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Abstract

The field of visual question answering (VQA)
has recently seen a surge in research focused on
providing explanations for predicted answers.
However, current systems mostly rely on sep-
arate models to predict answers and generate
explanations, leading to less grounded and fre-
quently inconsistent results. To address this, we
propose a multitask learning approach towards
a Unified Model for Answer and Explanation
generation (UMAE). Our approach involves
the addition of artificial prompt tokens to train-
ing data and fine-tuning a multimodal encoder-
decoder model on a variety of VQA-related
tasks. In our experiments, UMAE models sur-
pass the prior state-of-the-art answer accuracy
on A-OKVQA by 10∼15%, show competitive
results on OK-VQA, achieve new state-of-the-
art explanation scores on A-OKVQA and VCR,
and demonstrate promising out-of-domain per-
formance on VQA-X.1

1 Introduction

Contemporary models for visual question answer-
ing (VQA) and commonsense reasoning are typ-
ically trained discriminatively to select the best
answers from Multiple-Choice questions or to clas-
sify single-word answers to a predetermined vocab-
ulary (e.g. Anderson et al., 2018). Such settings of-
ten lead to limitations such as encouraging models
to find superficial correlations (Ye and Kovashka,
2021) or penalising model performance even when
the answers are plausible (e.g. synonyms and multi-
word expressions, and morphological variations are
not considered correct). Most current explanation
generation models are trained independently of the
QA model and the explanations are usually gener-
ated after the QA model has provided an answer.
As a result, these explanation models lack access
to the process that generated the answer and thus

1Code is available at: https://github.com/
chenxwh/UMAE.

the grounding of the explanation is limited to the
answer text.

We posit that a unified model that simultaneously
performs answer prediction and explanation genera-
tion is a more effective and consistent approach for
VQA. Generative models, such as GPT-3 (Brown
et al., 2020), T5 (Raffel et al., 2020), or OFA (Wang
et al., 2022a), have been shown to be successful
at rapidly adapting to downstream tasks and gener-
ating high-quality open-ended text, and hence are
suitable candidates for this unified approach.

We propose a multitask learning approach for
multimodal transformer-based encoder-decoder
models, towards a United Model for Answer and
Explanation generation (UMAE). In addition to
the current trend of separate answer prediction and
explanation generation based on the answers, our
approach adds the capability of jointly generating
answers and explanations together. Inspired by the
success of artificial prompt tokens in Neural Ma-
chine Translation (NMT) (Johnson et al., 2017),
we extend and demonstrate the efficacy of the ar-
tificial prompt-based method for VQA in a mul-
titask setup. We augment training instances with
artificial prompt tokens, enabling the model to dis-
tinguish different tasks while learning shared se-
mantic features. Experiments on a combination
of three knowledge-intensive VQA datasets, OK-
VQA (Marino et al., 2019), A-OKVQA (Schwenk
et al., 2022), and VCR (Zellers et al., 2019), show
that the UMAE models achieve a new state-of-the-
art (SOTA) answer accuracy on A-OKVQA, new
SOTA explanation score on VCR, and competitive
out-of-domain performance on VQA-X (Park et al.,
2018). UMAE supports the generation of the an-
swer to a question, the explanation for a given ques-
tion and answer, and both together jointly, making
the model efficient and flexible. An illustration of
the training setup is shown in Figure 1.

In summary, our main contributions are as fol-
lows: (1) the UMAE framework where answers and
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Multimodal 
Encoder-Decoder

Transformer

<#AOKA#> What is this place?

<#AOKE#> What is this place?  
roadside stand, this is because

<#AOKAE#> What is this place?

prompt + Question  (+ Answer)Image Objects

<#A#> What are Person1 and
Person2 doing?

<#E#> What are Person1 and
Person2 doing? They are having
dinner together, this is because

<#AE#> What are Person1 and
Person2 doing?

market

The man is selling vegetables.

market, this is because the man is
selling vegetables.

Answer and/or Explanation

They are having dinner.

They are sitting at a table with food in
front of them.

Person1 and Person2 are having dinner,
this is because they are seated at a

dining table with food in front of them.

orange carrots,
orange sign,
yellow sign,
white van...

Person2, Person1,
Wineglass3, dining
table, Wineglass2,
chair, bow, white
plate, white table,
green bottle, ...

Figure 1: Illustration of UMAE: we train a multimodal encoder-decoder model on the mix of VQA tasks for jointly
optimising answer and explanation, where we distinguish the training instances and target output with artificial
prompt tokens (e.g. <#AOKA#>). The top and bottom examples are from A-OKVQA and VCR, respectively.

explanations can be generated by a single unified
model (§3.1); (2) a simple and efficient training
approach that uses multitask learning with artificial
prompts and demonstrates its ability to generalise
across domains (§4); (3) a method to map gener-
ated answers to Multiple-Choice options via eval-
uating the perplexity of the generation (§3.2); (4)
new SOTA results by UMAE, particularly for ex-
planation generation and promising out-of-domain
performance (§5).

2 Related Work

Multimodal Transformer-based Models achieve
SOTA performance on various vision-language
tasks (Chen et al., 2020; Li et al., 2020; Cho et al.,
2021; Wang et al., 2022c; Zhang et al., 2021).
They showcase the possibility of capturing richer
multimodal semantic coherence than discrimina-
tively trained models and are further capable of
generating self-explanations. Pretrained on mul-
titask settings with natural language instructions,
e.g. “what does the region describe?”, models
like OFA (Wang et al., 2022a) are claimed to have
the capability to transfer to unseen tasks and do-
mains via similar instructions. However, contrary
to these claims, we observe that pretrained OFA is
incapable of generating valid explanations through
simple natural language instructions (§5).

