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Abstract
We investigate a new linguistic generalisation
in pre-trained language models (taking BERT
Devlin et al. 2019 as a case study). We focus
on degree modifiers (expressions like slightly,
very, rather, extremely) and test the hypothesis
that the degree expressed by a modifier (low,
medium or high degree) is related to the modi-
fier’s sensitivity to sentence polarity (whether
it shows preference for affirmative or negative
sentences or neither). To probe this connection,
we apply the Artificial Language Learning ex-
perimental paradigm from psycholinguistics to
a neural language model. Our experimental re-
sults suggest that BERT generalizes in line with
existing linguistic observations that relate de-
gree semantics to polarity sensitivity, including
the main one: low degree semantics is associ-
ated with preference towards positive polarity.

1 Introduction

Linguistic expressions can be characterized along
a variety of properties: what they mean, what parts
they consist of, how they combine with other ex-
pressions and so on. Some of these properties are
systematically related to each other. When these
relations appear systematically in language after
language, they can be grounds for implicational lin-
guistic universals, for example, Greenberg’s Uni-
versal 37: A language never has more gender cate-
gories in nonsingular numbers than in the singular.
(Greenberg, 1963). Here, two properties of linguis-
tic expressions are related: the grammatical number
of an expression and how many gender distinctions
are available for this expression. More complex
generalizations may concern correlation between
continuous properties A and B.

In order to arrive at linguistic universals connect-
ing A and B, the relation between these proper-
ties has to be established at the level of individual
languages, which is not trivial for properties with
complex internal structure.

∗ Work was performed previously while at Huawei.

In this paper, we study one such connection: the
problem of polarity sensitivity of degree modifiers
(Israel, 1996, 2011; Solt, 2018; Solt and Wilson,
2021). Degree modifiers are words like slightly,
very, and extremely. Property A, in this case, is
the degree that these words convey, defined on a
interval from very low to very high. For example,
the degree of slightly is lower than the one of very.
Property B here encodes distributional preferences
of degree modifiers with respect to polarity of a
sentence where they appear – roughly, whether they
appear exclusively in negative or affirmative sen-
tences, or show no polarity preference. Polarity
preferences can also be represented as a continuous
property from very low (negative polarity prefer-
ence) to very high (positive polarity preference),
with polarity-neutral in the middle.

Interactions between linguistic properties have
been subject to experimental studies in psycholin-
guistics and cognitive science. One prominent
method is Artificial Language Learning (Friederici
et al., 2002; Motamedi et al., 2019; Kanwal et al.,
2017; Culbertson et al., 2012; Ettlinger et al., 2014;
Finley and Badecker, 2009). It has the following
main ingredients:

1. fragment of an artificial language in the
form of expressions that do not belong to the
language that participants are speakers of;

2. training phase, where some information
about the language fragment is given to the
participants;

3. testing phase, where it is checked what other
knowledge, beside the provided, was inferred
during training.

Originally designed for studies with human par-
ticipants, the Artificial Language Learning frame-
work has also been applied to neural network-based
learning models (Piantadosi et al., 2012; Carcassi
et al., 2019; van de Pol et al., 2021). Replacing
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human participants with artificial learning agents
allows to examine the learning process in more de-
tail and to make a variety of learnability statements.
One important property of these experiments is that
the learning agents typically come in a blank state
with no prior knowledge or biases. This limits the
set of linguistic questions that can be targeted by
this type of experiment.

The way we use the Artificial Language Learn-
ing paradigm can be seen as middle ground be-
tween experiments with human participants and
with artificial learners described above. Our ap-
proach also involves an artificial language fragment
and a training procedure to introduce knowledge
about some property A, but it uses a pre-trained
language model (LM) (Peters et al., 2018; Devlin
et al., 2019; Brown et al., 2020) as the learning
agent. More technically, we extend a pre-trained
LM with a set of new tokens with randomly ini-
tialized embeddings and perform fine-tuning on a
carefully constructed synthetic dataset. The dataset
is constructed in a way to indirectly introduce dif-
ferent values along property A for different new to-
kens. Upon fine-tuning, we measure how the train-
ing affected property B and how variation along
B depends on the values of property A introduced
during training.

Our study will focus on English, as represented
in a pre-trained LM BERT (Devlin et al., 2019).
We see this as a proof of concept work that can be
extended further along the cross-linguistic dimen-
sion and in application to other models. Using this
set-up, we address the question of whether LMs
encode a connection between degree semantics and
polarity, therefore making a generalization across
two different linguistic properties.

