, and (ii) Pipeline methods that explicitly select
knowledge snippet to be used in response.

The end-to-end methods we consider are:

* BART (Lewis et al., 2020a) that generates re-
sponses without access to the external passage
and uses knowledge inside model parameters in-
stead.

e BART FID (Izacard and Grave, 2021) concate-
nates and encodes each candidate knowledge

2080



with dialogue separately and fuses all the en-
coded representation in the decoder to generate
the response.

* BART RAG-DPR is a baseline adopted by
Adolphs et al. (2021), which uses DPR-retrieved
passages and produces response usning RAG.

* BART FiD-RAG DPR-Poly (Shuster et al.,
2021) uses DPR-Poly to retrieve passage and
uses FiD-RAG to generate the response.

Regarding the pipeline baselines, according to their

knowledge selection modeling paradigm, we sub-

categorize pipeline baselines into four groups:

(1) The Classification methods, includes:

* SKT (Kim et al., 2020) proposes sequential
knowledge selection.

* DiffKS (Zheng et al., 2020) captures the knowl-
edge differences between adjacent turns.

* DukeNet (Meng et al., 2020) models the knowl-
edge shift and tracking processes with a dual
learning scheme.

* KnowledGPT (Zhao et al., 2020b) exploits pre-
trained language models in KGD.

* MIKe (Meng et al.,, 2021) distinguish user-
initiative and system-initiative.

* K-Mine (Lotfi et al., 2021) proposes a score-and-
aggregate module.

* TAKE (Yang et al., 2022) propose a topic-shift
aware network.

(2) The MRC methods, includes:

* CoLV (Zhan et al., 2021a) proposes a collabora-
tive latent variable model.

* DIALKI (Wu et al., 2021) proposes a MRC-
based model to extract span from passage.

(3) The Graph-based methods, includes:

* Graph (Li et al., 2022) builds a semantic graph
upon candidate documents and employs a GNN
model.

(4) And the Knowledge generation methods, in-

cludes:

* K2R (Adolphs et al., 2021) uses the RAG-based
model to generate knowledge text and then gen-
erates dialogue response based on it.

4.3 Evaluation metrics

In WoW, we choose perplexity (PPL) of the
ground-truth responses, unigram F1? (Dinan et al.,
2019), Knowledge-F1 (Shuster et al., 2021), and
BLEU-4 (Papineni et al., 2002) score as met-
rics. In Holl-E, we additionally use ROUGE-1,
and ROUGE-2 following Meng et al. (2020). In

2https ://github.com/facebookresearch/ParlAl

CMU_DoG, we additionally use embedding-based
metrics includes Average, Extreme, and Greedy
following Zhao et al. (2020b).

In addition, we randomly sample 100 examples
from the WoW test seen and WoW test unseen,
respectively, and recruit three experts for human
evaluation. The annotators are asked to judge the
model-generated response in four ways:

* Fluency, which measures whether the response
is fluency in expression;

¢ Coherence, which measures whether the re-
sponse is coherence to the dialogue context;

¢ Relevance, which measures whether the knowl-
edge used in the response is relevant to the dia-
logue; and

 Factuality measures whether the response’s con-
tent is factual. In Factuality evaluation, the ex-
perts check the content using Google.

The annotators are asked to assign a score in {0,

1} (representing “nonfactual” and “factual”) for

factuality, and a score in {0, 1, 2} (representing

“bad”, “fair”, and “good”) for the others.

4.4 Implementation details

We implement the GENKS using BART large (with
400M parameters) (Lewis et al., 2020a) in Hug-
gingFace’s Transformers library. We truncate the
dialogue context to 256 tokens, then truncate the
knowledge so that the total length is less than 1024
tokens. During inference, the responses are de-
coded using a greedy search. See Appendix A for
more details.