Artificial Prompt Tokens have previously been
explored for NMT by Johnson et al. (2017); Mitza-
lis et al. (2021). They propose a single model with
the traditional NMT model architecture (usually
for one language pair) and jointly train on differ-
ent language pairs with added artificial prompts,
e.g. 2es to distinguish the target language. This
approach has been found to foster implicit cross-
lingual bridging and exhibit zero-shot translation

capability. In this paper, we exploit a similar ap-
proach with artificial prompts for answer and ex-
planation generation in VQA with a united model.
This enables the model to learn shared features
among tasks and datasets in various domains.

Explanation Generation for VQA has gained
growing interest in research. However, most recent
approaches use separate models to predict answers
and generate explanations (Dua et al., 2021). Wu
and Mooney (2019) generate explanations with an
object detector and a GRU unit for text embedding,
then train on a subset of VQA-X in which the ex-
planations contain the objects most attended to by
the model. Kayser et al. (2021) develop an e-UG
model combining UNITER (Chen et al., 2020) for
processing multimodal input and GPT-2 (Radford
et al., 2019) for generation. In contrast, in this pa-
per, we propose using a single united model for
more grounded answer and explanation generation.

3 Methodology

3.1 Multitask Learning with Artificial Prompt
We formulate three generation settings: Q→A: an-
swer prediction; QA→E: explanation generation
conditioned on the answer; and Q→AE: joint an-
swer and explanation generation for a given ques-
tion. We hypothesise that by training the model to
generate both the answer and its explanation simul-
taneously, the result answer and explanation will
be more grounded and consistent.

We use a pretrained multimodal encoder-decoder
transformer as our base model (here we build on
the openly released version of OFA as a strong
baseline), and finetune the model on a mix of VQA
datasets from different domains.

Different from OFA, for each image in the VQA
datasets, we first extract objects and attributes us-
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MODEL

OK-VQA A-OKVQA VCR

direct answer multiple choice direct answer multiple choice BERTSCORE

TEST VAL (ppl) VAL (GloVe) TEST VAL TEST VAL (ppl) VAL

OFA* 40.40 24.54 56.19 47.40 48.09 39.77 33.55 64.55
OFAQ->A 49.93 74.32 65.30 61.71 63.00 53.91 54.89 83.85
UMAEALL 51.77 74.59 65.67 63.26 63.29 56.14 56.66 85.97

PRIOR-BEST 54.41 – 60.30 53.70 48.60 40.70 (77.10)† –

Table 1: Performance of models for answer generation. Better results are in bold. OFA* refers to the pretrained
OFA. Prior-best results for the three datasets are from Gui et al. (2022), Schwenk et al. (2022), Wang et al. (2022b),
respectively. † is from a discriminative model and thus not comparable (see Ye and Kovashka, 2021).

DATASET MODEL
e-ViL SCORES N-GRAM SCORES LEARNT SCORE

SO ST SE BLEU4 ROUGE-L METEOR CIDEr SPICE BERTSCORE

A-OKVQA

OFA* 4.44 56.19 7.90 0.30 4.45 3.26 4.82 4.62 68.64
OFAQ->A+OFAQA->E 35.82 74.32 48.29 22.18 48.51 23.56 86.76 22.46 85.96
UMAEA-OKVQA 37.10 73.97 50.15 27.61 52.23 24.06 104.39 22.88 87.86
UMAEALL 37.91 74.59 50.82 27.35 52.56 24.83 101.09 23.33 88.21

VCR

e-UG 19.30 69.80 27.60 4.30 22.50 11.80 32.70 12.60 79.00
UMAEVCR 22.57 56.68 39.82 12.25 28.87 16.67 48.14 27.36 81.77
UMAEALL 22.82 56.66 40.27 13.44 29.53 17.54 47.33 26.45 81.91

VQA-X
e-UG 36.50 80.50 45.40 23.20 45.70 22.10 74.10 20.10 87.00
UMAEALL 31.58 77.65 40.67 14.63 35.12 20.29 50.35 19.13 85.40

Table 2: Explanation Scores. OFA* is the pretrained OFA, showing the transferability of OFA for generating
explanations with natural language instructions. Results with e-UG are from Kayser et al. (2021). We show the best
results of A-OKVQA and VCR in bold. The last row in blue shade shows out-of-domain performance.

ing a bottom-up top-down attention-based model,
which is crucial for open-domain VQA tasks (An-
derson et al., 2018). We then add artificial prompt
tokens at the beginning of the textual input to signal
the generation task (answer, explanation, or both)
and the dataset2. For Q→AE, we concatenate an-
swers and explanations with a separator in between.
Finally, we mix all training instances, each consist-
ing of an image (processed in patches), objects and
attributes, and textual input with artificial prompts.

3.2 Perplexity as Multiple Choice Metric

To map the generated output to Multiple-Choice
options, in previous work the predictions are
loosely matched with options or gold answers using
embedding-based methods, such as GloVe embed-
ding similarity (Schwenk et al., 2022). In contrast
to these approaches, we propose to evaluate each
option as a text generation task, by feeding the
model the information that was used to generate
the answer as a prompt, and calculating the like-
lihood of each option being generated. Formally,
given an option Y = (y1, y2, ..., yt) with t tokens,

2Artificial prompt tokens are added as special tokens to the
tokenizer to avoid bias in the pretrained embeddings. However,
we note that these tokens may be biased w.r.t their association
with specific tasks after training, which is an intended effect.

we calculate the probability of each token yi being
generated by feeding the image, objects, and ques-
tion, as well as the first i− 1 tokens from Y to the
model pθ. The perplexity is then calculated with:
PPL(Y ) = exp

{
−1

t

∑t
i log pθ (yi|y<i)

}
, which

reflects the probability of option Y being generated
by the model. Finally, the option with the lowest
perplexity is chosen as the answer.