Our approach belongs to the general area of
studies using counterfactual linguistic data in NLP
(Kaushik et al. 2020, 2021 a.o.); a part of that sub-
field that uses novel lexicon is the closest to the
present paper (Thrush et al. 2020; Bylinina and
Tikhonov 2022a a.o.). Our work contributes to the
general agenda of establishing closer connections
between learning in humans and artificial neural
models (Futrell et al. 2019; Wilcox et al. 2020 a.o.).
The main step forward that we make with this paper
is the extension of these methods to linguistic prop-
erties that have complex internal structure, rather
than clear morphological or syntactic exponence.

To sum up, we make the following contributions:

• We propose an experimental methodology to

explore generalization between complex lin-
guistic properties;

• We use this methodology to explore the rela-
tion between two linguistic phenomena, de-
gree and polarity sensitivity, as represented in
one pre-trained LM (BERT).

• We argue that, according to the experimental
results, the LM in question indeed makes a
connection between the degree encoded by a
degree modifier and its polarity sensitivity.

The paper is structured as follows: Section 2
gives linguistic background about degrees and po-
larity. Section 3 describes the general method. In
Section 4, we define a synthetic dataset and the
measures we use to estimate degree and polarity.
Section 5 presents the experiment. Section 6 dis-
cusses our results, the limitations of our set-up and
suggestions for future work.

2 Background: Degree and polarity

In this section we provide background on the stud-
ied linguistic properties: we describe degree as a
property of degree modifiers, and polarity sensi-
tivity as a property of linguistic items (words) that
tend to appear in certain types of contexts. We
outline the relation between these two properties,
as discussed in theoretical linguistic literature. We
will apply our proposed method to experimentally
verify the hypothesised relation.

Degree
So-called gradable adjectives describe properties
that can hold to a different degree. A classic exam-
ple of a gradable adjective is tall. A classic example
of a non-gradable one is prime. The former, as op-
posed to the latter, can be part of comparative and
superlative constructions, and they can combine
with degree modifiers: words like slightly, very,
and extremely. Examples (1)-(2) illustrate this dif-
ference. We use ∗ to denote all types of linguistic
deviancy, including ungrammaticality as well as
semantic / pragmatic oddity:

(1) ∗7 is more prime than 3.
∗13 is the most prime number in this set.
∗1 is somewhat / very / extremely prime.

(2) Mary is taller than John.
Mary is the tallest person in this room.
Mary is somewhat / very / extremely tall.
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For a statement with a simple base form of a grad-
able adjective – like Mary is tall – to be true, the
property in question has to hold of the subject
to some degree δ that is determined by linguistic
and extra-linguistic contextual factors (Fara, 2000;
Kennedy and McNally, 2005; Kennedy, 2007).
When a gradable adjective appears in combination
with a degree modifier, the degree δ that makes
the statement true changes to a value that depends
on the modifier. For Mary to count as ‘somewhat
tall’, her height needs to be much lower than for
‘extremely tall’, for instance. The requirements on
δ that degree modifiers encode can be used to or-
der these modifiers along a scale of degrees, for
example, somewhat < extremely.

In our experiments, we will map degree mod-
ifiers to a dense interval from 0 to 1 according
to their degree semantics (from very low to very
high).

Polarity sensitivity
For certain expressions, their acceptability and/or
interpretation in a context is conditioned on the
polarity of this context. Expressions with distribu-
tional preference1 for negative contexts are called
negative polarity items (NPIs). Expressions with
preference towards positive contexts are called pos-
itive polarity items (PPIs). For example, any is an
NPI (3), while already is a PPI (4). NPIs and PPIs
are said to be polarity-sensitive. Like degree, we
treat polarity sensitivity as a continuous property
on the [0,1] interval, where 0 is a very pronounced
NPI, 1 a very pronounced PPI, with polarity-neutral
items in the middle.

(3) ∗Mary bought any books. NPI
Mary didn’t buy any books.

(4) John has arrived already. PPI
∗John hasn’t arrived already.