Typically, the number of passages in K is large,
so that the input sequence exceeds the maximum in-
put length of BART (i.e., 1024 tokens). To address
this problem, we take advantage of a lightweight
passage selector based on DistilBERT (with 66M
parameters) (Sanh et al., 2019), which aims to rank
the passages in K. Specifically, we concatenate
each passage with dialogue context and encode
the sequence using DistilBERT. Finally, the rep-
resentation of [CLS] token is used to estimate the
relevance score of the passage through a learnable
MLP classifier. The passage selector is optimized
via contrastive learning objective (Nogueira and
Cho, 2019), in which the model learns to assign
a higher score to positive passages than negative
passages. During inference, we keep only the top-1
passage ranked by the passage selector. The pas-
sage selector gets Recall@1 of 75.5%, 76.5%, and
68.0% for the WoW test seen, WoW test unseen,
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WoW Holl-E

Methods

Seen Unseen Single Multi

Classification methods

SKT (Kim et al., 2020) 26.8 183 292 39.2
DukeNet (Meng et al., 2020) 264 19.6 30.0 40.3
DiffKS (Zheng et al., 2020) 255 19.7 330 -
KnowledGPT (Zhao et al., 2020b) 28.0 25.4 - -
MIKe (Meng et al., 2021) 284 21.5 319 418
K-Mine (Lotfi et al., 2021) 29.7 283 317 -
TAKE (Yang et al., 2022) 28.8 25.8 - -
Other methods

CoLV (Zhan et al., 2021a) 30.1 189 327 -
DIALKI (Wu et al., 2021) 329 355 - -
Graph (Li et al., 2022) 294 30.8 37.7 46.1
GenKS 342 36.6 379 468
Variants for comparison

- BART classification 29.8 29.7 340 440
- BART classification w/ position 30.1 31.2 34.0 44.0
- Hierarchical classification 30.0 314 33.8 437
- Without passage selector 314 320 345 444
- Unorder knowledge snippets 31.8 333 365 458
- Without hyperlink 334 354 369 454

Table 1: Knowledge selection accuracy on WoW (seen
and unseen test set) and Holl-E (single reference and
multi-reference test set). Bold denote the best results
with significant improvements over the previous SOTA
(t-test, p < 0.05). Underline denote second best results.

and Holl-E, respectively.

S Experimental results

5.1 Performance on knowledge selection

We evaluate the knowledge selection effectiveness
of GENKS on WoW and Holl-E, respectively?. In
Table 1, we compare the knowledge selection ac-
curacy of GENKS with previous pipeline meth-
ods. Results show that GENKS achieves the best
knowledge selection accuracy on both datasets and
consistently outperforms baselines.

We find that GENKS particularly excels at top-
ics that do not appear during training (see WoW
unseen test split). For example, the classification
models both have noticeable accuracy drops on the
unseen topic. In contrast, models that model the
intra-knowledge interaction (e.g., GENKS, Graph,
DIALKI) can better understand the knowledge of
unseen topics®.

To evaluate the Performance of GENKS as di-
alogue goes deeper, we compare GENKS with

3We cannot evaluate the knowledge selection accuracy on
CMU_DoG because the knowledge snippets used in responses
are not manually labeled.

*The higher results on unseen than seen might be due to
the smaller number of topics in the unseen test set.

Accuracy GenkS
-u— BART-CLS
70 6124 70 63.94 KnowledGPT
60 .
o N Eﬁ A DiffKS
40 \\ 40 \ SKT
30 \ 287 30 \ 31‘9%300
Bo22922.43 2231 \ 22.36 23.37
20 ~u- 20 -
10 =% 10 i K% ]
0 0
1 2 3 4 5 1 2 3 4 5 Turns
Test Seen Test Unseen

Figure 3: Knowledge selection accuracy over different
dialogue turns. BART-CLS represents a text-matching
model with cross-encoder architecture.

four classification baselines (SKT, DiffKS, Knowl-
edGPT, and BART-CLS) overturns. Figure 3 shows
the results. Both methods achieve good accuracy
in the first few turns. However, as the conversa-
tion dives deeply into a topic, a significant perfor-
mance decline can be seen in baseline methods. In
contrast, GENKS that explicitly captures the multi-
turn dialogue-knowledge interaction, achieves a
relatively high accuracy (around 22%-23%).

5.2 Quality of generated responses

We report response generation evaluation results
on WoW in Table 2. The results on Holl-E and
CMU_DoG are available in Table 8 and Table 9
in the appendix. The results of baselines are cited
from original papers or re-evaluated using officially
released checkpoints.