We also compare the performance of our ap-
proach, using perplexity as the metric, with GloVe
embedding similarity for A-OKVQA (see Table 1).

4 Experimental Setup

We primarily evaluated our proposed UMAE ap-
proach using pretrained OFA3 as the base model
on three knowledge-intensive VQA datasets: OK-
VQA, A-OKVQA and VCR4. We split the original
train set into train and validation set (95%-5%) for
all three datasets. Since the test set is not pub-
licly available for A-OKVQA and VCR, we use
the original validation set for experimental analy-
ses. We prepare training instances5 as introduced

3https://github.com/OFA-Sys/OFA
4See Appendix A for datasets details.
5Specifically, we add <#OKA#> for OK-VQA (only an-

swers are available), <#A#>, <#E#>, <#AE#> for VCR, and
<#AOKA#>, <#AOKE#>, <#AOKAE#> for A-OKVQA.
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Question: What time of year was the
picture likely taken?  
Answer: fall

Ground Truth Explanations:
1) The child is wearing a long sleeve
shirt and pants but no coat. 
2) There are brown leaves on the
sidewalk. 
3) The time is fall.

Generated Explanations:
Beam Search: The time is fall. 
Top-k: The leaves are dropping. 
Nucleus: The leaves are fall. 
Typical: The leaves are brown and
dry.

Question: Which two words were said by both the
person in black and the person in white here?  
Answer: i do

Ground Truth Explanations:
1)  The people got married. 
2) There is a wedding cake. the smiling people in
the suit and white dress are the bride and groom. 
3) The photo was obviously taken at a wedding with
the bride and groom at the center of it. it is
traditional that they say "i do" when taking their
vows.

Generated Explanations:
Beam Search: They are at a wedding. 
Top-k: The words are ""i"".". 
Nucleus: The person in black and the person in
white are in a wedding. 
Typical: The people are just after getting married.

Question: What is Person1 going to do?  
Answer: Person1 is going to lead a business
meeting.

Ground Truth Explanation:
Person1 is at the head of a table of men in
suits.

Generated Explanations:
Beam Search: Person1 is sitting at the head
of the table, which is where leaders sit. 
Top-k: Person1 appears to be in charge of the
board room. 
Nucleus: Person1 is sitting at the head of the
table, which is where leaders sit during
business meetings. 
Typical: Person1 is sitting at the head of the
table, which is often the place for leaders.

Question: What is Person1 doing?  
Answer: Person1 is turning the wheel.

Ground Truth Explanation:
Person1 has his hands on the wheel
and is exerting force.

Generated Explanations:
Beam Search: He has his hands on the
wheel. 
Top-k: Person1 is hunched over and
has his hands on the wheel. 
Nucleus: Person1 is leaning over the
wheel and has his hand on it. 
Typical: The man is leaning forward
and his hand is on the wheel.

Person1

Figure 2: Examples of generated explanations from UMAEALL model with different decoding strategies. The two
examples on the left are from A-OKVQA and the two on the right are from VCR.

in §3.1. Additionally, for VCR, we draw coloured
highlights around the referenced entity on the im-
ages, following Zellers et al. (2021) (Appendix A).
To account for the imbalance in size among the
datasets, we up-sample instances in OK-VQA and
A-OKVQA, and shuffle all instances to train the
UMAEALL model.

For ablation studies, we finetune OFA for
separate answer prediction (OFAQ->A) and ex-
planation generation conditioned on answers
(OFAQA->E). To better understand the impact of
mixing datasets from different domains, we also
train UMAEA-OKVQA and UMAEVCR, focusing on all
three answer and explanation generation tasks but
only using data from a single dataset: either with
A-OKVQA or with VCR. Details of training pa-
rameters are included in Appendix B.

We use beam search for generating answers and
additionally experiment with different decoding
methods including top-k sampling, Nucleus sam-
pling (Holtzman et al., 2020), and Typical sampling
(Meister et al., 2022), for generating explanations.
We evaluate answer accuracy as well as explana-
tion quality with automatic NLG metrics and e-ViL
scores (Kayser et al., 2021). e-ViL scores consist of
ST (task/answer accuracy), SE (explanation score),
and overall SO (product of ST and SE), where SE
is the harmonic mean of NGRAMScore (the har-
monic mean of n-gram scores ROUGE-L (Lin and
Och, 2004), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), and SPICE (Ander-
son et al., 2016)) and additionally the BERTScore
(Zhang et al., 2020), a learned similarity metric
over contextual representations of sentences.

5 Results and Discussion

5.1 Answer Accuracy

Table 1 presents our observations for answer ac-
curacy on Q->A task over the three datasets. We
also evaluate VCR answers using BERTScore as
the answers for VCR are usually sentences. We
observe that UMAEALL outperforms OFAQ->A on all
datasets, improves the prior SOTA on A-OKVQA
by 10∼15%, and achieves competitive results on
OK-VQA. For models that are finetuned on A-
OKVQA, we also see a salient improvement (+9%)
with the proposed mapping of options by perplexity
in Multiple-Choice, instead of GloVe embeddings
similarity6. We conducted several ablation studies
on the dependency of the modality for the answer
accuracy in A-OKVQA, where we find the visual
encoder is crucial for performance. Details are
included in Appendix C.