Sentences that are good contexts for NPIs and PPIs
are said to have negative and positive polarity, re-
spectively. Polarity of a sentence does not amount
simply to the presence or absence of sentential
negation, it is a way more complex semantic prop-
erty (see Fauconnier 1975; Ladusaw 1979 and sub-

1We use the vague and permissive term ‘preference’ here
to cover the whole spectrum of asymmetries between positive
and negative contexts that an expression shows – from ungram-
maticality to decreased prominence of a narrow scope reading.
Gradations of polarity sensitivity will play a crucial role in our
discussion, but specifically for this reason we are looking for a
unified way to describe the whole space of polarity sensitivity
phenomena.

sequent literature). However, we will focus on the
presence or absence of negation as a proxy to po-
larity in the current discussion.

Like degree, we will treat polarity sensitivity as a
continuous property that fits into the [0, 1] interval,
where 0 is a very pronounced NPI, 1 is a very
pronounced PPI, with polarity-neutral expressions
in the middle.

Relation between the two properties

Observations reported in linguistic literature sug-
gest an interaction between these two properties
(Israel, 1996, 2011; Solt, 2018; Solt and Wilson,
2021). The interaction is in many cases far from
straightforward, but there are clear tendencies.
Specifically, lower degrees associate with PPI be-
haviour. English degree modifiers support this ob-
servation (Solt and Wilson, 2021), as examples in
(5) demonstrate. This pattern is found in other
languages too (van Os, 1989; Nouwen, 2013; Ito,
2015). We will refer to modifiers of this lower de-
gree range as Class v1 (low degree modifiers) later
on.

(5) The issue is fairly / somewhat / rather /
kind of / sort of important.
∗The issue isn’t fairly / somewhat / rather
/ kind of / sort of important.

Modifiers in the moderate range (Class v2, medium
degree), to the contrary, show mild association with
negative contexts (Israel, 1996). The association
between negative polarity and degree modifiers
from a certain range can most prominently be at-
tributed to the phenomenon of ‘negative strengthen-
ing’ (Gotzner et al., 2018; Mazzarella and Gotzner,
2021):

(6) John isn’t particularly smart.

While the literal meaning of (6) is compatible with
John being smart quite often these types of sen-
tences are used to convey a stronger meaning: that
John is not smart at all. This is a pragmatic asym-
metry rather than a distributional constraint, but
it contributes to the interaction patterns between
degree and polarity sensitivity.

Finally, modifiers expressing very high degree
(Class v3, high degree modifiers), behave like PPIs
again:

(7) This coffee is damn / crazy good.
??This coffee isn’t damn / crazy good.
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Existing work proposes analyses of degree mod-
ification with built-in causal connection between
the degree semantics of modifiers and their polar-
ity profile (Israel, 1996; Solt and Wilson, 2021) –
even though the extent, exact shape and direction
of this connection is not established yet. We use
this state of affairs as a chance to contribute to this
discussion empirically and analytically, using the
method proposed below.

3 Method

In this section, we describe the details of a method
to conduct artificial language learning experiments
with pretrained LMs. Without loss of generality, we
use BERT in our experiments, but other pretrained
language models could be used instead.

We design our method to be applied to linguistic
hypotheses of the form A ⇒ B, where A,B are
some properties in a given language. In this study,
we specifically focus on the relationship between
adverbial degree modification and polarity sensi-
tivity. A in this context is low, medium or high
degree of an adverbial modifier w, and B is nega-
tive, neutral or positive polarity of w. In general,
we evaluate a hypothesis A(w, i) ⇒ B(w, j) by
showing that if A holds according to BERT for to-
ken w to an extent i, then so does B to some extent
j, according to BERT.

We use the cloze test (a task where the partici-
pant is asked to recover a missing language item)
adapted for BERT (see Warstadt et al. 2019; Bylin-
ina and Tikhonov 2022b for the cloze test on LMs
for polarity). The test uses BERT’s probability
distributions over tokens in masked positions in
diagnostic contexts for property A or B.

To show that a hypothesis holds in general for
an arbitatrary w, we:

(1) augment BERT’s vocabulary with a set W of
new tokens and randomly initialize the corre-
sponding embeddings;

(2) fine-tune the corresponding embeddings on a
dataset where the new tokens appear in con-
texts that distributionally select for particular
values of A;

(3) test whether the knowledge that B holds was
acquired, to the extent that follows the hypoth-
esised association pattern with A.