Compared with previous pipeline models,
GENKS achieve the best Performance on almost all
metrics. For example, GENKS surpasses Knowl-
edGPT by 0.7% and 2.4% in terms of F1 on WoW
seen and WoW unseen, respectively. Note that the
improvements on the unseen test set are more no-
table than on the seen test set, which agrees with
the experimental results regarding knowledge se-
lection. GENKS also achieve competitive results
compared to SOTA end-to-end models. For exam-
ple, GENKS performs comparably to BART FiD-
RAG DPR-Poly on WoW seen and outperformed
on WoW unseen.

5.3 Ablation study about knowledge selection

To analyze the effect of each component in GENKS,
we designed several variants and conducted an ab-
lation study about knowledge selection. Results are
listed in Table 1, “Variants for comparison”. The
details of compared variants and the findings are as
follows:

BART classification We use BART to classify each
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Methods WoW Seen WoW Unseen

PPL F1 KF1 B4 PPL Fl1 KFl B4
End-to-end models
BART (Lewis et al., 2020a) 147 209 174 17 189 188 151 09
BART FiD (Izacard and Grave, 2021) 170 215 200 3.6 184 206 192 32
BART RAG-DPR (Adolphs et al., 2021) 11.5 226 261 37 131 215 227 3.0
BART FiD-RAG DPR-Poly (Shuster et al., 2021) 11.4 22.1 29.7 4.1 131 21.1 27.1 38
Pipeline models
DukeNet (Meng et al., 2020) 483 193 185 24 694 17.1 165 1.7
CoLV (Zhan et al., 2021a) 395 203 182 2.8 543 185 175 21
KnowledGPT (Zhao et al., 2020b) 192 220 238 3.7 223 205 221 30
K-Mine (Lotfi et al., 2021) 132 218 - - 164 21.1 - -
K2R RAG-DPR (Adolphs et al., 2021) 183 220 273 37 223 199 232 28
K2R BART RAG-DPR (Adolphs et al., 2021) 179 213 292 35 21.1 199 243 25
GenKS 13.1 229" 295 4.5° 132 227" 28.1" 4.6"
Ablative variants
- With BART classification knowledge 147 220 259 35 162 21.1 244 3.1
- Without identifiers generation 13.8 21.7 232 37 141 218 233 39
- Without hyperlink 142 221 272 39 155 223 269 42
- With oracle knowledge 89 388 742 131 105 389 745 128

Table 2: Evaluation results on WoW seen and unseen test set in terms of response quality. We compare against the
ground-truth dialogue response in terms of perplexity (PPL), F1, Knowledge F1 (KF1), and BLEU-4 (B4). The
four groups lists previous end-to-end models, previous pipeline models, GenKS, and ablative variants. The best
results are highlighted with bold, and the second-best results are highlighted with underline. * indicates significant

improvements over all baselines with p-value < 0.05.

candidate snippet into two classes: “relevant” or
“irrelevant”. The results show that BART in the clas-
sification paradigm performs worse than GENKS
by a large margin.

BART classification w/ position To understand the
influence of position bias, we splice the snippet’s
position into the classification model’s input. We
find that the results are improved to a certain extent
(about 1% improvement), but there is still a clear
gap compared with GENKS.

Hierarchical classification This variant first uses
the passage selector model of GENKS to rank the
passages and then selects the snippets in the top-
ranked passage using BART classification w/ po-
sition. The results show that the passage selector
does not affect the classification model’s Perfor-
mance.

Without passage selector When the passage selec-
tor model of GENKS is removed, the model has
more probability of truncating the label knowledge,
resulting in an evident decline in Performance.

Unorder knowledge snippets To disable the intra-
knowledge interaction, we unorder the snippets so
that order of the snippets is inconsistent with the
original passages. This variant shows a decline
in selection accuracy, especially on unseen topics,
indicating that keeping the order of the snippets in

the passage is necessary.

Without hyperlinks We remove the hyperlinks in
the dialogue context. About a 1% accuracy drop is
seen, indicating the effectiveness of hyperlinks.

5.4 Ablation study about response generation

As shown in Table 2, we also conduct an ablation
study about response generation. The details of
compared variants and the findings are as follows:
With BART classification knowledge When re-
placing the generated identifier with the knowledge
selected by BART classification, a performance de-
cline is witnessed —the F1 value drops by 0.7% and
1.8% on Wizard seen and unseen, sustaining the ef-
fectiveness of the knowledge selection of GENKS.
Without identifier generation This variant re-
moves the identifier generation by directly gen-
erating the response. We see notable performance
drops, especially in the KF1 metric. The results
indicate that explicit training and inference about
knowledge selection enable to use of more appro-
priate knowledge in response generation.
Without hyperlinks This variant removes hy-
perlinks from GENKS. It performs worse than
GENKS, probably due to its lower accuracy of
knowledge selection than GENKS.