5.2 Explanation Evaluation

Table 2 shows e-ViL sores (§4) for explanations us-
ing automatic NLG metrics7. Following the same
setup as in Kayser et al. (2021), an explanation
is evaluated only if the answer predicted by the
system is correct8. We observe that pretrained
OFA with natural language prompts, e.g. “what
is the explanation for the answer?” or “this is

6Preliminary experiments with NLG metrics (BERTScore
and BLEU) for selecting the options given generation were sub-
optimal.

7Nucleus sampling shows best results and is reported. Detailed
scores with different decoding methods are shown in Appendix D.

8A limitation of evaluating all explanations is that explanations
of wrong answers may get high scores with n-gram metrics, even
though they are justifying wrong answers and should be penalised.
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MODEL SE BLEU4 R-L MET. CIDEr SPICE BERTSc.

OFAQ->A+OFAQA->E 42.4 20.0 44.2 19.3 66.7 19.1 85.1
UMAEA-OKVQA 45.8 23.6 47.9 21.7 78.0 20.5 86.9
UMAEALL 46.8 24.9 49.5 22.3 84.1 20.8 87.3

Table 3: Explanation scores on the same subset of A-
OKVQA.

because” performs poorly, as most generated ex-
planations are words (“yes/no”) or short-phrases9.
We compare UMAE models (on all and individ-
ual datasets) with prior best results from e-UG
(see §2), and standard separated trained baselines
(OFAQ->A+OFAQA->E). UMAEALL achieves better re-
sults across all datasets, showing the advantage of
mixing tasks and datasets in different domains. For
out-of-domain evaluation on VQA-X, UMAEALL

also shows mostly competitive results. Examples
of explanation generation are shown in Figure 2
and Appendix E.

Since e-ViL only evaluates an explanation if a
model generates the correct answer, the subset
of explanations evaluated varies by model. To
fairly compare explanations on the same subset,
we propose only using the subset of samples where
all models provide correct answers for explana-
tion prediction. Table 3 shows the results on A-
OKVQA with such a subset of 770 candidates,
where UMAEALL shows an even higher explana-
tion score. This highlights that UMAEALL generates
explanations that overlap significantly better with
gold explanations.

In summary, our experiments demonstrate that
the UMAE model leads to improved answer and
explanation generation and allows for the flexibil-
ity to generate different types of outputs, including
answers, explanations, or both. We observe that
UMAE exhibits promising results in jointly gener-
ating both the answer and explanation. We further
provide a comparative evaluation in Appendix F as
a first step towards comparison as there is currently
no standard evaluation setup for the joint answer
and explanation evaluation.

5.3 Error Analysis

To better understand the generated answers and er-
rors, we randomly sample 50 errors in OK-VQA
and A-OKVQA. Our analysis reveals the following
main error types, where the first three are related to

9BERTScore in not representative of the validity of outputs
from OFA*. We refer the reader to an exposition of the problems
associated with NLG metrics in Caglayan et al. (2020).

OK-VQA
0

5
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15

Er
ro

r C
ou

nt

A-OKVQA
0

5

10

15
Knowledge
Visual
Semantic
Metric
Dataset

Figure 3: Error type distribution in 100 random samples
from A-OKVQA and OK-VQA.

model performance: (1) Knowledge: the implicit
knowledge learned by the model is insufficient for
answering some of the knowledge-intensive ques-
tions, such as questions asking when a certain sport
was invented; (2) Visual: the model fails to identify
the visual attributes correctly, such as questions
about recognising object shape or material; (3)
Semantic disassociation: the model misinterprets
questions or fails to match the intended semantic
meaning. For example, it may answer what an ob-
ject is instead of a more complex question such
as what is commonly packed in it (e.g. answering
"suitcase" instead of "clothes"); (4) Metric: the
evaluation metric may penalise some of the plau-
sible answers, especially when searching for exact
match answers (mostly due to the difference of
singular/plural or phrases with/without space in be-
tween); and (5) Dataset: errors due to issues in the
datasets themselves. We discuss prominent issues
in dataset quality briefly in Appendix G and further
present the distribution of error types in Figure 3.

6 Conclusions

In this work, we propose UMAE, a unified model
that generates answers and explanations in VQA
using a multitask learning approach for multimodal
encoder-decoder models, where artificial prompt
tokens are added to distinguish different tasks
while learning shared semantics. Evaluation of
our approach on various VQA tasks shows that
UMAE outperforms prior best models and sepa-
rately trained baselines in both answer and expla-
nation scores, where we also demonstrate the ben-
efit of using perplexity as the metric for mapping
generated answers to Multiple-Choice options. Ad-
ditionally, UMAE offers flexibility in output and
can generate explanations for datasets without ex-
planations for training, e.g. OK-VQA, while also
improving answer quality. Through case studies
and error analysis, we identify potential areas for
future improvement, including dataset quality.
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Limitations

We discuss the limitations of our work in the fol-
lowing two aspects. Firstly, the experiments with
our proposed framework and finetuning approach
are primarily on the OFA model. We believe our ap-
proach applies to any multimodal generative model,
however, it would also provide insights to experi-
ment with more models. Secondly, regarding the
evaluation of our proposed joint framework, to bet-
ter evaluate the generated explanation quality, es-
pecially to evaluate the difference between expla-
nations generated jointly with answers and gener-
ated conditioned on the answers, human judgement
would be an important criterion compared to auto-
matic NLG metrics.
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A Datasets

The datasets used in the paper are as follows:

OK-VQA (Marino et al., 2019) is a knowledge-
based VQA dataset that requires outside knowledge
beyond the images to answer the questions. It has
train and test splits of size 9,009 and 5,046. Each
question is provided answers by five annotators. To
use the VQA (Antol et al., 2015) metric, each anno-
tated answer is then repeated twice to form a gold
answer set with 10 answers. Since no explanation
is provided, we only train Q→A task on OK-VQA.