As part of Step (1), we also verify that prior to
training the initialized embeddings do not show
any biases w.r.t. both properties A and B. This

approach presupposes a set of contexts that distri-
butionally select for a specific linguistic property
X , denoted S(X). We obtain such contexts by
mining them from data, as described in Section 4.3.
Part of future work is to extend the current method
it to a more general case. The general structure of
the synthetic dataset used to fine-tune the LM is de-
scribed in Section 4.1. The dataset is also tailored
to the linguistic phenomenon under investigation.

4 Dataset and measures

First, we delineate a fragment of English that will
be the basis of our experiment (Section 4.1): simple
sentences with a gradable adjective predicated over
a definite noun phrase (as in The pizza is good).
We re-shape these sentences to create diagnostic
contexts for properties A and B (Sections 4.2, 4.3).
We also use it to exemplify values of A during
training (Section 4.3).

4.1 Basic set of sentences

First, we automatically identified the set of
gradable adjectives and nouns to build our
training samples from. We started with
bert-base-uncased2 vocabulary and as-
signed all non-subword tokens a part of speech
label with the SpaCy POS tagger3. We kept the
top 1000 nouns. Using the CapitolWords dataset
from textacy4, we looked for co-occurrences of
adjectives with degree modifiers somewhat, very,
really, extremely, rather and picked 200 adjectives
with the highest ratio of modified uses.

Second, we generated sentences with these
nouns and adjectives using the following pattern:

The nounx cop.PRS adjy

where cop.PRS is either singular or plural copula
in the Present tense (is or are), nounx is one of
the 1000 picked nouns, and adjy is one of the 200
gradable adjectives. The procedure gave us 400k
sentences like these:

(8) The purpose is interesting.
The answer is simple.
The environment is large.

2https://huggingface.co/
bert-base-uncased

3https://github.com/explosion/
spacy-models

4https://github.com/bdewilde/
textacy-data

15171

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/explosion/spacy-models
https://github.com/explosion/spacy-models
https://github.com/bdewilde/textacy-data
https://github.com/bdewilde/textacy-data


This 400k set varied in terms of naturalness, coher-
ence and adherence to lexical selectional restric-
tions. To control for this, we ran the sentences
through GPT-25 and kept the bottom 10k accord-
ing to the assigned sentence perplexity.

The construction steps above aim to output ‘nat-
ural’ examples, based on insights from different
sources (GPT-2, BERT, corpus-based statistics).
Manual inspection of the resulting 10k dataset re-
vealed some sentences that still sound intuitively
‘weird’. We do not see this as a problem though,
since the majority of sentences are natural enough.

The large quantity of examples in our dataset
is crucial to make our experiments comparable to
psycholinguistic experiments. In the latter, one
sentence gives rise to a multiple of observations
about (roughly) one linguistic system, due to judge-
ments to multiple participants with similar enough
intuitions. In our setting, we have only one agent
(BERT), so we compensate by increasing the num-
ber of sentences.

4.2 Estimating polarity
To assign polarity scores to degree modifiers, we
follow the procedure in (Warstadt et al., 2019;
Bylinina and Tikhonov, 2022b). We use the 10k
basic sentences (Section 4.1) to build a polarity
contrast set. For each sentence in the basic set, a
pair of sentences, one positive and one negative,
with the [MASK] token in the modifier position:

The nounx cop.PRS [MASK] adjy.
The nounx cop.PRS.NEG [MASK] adjy.

We end up with 10k pairs of sentences like these:
(9) The reason is [MASK] simple.

The reason isn’t [MASK] simple.

We use the generated sentence set to estimate polar-
ity sensitivity pol(m) of a degree modifier m using
the probabilities that BERT assigns to each token
in its vocabulary in the masked position:

∑
s∈D[[p([MASK] = m|smskd

POS ) > p([MASK] = m|smskd
NEG )]]

|D|
(1)

where D is the 10k dataset, smasked
pos is a sentence s

from the dataset in the positive form, with [MASK]
in the degree modifier position, and smasked

neg is its
negative counterpart. So, we approximate polarity
as the proportion of cases where token m got a
higher probability in pos than in neg context.

5https://huggingface.co/gpt2

Previous applications of this estimation method
has shown its reliability for NPI detection (Jumelet
and Hupkes, 2018; Warstadt et al., 2019; Jumelet
et al., 2021; Bylinina and Tikhonov, 2022b). As
an illustration, slightly gets a score of 0.99 (= is a
PPI), particularly gets a score of 0.1 (is an NPI),
while incredibly is a PPI again with score 0.94.