Use the oracle knowledge We replace the model-
predicted snippet identifier with the oracle one
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Methods WoW Seen WoW Unseen Methods WoW Seen WoW Unseen
Flu. Coh. Rel. Fact. Flu. Coh. Rel. Fact. F1 KF1 B4 Fl1 KFl1 B4
BART 1.82 1.51 1.45 0.82 1.76 1.50 1.47 0.76 GenKS 229 295 45 227 28.1 46
BART FiD 1.88 1.70 1.55 0.84 1.85 1.67 1.53 0.82 GenKS-2 224 293 42 222 276 42
TMN 1.59 1.41 1.08 0.62 1.42 1.30 0.98 0.59 GenKS (5 Snippets) 223 27.6 42 21.8 255 4.1

DukeNet 1.69 1.56 1.22 0.71 1.66 1.47 1.10 0.72
KnowledGPT 1.89 1.67 1.58 0.87 1.87 1.68 1.51 0.83
GenKS 1.90 1.72 1.69 0.89 1.91 1.71 1.67 0.91

GenKS (3 Snippets) 21.1 293 32 20.0 209 29
GenKS (128 Tokens) 21.5 25.6 3.5 207 229 34
GenKS (64 Tokens) 20.7 233 3.0 20.1 206 29

Table 3: Human evaluation results. Flu, Coh, Rel, and
Fact denote Fluency, Coherence, Relevance, and Factu-
ality, respectively.

| KS RG |ACC FI
BART RAG (Adolphs etal., 2021)| 0 115 - 215
BART FiD* (Shusteretal, 2021) | 0 254| - 211
KnowGPT (Zhao etal., 2020b) | 12.5 7.4 | 254 205
K2R* (Adolphs et al., 2021) 118 82| - 199
DIALI" (Li et al., 2022) 82 - [355 -
Graph* (Li et al., 2022) 154 - [308 -
GenKS |29 88366 229

Table 4: Inference time (minutes) on one GPU on WoW
unseen test set. The values of model with * are estimated
based on the model size and input/output length. KG
and RG denote inference time for knowledge selection
and response generation stage, respectively.

(knowledge used by ground-truth response). The
results (e.g., KF1=74) suggest that GENKS can
effectively locate and incorporate the correspond-
ing knowledge into the responses following the
guidance of the identifier.

5.5 Human evaluation

Table 3 shows the human-evaluating results. Re-
sults show that GENKS consistently outperforms
baselines on all datasets. The Fleiss’ kappa
value is above 0.60, indicating substantial agree-
ment among the annotators. GENKS outperforms
KnowledGPT by about 0.02 and DukeNet by about
0.20 in terms of response generation evaluation
metrics (i.e., Fluency and Context Coherence).
Moreover, for the Knowledge Relevance, the an-
notators agree that GENKS is capable of selecting
knowledge that is more relevant to the dialogue and
generating more informative responses than base-
lines. The Factuality results show that by explicitly
identifying the knowledge snippet used in response,
GENKS can reduce the hallucination of response
generation.

Table 5: Analytical experiment results on WoW. The
first group compares GENKS and its variant GENKS,
which selects two snippets instead of one. The second
group includes the results of GENKS with different
maximum number of snippets inputs or maximum input
tokens.

5.6 Efficiency evaluation

To evaluate the efficiency of GENKS, we com-
pare the model with previous end-to-end models
and pipeline models. The results listed in Ta-
ble 4 show that GENKS is more efficient than
previous pipeline models. We infer that this phe-
nomenon is because GENKS jointly models knowl-
edge selection and response generation, avoiding
repeated encoding of dialogue history and knowl-
edge. As a pipeline method, we also find that
GENKS achieves comparable efficiency compared
to end-to-end models like RAG, but benefits from
explicit knowledge selection.