A-OKVQA (Schwenk et al., 2022) is currently
the largest knowledge-based VQA dataset split
into 17.1K, 1.1K, and 6.7K for train, validation,
and test, respectively. The questions cover four
knowledge types: visual, commonsense, knowl-
edge bases, and physical. For each question, it
provides both multiple-choice answers and 10 free-
form answers (annotated by 10 different people),
as well as three explanations. Images in both OK-
VQA and A-OKVQA are from MSCOCO (Lin
et al., 2014), and answers in both datasets are in
single words or short phrases.

VCR (Zellers et al., 2019) is a large multiple-
choice dataset for Visual Commonsense Reasoning.
The train, validation, and test splits have 191.6k,
21.3k, and 26.5k instances, respectively. Each ques-
tion has four answer options in sentences, and the
correct answer is further provided with four expla-
nation options. Images in VCR are from movie
clips (Rohrbach et al., 2017). Bounding boxes of
entities are provided associated with mentions such
as Person1 in questions, answers and explana-
tions. We follow Zellers et al. (2021) and draw
coloured highlights around the referenced entity on
the images, where entity names and the coloured
highlights are consistent in the entire dataset, ex-
pecting the model to learn the association between
the coloured bounding box and the entity.

VQA-X (Park et al., 2018) contains a subset from
the VQAv2 (Goyal et al., 2017) dataset and further
provides three explanations for each question. The
image-question pairs are split into train, validation,
and test with 29.5k, 1.5k, and 2k instances, respec-

QUESTION OBJECTS IMAGES ACCURACY

✓ ✓ original 50.39
✓ ✗ ✗ 39.16
✓ ✗ random 33.48
✓ ✓ ✗ 33.28

Table 4: Ablation on the modality dependency for an-
swer accuracy of A-OKVQA.

tively. We only use the original test set to evaluate
the zero-shot performance of the trained models.

B Hyper-Parameters and Training

We begin with the pretrained weights from the orig-
inal OFA-large10, which is trained on vision-only
tasks including Image Classification, language-
only tasks including Sentence Classification, Text
Summarisation, as well as various vision-language
tasks including Image Captioning, Visual Question
Answering and Visual Entailment. Adam is used
as the optimizer and cross-entropy is the loss func-
tion. We set the learning rate to 10−5, the warm-
up ratio to 0.4, and the patch image size to 480.
We shuffle all the training examples and use batch
size 16. Due to the large size of VCR, we train
for 30 epochs on models involving VCR (OFAQ->A

for VCR, UMAEVCR and UMAEALL), and up to 100
epochs for other models. We report the empirical
performance with checkpoints that perform best on
the validation set (the 5% split from the original
train set). For A-OKVQA, we additionally report
the answer accuracy on the original test set.

C Ablations on Modality Dependency

We conduct several ablation studies to investigate
the dependency of object features and images on
the performance of our model UMAEALL for an-
swer accuracy of A-OKVQA, where we removed
images, replaced them with random images, and
removed extracted attributes and features. Results
in Table 4 show that the visual encoder is crucial
for performance and that visual objects alone are
not sufficient for answer prediction. Using a ran-
dom image would introduce noise and therefore
performs worse than not including the image at all.
We did not test removing the question because we
believe the model needs the questions to be able to
provide answers.

10https://github.com/OFA-Sys/OFA
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DATASET DECODING
e-ViL N-GRAM SCORES LEARNT SC.

SE BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L METEOR CIDEr SPICE BERTSCORE

A-OKVQA

BEAMSEARCH 44.71 52.01 36.69 26.72 19.88 40.39 22.06 68.48 20.94 86.05
TOP-K (k = 100) 44.34 52.56 37.06 27.06 19.72 44.45 21.58 73.44 19.38 86.27
NUCLEUS (p = 0.4) 50.82 58.92 44.66 35.06 27.35 52.56 24.83 101.09 23.33 88.21
TYPICAL (p = 0.6) 47.27 54.18 39.39 29.82 22.18 47.78 22.79 84.43 21.47 86.95

VCR

BEAMSEARCH 40.23 26.41 20.15 15.95 12.47 29.13 16.82 49.72 27.70 81.84
TOP-K (k = 50) 33.19 20.98 14.89 11.18 8.33 23.65 13.72 32.73 21.99 80.31
NUCLEUS (p = 0.1) 40.27 31.42 22.95 17.62 13.44 29.53 17.54 47.33 26.45 81.91
TYPICAL (p = 0.4) 35.12 23.42 16.88 12.83 9.64 25.36 14.70 35.85 23.32 80.70

VQA-X

BEAMSEARCH 35.88 37.84 24.91 16.67 10.97 31.32 17.90 38.23 16.23 84.39
TOP-K (k = 50) 33.28 38.35 23.11 14.21 8.45 29.15 17.05 32.89 15.26 83.41
NUCLEUS (p = 0.1) 40.67 47.56 31.44 21.47 14.63 35.12 20.29 50.35 19.13 85.40
TYPICAL (p = 0.5) 36.31 40.85 25.57 16.82 11.14 31.08 18.15 39.71 16.62 83.93

Table 5: Explanation scores with automatic NLG for generated explanations (QA→E) from UMAEALL model with
different decoding strategies. The last two rows (with blue shadow) indicate out-of-domain performance.