We use this polarity estimation method to get a
reliable list of degree modifiers with polarity scores.
For each of the 10k sentence pairs, we pick 100
tokens with highest probability in the masked po-
sition for a positive sentence and 100 tokens for
its negative counterpart. Then we take two unions:
one of all the “positive” tokens and one for the
“negative” ones. We filter these two sets to only
keep tokens that appear more than 100 times in one
of them.6 We use the resulting sets in the rest of
the experiment.

4.3 Estimating and mining degree

To estimate polarity of tokens (Section 4.2), we
relied on their patterns of occurrence in positive
and negative contexts. To apply an analogous pro-
cedure to degree, we need contexts that associate
with various degree semantics. We propose the fol-
lowing intuition. What does an answer to a yes/no-
question with a gradable adjective – like Is the pizza
good? – depend on? It certainly depends on how
good the pizza is: the degree to which the property
applies to the subject. Given that degree modifiers
express exactly that, we can make a connection be-
tween their degree value and particles that answer
the degree yes/no question.

For example, we expect particles to have differ-
ent distribution in the masked position in (10) as
an effect of the modifier:

(10) – Is the pizza good?
– [MASK], it is somewhat good.
– [MASK], it is extremely good.

We use this idea to mine particles that are associ-
ated with low and high degree. The mined particles
can be used to assess degree of the modifiers, anal-
ogously to polarity measurement above. As low
degree modifiers, we use somewhat and slightly;
for high degree, very and extremely. We modify
each of the 10k sentences to generate pairs of sen-
tences like these, where MOD is one of the four
modifiers of interest:

6Among the tokens that survived the filter: very, always,
quite, so, really, too, all, actually.
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(11) Is the question difficult?
[MASK], it is MOD difficult.

As before, we run the resulting (40k) sentences
through BERT and, for each sentence, we collect
the top 100 tokens according to the probability of
tokens in the masked position. We only keep those
tokens that appear in this list 100 times or more.
The particles in the resulting list are then tested
their degree-diagnosing potential, as follows.

We use the same procedure as for polarity: for
each particle, we check in what proportion of cases
the probability that BERT assigns to the particle in
the sentence with the high degree modifier is higher
than with a low degree modifier. We perform this
comparison for each of the four pairs of high vs.
low degree modifiers: very vs. somewhat, very
vs. slightly, extremely vs. somewhat, extremely vs.
slightly. This procedure gives us a value from 0 to
1 for each particle from the list, depending on the
extent to which it is associated with low degrees
(the closer to 0, the more this holds) or high degrees
(closer to 1). We fix the final set of top 10 particles
that associate with low (12) degrees and with high
degrees (13):

(12) well, actually, now, but, however,
still, so, why, anyway, sure

(13) yes, oh, sir, absolutely, god,
damn, remember, wow, seriously,
man

Finally, we reverse the process and now use these
particles to produce a degree score for degree mod-
ifiers. For each of the 10k sentences, we modify it
to get 20 sentences like the following (where PRT

ranges over the 20 particles in (12) and (13)):

(14) Is the question difficult? PRT,
it is [MASK] difficult.

Comparing modifier probabilities across conditions
defined by the distinction in (12) and (13) as before,
we get a measure defined on the [0,1] interval that
corresponds to the modifier’s degree.

As a final step, we manually cleaned the result-
ing list of 415 tokens obtained from the [MASK]
to get rid of syntactic junk and items whose selec-
tional restrictions are too narrow, to end up with
the list of 98 degree modifiers we will further use7.

To validate our degree measure, we take five
modifiers about which the literature agrees they
introduce low or moderate degree (barely, hardly,

7Code and data are at https://github.com/
altsoph/artificial_degree_modifiers

Figure 1: Degree and polarity of selected English modi-
fiers. Estimated as described in Sections 4.2 and 4.3.

rather, fairly, merely); same for high degree (com-
pletely, totally, utterly, damn, bloody) (Paradis
(1997); Bennett and Goodman (2018) a.o.). There’s
no overlap with modifiers we used as seeds for our
degree measure. Also, these are practically all mod-
ifiers with an undisputed degree profile discussed
in the literature that are also whole BERT tokens.
Our measure assigns the low degree class an aver-
age score of 0.22 (min 0.11; max 0.31); average
of 0.56 for the high degree class (min 0.5; max
0.62). Very, which has some intensifying effect got
a score of 0.45. We conclude that the measure is
decent, albeit somewhat shifted to the left.