5.7 Analytical experiment

Multi-snippets selection GENKS select a single
snippet following the experimental setup outlined
in the baselines (Dinan et al., 2019), but it can
also select multiple snippets by generating multi-
ple identifiers. We test a variant of our GENKS
model, GENKS-2, which selects two snippets by
generating two identifiers consecutively. We com-
pared its performance with the original GENKS
on the WoW dataset. The results are listed in Ta-
ble 5 group 1. GENKS-2 performs slightly worse
than the original GenKS, likely because the WoW
dataset only uses one snippet in response anno-
tation and therefore does not benefit from using
multiple snippets (Dinan et al., 2019). Neverthe-
less, the results suggest that the proposed genera-
tive knowledge selection approach has the ability
to select multiple knowledge.

Hyper-parameter analysis We also conduct ab-
lation experiments on the number of input snippets
to the model and maximum input tokens. The re-
sults are listed in Table 5 group 2. We find that
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Topic Budweiser
User I think Budweiser taste terrible. Have you ever had
it?

Know 1 Produced in various breweries around the world,
Budweiser is a filtered beer available in draft and
packaged forms.

Res 1 Yes, I have. It is produced in various breweries
around the world!

Know 2 Budweiser is an American-style pale lager produced
by Anheuser-Busch, currently part of the transna-
tional corporation Anheuser-Busch InBev.

Res 2 Yes, | have. I know that it is an American-style pale
lager produced by Anheuser-Busch.

Table 6: Examples of GENKS outputs on the WoW.

reducing the number or length of knowledge re-
duces model effectiveness.

5.8 Case study

To better understand end-to-end baselines and our
model, we provide an example in Table 6, which
shows that GENKS appropriately changes its re-
sponse prediction when providing different knowl-
edge snippets’. Therefore, GENKS is more con-
trollable and interpretable than end-to-end models,
where the end-to-end system is a black box. We
provide more case studies in Appendix B.

6 Conclusion

In this paper, we have proposed GENKS, a sim-
ple yet effective knowledge-grounded dialogue
model. GENKS is a generative model, which learns
to select knowledge snippets by generating their
identifiers. Benefiting from the modeling of intra-
knowledge interaction and dialogue-knowledge in-
teraction, GENKS effectively addresses the chal-
lenges of ambiguity and discourse structure. Our
experiments have shown that GENKS establishes a
new state-of-the-art on three knowledge-grounded
dialogue benchmarks. Notably, GENKS particu-
larly excels at new topics and as the dialogue goes
deeper. GENKS also outperforms SOTA end-to-
end models. Hence, we believe GENKS reveals
a new paradigm for knowledge selection in open-
domain dialogue.

5Note that this example only aims to show the output of the
model. In fact, according to https://en.wikipedia.org/
wiki/Budweiser, Budweiser is also a famous lager from the
Czech Republic, and the American Budweiser being sold and
known as Bud through most of the European Union.

Limitations

The limitations of this work include the modular
modeling of passage reranks, which reduces the ef-
ficiency of the approach. Besides, we only conduct
human evaluation on one popular dataset, i.e., Wiz-
ard of Wikipedia. Furthermore, the effectiveness
of GENKS is only verified in the English dataset.
Research on other languages establishes a new chal-
lenge, especially for languages with limited knowl-
edge and annotated data. In future work, we would
like to explore more efficient passage rerank tech-
niques on knowledge-grounded dialogues. We will
also conduct human evaluation for more datasets.
Besides, generative knowledge selection can be
extended to future studies about conversational rec-
ommendation.

Ethics statement

The paper proposes a knowledge-grounded dia-
logue system to generate a response using external
knowledge. The intended use of this system is to
perform chit-chat with the user on topics such as
books and movies. The system is developed us-
ing large pre-trained language models (i.e., BART),
who are trained on large-scale web data known
to contain biased or discriminatory content. The
datasets (i.e., WoW, Holl-E, CMU_DoG) that we
train on also include subjective knowledge (com-
ments on movies) that may express the bias of the
writers. Although the system is able to reduce the
hallucination of response compared to end-to-end
models, the outputs from our system may still con-
tain non-factual information and should not be con-
sidered as advice for any critical decision-making.
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WoW  Holl-E CUM_DoG

Training size 18,430 7,228 3,373
Validation size 1,948 930 229
Test size 965/968 913 619
Number of topics 1,365 858 30
Avg. Turn per dialogue 9.0 10.1 222
Avg. Num of snippets 62.5 57.3 36.3
Avg. Num of passages 11.6 59 4.0

Table 7: Statistics of two experimental datasets, Wizard
of Wikipedia (WoW), Holl-E, and CMU_DoG. The two
numbers in WoW indicate the size of seen and unseen
test set, respectively.