DATASET DECODING
e-ViL N-GRAM SCORES LEARNT SC.

SE BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L METEOR CIDEr SPICE BERTSCORE

A-OKVQA
BEAMSEARCH 47.01 54.75 41.39 32.08 24.25 49.75 22.54 86.28 20.68 87.39
NUCLEUS (p = 0.5) 46.72 55.53 41.63 31.91 23.67 49.16 22.48 82.37 20.67 87.18

VCR
BEAMSEARCH 37.02 25.00 18.90 14.87 11.54 27.07 15.66 38.77 25.03 80.68
NUCLEUS (p = 0.1) 35.10 27.41 19.36 14.50 10.73 26.18 15.21 34.99 21.88 80.52

VQA-X
BEAMSEARCH 38.13 39.91 26.30 17.99 12.46 31.69 19.11 42.10 18.15 84.95
NUCLEUS (p = 0.1) 39.67 44.92 28.88 19.04 12.55 33.08 20.07 44.28 19.19 85.21

Table 6: Explanation scores with automatic NLG for generated explanations from Q→AE with UMAEALL model.
The last two rows (with blue shadow) indicate out-of-domain performance.

D More Explanation Scores

For decoding, we evaluate the performance of beam
search with the size of 5, top-k sampling with
k from {50, 100, 200, ..., 1000}, and Nucleus and
Typical (Meister et al., 2022) sampling, both with
p from {0.1, 0.2, ..., 0.9}. We show the details of
the NLG scores using different decoding strategies
for explanations generated from QA→E in Table 5,
and Q→AE in Table 6.

E Examples of Generated Explanations

Examples of the explanations generated with beam
search and Nucleus sampling for A-OKVQA are
shown in Figure 4, and VCR in Figure 5.

F Joint Generation Performance

We present the results of the proposed Q→AE task
where answers and explanations are jointly gen-
erated. We parse the generated sequence to the
answer and the explanation and use the same sets
of metrics as the separate generation for evalua-
tion. Results for answers in Table 7 and explana-
tions in Table 8. For answers, since the perplexity
metric does not directly compare the generation,

TASK
A-OKVQA VCR VQA-X

MC (GOLVE) BERTSCORE DA

Q->A 65.67 81.91 77.65
Q->AE 65.67 82.30 69.60

Table 7: Evaluation of answers generated given ques-
tions (Q->A) and jointly generated with explanations
(Q->AE). MC stands for Multiple Choice, DA for Direct
Answer. The last column with a blue shadow indicates
out-of-domain performance.

DATASET
SE NGRAMSCORE BERTSCORE

QA->E Q->AE QA->E Q->AE QA->E Q->AE

A-OKVQA 50.82 47.01 35.69 32.15 88.21 87.39
VCR 40.27 37.02 26.70 24.02 81.91 80.68
VQA-X 40.67 39.67 26.69 25.85 85.40 85.21

Table 8: Scores of explanations generated given answers
(QA->E) and jointly generated with answers (Q->AE).
The last row with a blue shadow indicates out-of-domain
performance.

we show the Multiple-Choice accuracy using the
Glove metric for A-OKVQA and BERTScore for
VCR answer sentences.
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OK-VQA A-OKVQA

DA MC (GLOVE) DA

BEST 80.94 80.74 66.20
AVERAGE 54.98 71.53 57.29
WORST 16.37 59.35 41.46

Table 9: Human performance on OK-VQA and A-
OKVQA measured from the ground truth answers.

G Datasets Quality and Issues

As mentioned in subsection 5.3, during error analy-
sis we found that many errors are due to the issue
in the dataset itself. Concretely, we observe the
following issues in the existing datasets: (1) wrong
answers (2) subjective or unanswerable questions
(3) typos or unclear expressions (4) not requiring
images or knowledge to answer the question as
designed.

Furthermore, since the answer and explanation
for a question in VCR are obtained from the same
person who authored the question, this may result
in severe subjectivity in the answers or explana-
tions. For example, we find that many questions
in VCR require knowledge of the movie plot from
which the image is extracted, rather than common-
sense reasoning to answer the questions. While
human annotators have an implicit understanding
of the movies, the dataset itself does not contain
relevant contextual information.

We show some of the issues in the datasets be-
low. Figure 6 shows examples from VCR that re-
quire an understanding of the movie plot to gener-
ate answers. Figure 7 shows examples from OK-
VQA where questions and answers are subjective
or ambiguous. Figure 8 shows examples from A-
OKVQA and VQA-X that either contain wrong
answers, questions that do not need visual input or
typos which severely impact the model generation
(“house” should be “horse”).

To understand the inter-annotator agreement for
the datasets, we further measure the best, average
and worst human performance on OK-VQA and
A-OKVQA by selecting the most common answer,
a random answer, and the least common answer,
respectively, from the 10 ground truth answers for
each question. We calculate the performance us-
ing the VQA metric for direct answers, and the
GloVe metric for Multiple Choice for simplicity.
Note that we also remove the answer selected from
the ground truth answers when measuring human
performance. From the results in Table 9 we can

see that the average performance on both datasets
is relatively poor, which indicates the noise in the
datasets. The quality of the datasets needs to be
more carefully inspected so that the model perfor-
mance evaluated on these datasets can be more
meaningful.
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Question: Why is the woman wearing
goggles?
Answer: protection 

Ground Truth Explanations: 
0) The woman is wearing goggles for
protections.
1) The snow goggles this woman
wears protects her eyes from the sun
and other bits of debris she might
encounter skiing downhill. 
1) There is a lot of sun glare and snow
flying up when skiing.