Fig. 1 shows the distribution of polarity sensitiv-
ity and degree for these modifiers (we color-code
them as moderate, medium and high degree). As
the scatterplot and the fitted parabola show, the ex-
isting data is compatible with what is hypothesised
in the linguistic literature: low degrees associate
with positive polarity, while the rest is more varied –
mid-range degrees gravitate towards more negative
polarity somewhat, while the higher range again
gravitates towards PPI behaviour.

4.4 Degree and polarity in BERT embeddings

We use diagnostic classifiers to analyse how polar-
ity sensitivity and degree semantics are represented
in BERT token embeddings for degree modifiers.
Using embeddings of degree modifiers as features,
we fit logistic regression with L1 regularization to
demote non-zero coefficients for two binary classi-
fication tasks: 1) token classification into ‘negative’
(< .5) and ‘positive’ (> .5) with respect to polar-
ity; 2) token classification into ‘low degree’ (< .4,
based on somewhat skewed score distribution) and
‘high degree’ (> .4).

On 5 folds, average accuracy for polarity on train
data is 79.2%, and 74.7% on test. For degree, it’s
73% and 72.3%, respectively. For each of the tasks,
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we find the most important part of the embedding
that is responsible for the distinction, by taking co-
ordinates that have non-zero coefficients in at least
four of the folds. We found 20 important coordi-
nates for polarity and 13 for degree. There was no
overlap between these coordinates, indicating no
representational overlap between polarity and de-
gree at the level of token embeddings. If it turns out
that the model encodes the dependency between
the two properties, it would be on a level other than
embeddings directly.

5 Experiment

This section describes how we teach BERT a new
system of degree modifiers. Section 5.1 describes
how we introduced new tokens into BERT’s vocab-
ulary by using particles that signal the properties
we wish to teach BERT. Section 5.2 provides the
details of the fine-tuning procedure and the experi-
mental results.

5.1 Mining contexts for new degree modifiers

We partition the existing degree modifiers into three
same-sized groups, based on the degree scale re-
gion they belong to (according to degree estimation
procedure in Section 4.3): moderate, medium, high
(or, v1, v2 and v3, respectively). The groups are
three color-coded vertical divisions in Fig. 1. We
use the identified groups to instantiate three classes
of new degree modifiers. For each of the groups,
we mine degree-region-specific particles, using the
procedure in Section 4.3. The resulting sets of
3-way degree-diagnosing particles are:

V1: alternatively, myself, similarly,
accordingly, otherwise, however,
alternately, likewise, conversely,
er, although, thus, nevertheless,
nonetheless, still, hence

V2: yes, once, naturally, evidently,
eventually, not, surely, nowadays,
however, someday, fortunately, here,
presumably, ideally, accordingly,
hopefully

V3: god, gods, goddess, dammit, christ,
goddamn, jesus, fucking, holy, kate,
damn, skyla, lord, princess, love,
daddy

For each of the three groups, we instantiate 33 new
modifiers. Then, for each sentence in the 10K set,
we generate a v1 sentence, a v2 and a v3. The sen-
tences are of the same question-answer form as in
Section 4, and in each of them we insert a randomly

Before training After training

degree polarity degree polarity

v1 0.48, 0.06 0.42, 0.24 0.18, 0.02 0.99, 0.03

v2 0.50, 0.06 0.43, 0.21 0.40, 0.02 0.00, 0.00

v3 0.48, 0.06 0.39, 0.18 0.83, 0.02 0.85, 0.26

Baselines
random 0.52, 0.06 0.38, 0.20 0.41, 0.09 0.83, 0.30

untrained 0.50, 0.06 0.39, 0.20 0.42, 0.08 0.00, 0.00

Table 1: Estimates of polarity and degree of new to-
kens before and after training. Each pair of numbers
represents a mean and a standard deviation. v1, v2, v3
represent polarity and degree statistics for the new mod-
ifiers (low, medium, high) from our main experiment.

picked particle corresponding to the degree class
of the modifier (n = number id):

(15) Is the reason simple? [prt_v1],
it is [mod_v1_n] simple.
Is the reason simple? [prt_v2],
it is [mod_v2_n] simple.
Is the reason simple? [prt_v3],
it is [mod_v3_n] simple.