F1 B4 KF1 RGl RG2
BART (Lewis et al., 2020a) 34.7 22.3 29.1 38.0 279

CoLV (Zhan et al., 2021a) - 203 - 320 258
MIKe (Meng et al., 2021)  32.1 21.1 - 38.0 252
Graph (Li et al., 2022) - - - 425 344

GenKS 36.7 243 31.3 42.3 35.2

Table 8: Results on Holl-E in term of response quality.
RGI and RG2 denote ROUGE-1 and ROUGE-2 respec-
tively. Best results are heighten with bold.

A Implementation details

We use gradient clipping with a maximum gradient
norm of 0.1. We optimize the model for up to 5
epochs with a batch size of 16 on 4 3090 GPUs
with 24G memory. We choose the model check-
points by evaluating the metrics on the validation
set for each epoch. During inference, the responses
are decoded using a greedy search. We have tried
some advanced decoding algorithms (e.g., nucleus
sampling) and found no improvement. The train-
ing of the model can be completed within 5h, and
the latency of the model inference for one exam-
ple is within 0.1s. The passage rerank model gets
Recall@1 of 75.5%, 76.5%., 61.0% for WoW test
seen, WoW test unseen, and Holl-E, respectively.

PPL F1 Avg. Ext. Greedy

ITDD (Li et al., 2019) 26.0 10.4 0.748 0.390 0.587
DRD (Zhao et al., 2020a) 46.1 10.8 0.791 0.406 0.613

TMN (Dinan et al., 2019) 75.2 9.9 0.789 0.399 0.615
KGPT (Zhao et al., 2020b) 20.6 13.5 0.837 0.437 0.654

GenKS 16.1 14.1 0.847 0.442 0.668

Table 9: Results on CMU_DoG in term of response
quality. The best results are highlighted with bold.

Topic Nickelback
User Do you like Nickelback?

User Yes, what more can you tell me about Nickelback?
System Chad Kroeger is the leading vocalist of the group.
User Amazing. What about the other group members

Passage The band is composed of guitarist and lead vocalist
Chad Kroeger, guitarist, keyboardist and backing vo-
calist Ryan Peake, bassist Mike Kroeger, and drum-
mer Daniel Adair.

TMN i think the song is a very popular song
DukeNet chad kroeger is a great band
KGPT the lead vocalist is chad kroeger. he is also the drum-

mer.

GenKS Chad Kroeger, Ryan Peake, Mike Kroeger and
Daniel Adair.

Human Ryan Peake is the keyboardist an Mike Kroeger is
the bassist.

Table 10: Case study on the Wizard Test Unseen dataset.
This table shows an example where both GENKS and
baselines select the proper knowledge.

Topic List of national parks of the United States
User I love national parks dont you

User I live in Arkansas and love the Hot SPrings National
Park and have been there many times, really it is
beautiful

DukeNet i have heard the city is located in the ouachita moun-
tains among the us
KGPT i’ve been to the ouachita mountains, too! i’ve been
to the ouachita mountains in the ouachita mountains.
GenKS I've never been to Hot Springs, but I've always
wanted to go to there.
Human I’ve never been to that one! I bet its beautiful!

Table 11: Case study on the Wizard Test Unseen dataset.
This table shows an example where both models select
the wrong knowledge.

B Case study

To better understand baselines and our model, we
present two examples in Table 10 and Table 11.
Table 10 show example where both GENKS and
baselines select out the proper knowledge (i.e., the
knowledge snippet shown in green). We see that
the response generated by GENKS is more appro-
priate to the dialogue context than baselines, while
KnowledGPT’s response does not answer User2’s
question and is also factually incorrect. In Ta-
ble 11, we observed that although neither GENKS
nor the baselines selected the label knowledge, the
response generated by GENKS is still more natural
and coherence. We also find that KnowledGPT
is more colloquial than GENKS but has problems
with hallucinations.
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