Explanation Generation:
Beam: The woman needs protection. 
Nucleus: The woman is skiing and
needs protection. 

Answer + Explanation Generation:
Beam: protection, this is because The
woman wants to protect her eyes. 
Nucleus: protection, this is because The
woman is wearing goggles to protect
her eyes from the sun.

Question: What time of day is it likely
right now? 
Answer: morning

Ground Truth Explanations:
0) It is sunny out. there are fruit on
the table, so it likely is time for
breakfast. 
1) The time is morning. 
2) You can see the light shining in
through the window and door.

Explanation Generation:
Beam: The people are using umbrellas
because it's raining. 
Nucleus: The people are using
umbrellas to keep from getting wet. 

Answer + Explanation Generation:
Beam: rain, this is because The people
are using umbrellas because it is
raining. 
Nucleus: it's raining, this is because The
people are using umbrellas to stay dry.

Question: What has caused the
elephants to turn brown? 
Answer: dirt

Ground Truth Explanations:
0) These elephants have been rolling
around in the mud. 
1) The elephants are covering
themselves in the naturally occurring
brown substance that is near the
water. 
2) The elephants are dirty.

Question: What are the umbrellas
placed in the sand to block? 
Answer: sun

Ground Truth Explanations:
0) They are on a beach on a sunny
day, and the umbrellas give cool and
shade from the sun. 
1) The umbrellas block sun. 
2) Umbrellas provide shade.

Explanation Generation:
Beam: The elephants are in mud. 
Nucleus: The elephants are standing in
dirt. 

Answer + Explanation Generation:
Beam: mud, this is because The
elephants are muddy. 
Nucleus: mud, this is because The
elephants are in the mud.

Explanation Generation:
Beam: The umbrellas block the sun. 
Nucleus: The umbrellas are blocking the
sun. 

Answer + Explanation Generation:
Beam: sun, this is because The
umbrellas block the sun. 
Nucleus: sun, this is because The
umbrellas are placed in the sand to
block the sun.

Ground Truth Explanations: 
0) There is rain and the people are
being sheltered by umbrellas. 
1) The people want rain protection. 
2) They are protecting themselves
from getting wet from the rain.

Question: Why are the people lining up? 
Answer: boarding

Ground Truth Explanations:
0) The people are near a plane as if
they want to get on. 
1) The people are boarding. 
2) The people are lined up facing the
plane. people line up facing
transportation vehicles when they are
preparing to board.

Explanation Generation:
Beam: The people are lined up to board
a plane. 
Nucleus: The people are lined up to
board a plane. 

Answer + Explanation Generation:
Beam: board plane, this is because The
people are lined up to board the plane. 
Nucleus: board plane, this is because
The people are boarding a plane.

Question: What is the white appliance
the people are looking in being used to
store? 
Answer: food

Ground Truth Explanations:
0) The appliance is a fridge. 
1) Perishable food is kept in this little
refrigerator, which is too small for
many people, but just right for one or
two. 
2) There are multiple edible items in
the fridge already.

Question: The layout of buildings most
resembles which period? 
 Answer: historical european

Ground Truth Explanations:
0) The cars are on the left side of the
road, so it is either the united kingdom
or ireland. 
1) The high pitched roofs and the
stone architecture is from then 
2) The layout is from the olden days.

Explanation Generation:
Beam: The appliance is a refrigerator. 
Nucleus: The appliance is a fridge. 

Answer + Explanation Generation:
Beam: food, this is because The
appliance is a fridge. 
Nucleus: food, this is because The
appliance is a fridge.

Explanation Generation:
Beam: The buildings are old. 
Nucleus: The buildings are from the late
nineteenth century. 

Answer + Explanation Generation:
Beam: medieval, this is because The
buildings look like medieval buildings. 
Nucleus: medieval, is because The
buildings look like medieval buildings.

Question: Why are the people using
umbrellas?
Answer: it's raining 

Explanation Generation:
Beam: The people are using umbrellas
because it's raining. 
Nucleus: The people are using
umbrellas to keep from getting wet. 

Answer + Explanation Generation:
Beam: morning, this is because The sun
is shining through the window. 
Nucleus: morning, this is because There
is light coming through the window.

Figure 4: Examples of generated answers and explanations for A-OKVQA.
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Question: What event are Person2 and Person8
walking away from?
Answer: A wedding reception.

Ground Truth Explanation: 
Everyone is really dressed up, and the lights give
the area a fairy tale ambiance which is typical of
a wedding. 

Explanation Generation:
Beam: Person2 is wearing a pink dress and
Person8 is wearing a suit. 
Nucleus: Person2 is wearing a pink dress and
Person8 is holding hands with her. 

Answer + Explanation Generation:
Beam: Person2 and Person8 are walking away
from a wedding, this is because Person2 and
Person8 are holding hands and wearing formal
clothing. 
Nucleus: They are walking away from a wedding,
this is because There are balloons and strings of
lights above them.

Question: Does Person1 drink alcohol? 
Answer: Yes Person1 drinks alcohol.

Ground Truth Explanation:
Person1 has a full beer in front of him.

Question: How does Person2 feel about this
performance? 
Answer: Person2 is slightly impressed by what
she sees.

Ground Truth Explanation:
Person2 has a slight smirk on her face.