5.2 Fine-tuning BERT to new tokens

We split the dataset into training and validation
parts with 0.85:0.15 ratio. Then we randomly mask
15% of tokens in the resulting dataset and fine-tune
BERT for the task of masked token prediction. We
use the same type of pretrained BERT model as in
the previous steps. We use the Adam optimization
algorithm with decoupled weight decay regulariza-
tion (Kingma and Ba, 2014; Loshchilov and Hutter,
2017) and learning rate of 5e-5. We use the batch
size of 32 and fine-tune the model for three epochs.
For the training, we freeze all weights except for
the very first layer of token embeddings.8

We compare our method against two baselines:

• random baseline: 99 randomly initialized
tokens are trained in contexts with particles
randomly chosen from any of the three sets
(v1, v2 and v3);

• untrained baseline: 99 new tokens to be ran-
domly initialized before the training phase,
but not fine-tuned.

Upon fine-tuning, the three groups of tokens form
three clusters, as shown in Fig. 2. Tokens that

8This decision is based on the intuition that learning new
words in an artificial language learning setting shouldn’t lead
to deep changes in prior linguistic knowledge of a native
language for a realistic learner.
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Figure 2: Target new tokens before (left) and after fine-tuning (right).

Figure 3: Baselines: contexts randomly mixed during training (left) and untrained tokens (right)

belong to groups v1 and v3 cluster in the PPI re-
gion, medium-degree tokens (v2) show NPI-like be-
haviour. This is generally in line with linguistic ob-
servations described in Sections 2 and 4. The two
baselines (Figure 3), as expected, do not show pro-
nounced degree profiles – but develop non-random
polarity behaviour. The random baseline gravitates
towards positive polarity, while the untrained base-
line shows NPI behaviour. Means and standard
deviations for degree and polarity before and after
training are listed in Table 1.

6 Discussion and future work

6.1 Interpretation of the experimental results

We saw that the training organized the new tokens
into three clusters. First, we observe that the tokens
develop low, medium or high degree behaviour,
as intended by dataset construction. This means
that our procedure conveyed degree information
to the model. Furthermore, polarity scores upon
training show that the three groups generally follow
the hypothesis from Section 2 and analysis from
Section 4.3: low and high degrees lead to PPI be-
haviour, while medium degrees are associated with
negative polarity.

What is somewhat surprising though is how
strong the association with negative polarity is for
medium degrees. Here, looking at our baselines
might provide a hint towards an explanation. The
random baseline develops PPI behaviour: this is
not particularly surprising given that a random pool

of degree contexts is bound to contain a majority of
PPI-associated diagnostic particles (this holds for
both low and high degree, that is, 2/3 of datapoints).
So, the model has prevailing evidence to treat ran-
dom baseline items as PPIs. Untrained baseline is
more interesting in this respect: new tokens that
did not appear in the training dataset at all develop
NPI behaviour. We do not know what leads to this,
but, at the level of observation, a general shift in
the direction of lower polarity scores for the whole
lexicon might be some artefact of our training pro-
cedure. If this is true, the very low polarity scores
that we see for some items should be interpreted as
actually corresponding to somewhat higher scores.
We leave exploration of this effect to future work.

6.2 Limitations and future work

Summing up Sections 5.2 and 6.1, our results are
compatible with existing linguistic observations
concerning the relation between degree and polar-
ity. However, the biggest question to our approach
is how much we can trust the obtained results in
making conclusions about natural language. We
could gain insight on this question by reproduc-
ing the experiment with human participants. The
experiment with artificial LMs could serve as a pre-
liminary step to polish the underlying hypothesis
and the setup for the human experiment. We leave
to future work as well.

Another question is whether there is a reliable
way to introduce property A without leaking in-
formation about property B in the training data.
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Admittedly, the simple procedure we follow does
not take specific precautions to convincingly show
this did not happen. We hope that the version of
the experiment that we present here will serve as a
starting point for future work developing methods
to address this question or recycling existing tools
from other types of experiments.

7 Conclusion

We introduced a method to assess the connection
between two linguistic properties as encoded by
pre-trained neural LMs. We applied this method
to an observation in linguistic semantics: the rela-
tion between degree and polarity sensitivity. We
found that the experimental results are in line with
the generalizations from the linguistic literature,
indicating validity of our approach and pointing in
the direction of BERT making the generalization in
question. We hope that this set-up can be applied to
other types of models (trained on languages other
than English, or multilingual) and other linguistic
generalizations, both within individual languages
and cross-linguistically.
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