Explanation Generation:
Beam: Person2 has her arms crossed and a slight
frown on her face. 
Nucleus: Person2 has her arms crossed and a
slight frown on her face, which suggest she is not
impressed. 

Answer + Explanation Generation:
Beam: Person2 does not like what she is hearing,
this is because Person2 has her arms crossed and
a frown on her face. 
Nucleus: Person2 is not impressed by it, this is
because Person2 is looking down and frowning,
and her arms are crossed, which is a sign of
disapproval.

Explanation Generation:
Beam: Person1 has a cup of beer in front of him. 
Nucleus: Person1 is drinking from Cup2. 

Answer + Explanation Generation:
Beam: Yes, Person1 drinks alcohol, this is
because Person1 has a cup of beer in front of
him. 
Nucleus: Yes, he does drink, this is because He
has Cup2 in front of him and it is full of beer.

Question: What is Person2 doing?
Answer: Telling Person1 something important.

Ground Truth Explanation: 
Person2 is focused on Person1 and waving their
hands to emphasize what they're saying. 

Explanation Generation:
Beam: Person2 is sitting across from Person1 who
is on the phone.
Nucleus: Person2 is sitting in a chair and is
looking at Person1 who is on the phone. 

Answer + Explanation Generation:
Beam: Person2 is listening to Person1 talk on the
phone, this is because Person2 is sitting in a
chair facing Person1 who is on the phone. 
Nucleus: Person2 is telling Person1 a story, this is
because Person2 is sitting in a chair and Person1
is on the phone.

Question: Is Dog2 a living creature? 
Answer: No, Dog2 is a stuffed animal.

Ground Truth Explanation:
Dog2 is immobile, and wouldn't be still with so
much prey around. Dog2 is also obviously a toy,
based on the coloration.

Question: Why does Person1 have a pointy hood
on his cloak? 
Answer: Person1 is a wizard.

Ground Truth Explanation:
Pointy hoods are usually used to depict a wizard
character.

Explanation Generation:
Beam: Wizards often wear pointy hoods. 
Nucleus: Wizards often wear pointy hoods and
robes. 

Answer + Explanation Generation:
Beam: Person1 is trying to hide his identity, this
is because Person1 is standing in front of
Person2 and Person3, and Person4 who are all
looking at him. 
Nucleus: Person1 is a wizard, this is because
Wizards often wear pointy hoods and robes.

Explanation Generation:
Beam: Teddybear1 and Teddybear2, and
Teddybear5 are stuffed animals, Dog2 is a
stuffed animal. 
Nucleus: Dog2 is a stuffed animal, and stuffed
animals are not alive. 

Answer + Explanation Generation:
Beam: No, Dog2 is not a living creature, this is
because Dog2 is a stuffed animal. 
Nucleus: No, Dog2 is not a living creature, this is
because Dog2 is a stuffed animal, stuffed
animals are not alive.

Person2

Person2
Person8

Person1 Person1

Person1

Person2

Figure 5: Examples of generated answers and explanations generation for VCR.
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Generation: Person3 is on a boat. 

Question: Why is Person 3 wearing a life jacket?

Answer Options: 
0)      The boat has a leak, and Person3 is scared of
drowning. 
1) The boat is sinking and the life jacket will hep them
float. 
2) Person3 is piloting the ship. 
3) Person9 is wearing a life vest in case the ship sinks.

Question: Why did Person1 drop Person3? 
Answer: Person1 dropped Person 3 by accident.

Explanation Options: 
0)       Person1 can upon Person3 in the woods, and kissed her; she awoke,
and he dropped her off the bier. 
1) Person2 is Person3's mother. Person3 is an infant and can't walk on his own. 
2) Person3 is stuck in the toilet as Person1 is pulling her out. 
3) Person3 is bent over and appears unsteady. Person1 looks concerned for her.

Generation: Person1 is kneeling over the body of Person3. 

Person1

Person3

Person3

Figure 6: Questions that require knowledge of the movie plots to generate the answers from VCR.

Question: Is this legal or illegal?

Ground Truth Answers: 
legal (6), illegal (4)

Generation: legal

Question: In which country are the
transportation regulations loose
enough to allow vehicles like these?
Ground Truth Answers: 
india (8), china (2)

Generation: england

Question: What nationality is this food?

Ground Truth Answers: 
american (4), mediteranian (2),  
greek (2), asian (2) 
 
Generation: italian

Question: How long does it take to cook?

Ground Truth Answers: 
45 minutes (4), 20 minutes (2), 25
minutes (2), minute (2)

Generation: 1 hour

Figure 7: Examples of subjective questions from OK-VQA.

Question: How long does the average
giraffe live? 
Answer: 20-30 years

Ground Truth Explanations:
0) Giraffes can live a long time. 
1) 20-30 years is the lifespan. 
2) I looked up this answer on the
internet since there is no way to tell
the answer from the picture.

Question: What country headquarters this
plane company? 
Answer: usa

Ground Truth Explanations:
0) The headquarters are the us. 
1) The company name is virgin atlantic
that was founded and has headquarters in
london england. 
2) The airplane has virgin atlantic livery.
this company is based in england. 

Question: What is the brown house
doing? 
Answer: walking

Ground Truth Explanations:
0) it has two legs up and two down
and it is moving. 
1) only two feet are touching the
ground. 
2) he is moving slowly on a mountain
range.

Figure 8: Issues in the datasets that severely impact the model generation: wrong answers (left, from A-OKVQA),
questions do not need visual input to answer (middle, from A-OKVQA), and typo (right, from VQA-X).
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