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Abstract

Knowing the language of an input text/audio
is a necessary first step for using almost every
NLP tool such as taggers, parsers, or transla-
tion systems. Language identification is a well-
studied problem, sometimes even considered
solved,; in reality, due to lack of data and com-
putational challenges, current systems cannot
accurately identify most of the world’s 7000
languages. To tackle this bottleneck, we first
compile a corpus, MCS-350, of 50K multilin-
gual and parallel children’s stories in 350+ lan-
guages. MCS-350 can serve as a benchmark
for language identification of short texts and
for 1400+ new translation directions in low-
resource Indian and African languages. Second,
we propose a novel misprediction-resolution hi-
erarchical model, LIMIT, for language identifi-
cation that reduces error by 55% (from 0.71
to 0.32) on our compiled children’s stories
dataset and by 40% (from 0.23 to 0.14) on
the FLORES-200 benchmark. Our method can
expand language identification coverage into
low-resource languages by relying solely on
systemic misprediction patterns, bypassing the
need to retrain large models from scratch.!

1 Introduction

Building natural language processing (NLP) tools
like machine translation, language identification,
part of speech (POS) taggers, etc. increasingly
requires more and more data and computational
resources. To attain good performance on a large
number of languages, model complexity and data
quantity must be increased. However, for a major-
ity of the world’s 7000 languages, large amounts of
data are often unavailable which creates a high bar-
rier of entry (Blasi et al., 2022; Joshi et al., 2020;
Khanuja et al., 2023). Increasing model complexity
for large-scale models also requires disproportion-

"Data, code, and models are publicly available on GitHub
under permissive licenses. Repository: https://github.
com/magarw/1limit
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Figure 1: Most languages in our dataset are from the
Indian Subcontinent and Sub-Saharan Africa, with sig-
nificant minorities from Europe (primarily in the role of
the high-resource language parallel translation available
for each story). Color broadly indicates continent or
region (North America, South America, Africa, Europe,
Asia, Oceania) and size indicates number of languages
per country in our dataset.

ate amount of computational resources, further dis-
incentivizing researchers to work towards including
these languages in modern NLP systems.

A popular data collection approach is large-
scale web mining (Tiedemann and Nygaard, 2004;
Bafion et al., 2020; Schwenk et al., 2021b), where
large parts of the internet are scoured to find train-
ing data for data-hungry NLP algorithms. When
faced with a sentence or phrase, such algorithms
must know how to reliably sort this text into the ap-
propriate language bucket. Since the web is replete
with content in a variety of languages, a model
needs to recognize text in a sufficiently large num-
ber of these languages with high accuracy. Identi-
fying parallel bitext is even more demanding as a
machine translation system must also be available
to correctly identify and align parallel data (Vegi
et al., 2022; Kunchukuttan et al., 2018). This data-
collection paradigm becomes inaccessible for low-
resource languages because high-quality transla-
tion models usually require substantial amounts of
parallel data for training, which is often unavailable.
Without high-quality language identification and
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translation system, it becomes practically impossi-
ble to mine the internet for relevant text during such
collection efforts. Additionally, mispredictions by
language identification and data collection algo-
rithms can increase inter-class noise, reducing the
crawled data’s quality, and harming performance in
downstream tasks without strong quality evaluation
metrics (Kocyigit et al., 2022).

How can we address these challenges and build
high-quality identification and translation for low-
resource languages?

Resource Creation Highlighting the need for
resource creation in low-resource languages, we
first share a new parallel children’s stories dataset,
MCS-350, created using two resources: African Sto-
rybooks Initiative? and Indian non-profit publish-
ing outfit Pratham Books’ digital repository Story-
weaver (available under permissive Creative Com-
mons licenses). The combined dataset includes
original and human-translated parallel stories in
over 350 languages (visualized in Figure 1) and
we merge, preprocess, and structure it so it is eas-
ily utilizable by NLP researchers for training and
benchmarking (§2).

Machine Translation Armed with parallel sto-
ries in many low-resource African and Indian lan-
guages, we tackle machine translation in resource-
constrained situations next. If we aim to collect
parallel data in low-resource languages, language
identification itself is insufficient and we need high-
quality translation models as well. We utilize a pre-
trained multilingual translation model (Alam and
Anastasopoulos, 2022) and explore training with
hierarchical language-level and language family-
level adapter units to translate children’s stories at
the page level (§3).

Language Identification Finally, we take on the
biggest bottleneck in low-resource language data
collection efforts - language identification. We pro-
pose LIMIT - a misidentification-based hierarchi-
cal modeling approach for language identification,
that utilizes data and computational resources ef-
ficiently and shows cross-domain generalization.
The proposed approach is exciting because unlike
previously published language identification mod-
els like AfroLID (Adebara et al., 2022), CLD3 (Sal-
cianu et al., 2020) and Franc®, LIMIT avoids train-

2https ://www.africanstorybook.org/
3https ://storyweaver.org.in/
4https ://github.com/wooorm/franc/

Family Languages Sentences
Niger-Congo 129 142605
Indo-European 84 169823
Nilo-Saharan 22 23204
Sino-Tibetan 21 19264
Austronesian 18 28096
Afro-Asiatic 15 20266
Dravidian 13 35638
Austro-Asiatic 10 22989

Table 1: Our compiled dataset MCS-350 contains stories
from a diverse set of languages families, mostly coming
from Africa and India. Prominent language families
with with 20K+ sentences across languages shown.

ing large multilingual models for a new set of
languages and still outperforms existing systems.
Large multilingual models often require thousands
of sentences for training, ex. AfroLID (Adebara
et al., 2022) collects and trains on over 4000 sen-
tences per language. On the other hand, for many
low-resource languages in India and Africa, we
may not even be able to collect 1000 sentences at
first 2. Also, in contrast with other recent work in
hierarchical language identification (Goutte et al.,
2014; Lui et al., 2014; Bestgen, 2017; Jauhiainen
et al., 2019), our work stands out because it ac-
counts for mispredictions made by existing trained
models. Unlike other work, it does not predict
a group/language family first, but rather directly
learns confusion relationships between language
pairs (which may not be from the same language
family). By leveraging hierarchically organized
units on top of a root model, we avoid complete
retraining, saving computational resources, while
increasing coverage into many new and understud-
ied languages and language pairs (especially those
between two low-resource languages) (§4).

To summarize, our main contributions are:

1. We compile MCS-350, a dataset of 50K+ parallel
children’s stories from African Storybooks Ini-
tiative and Storyweaver in 350+ languages (§2).

2. We share a machine translation benchmark en-
abling translation evaluation in more than 1400
new translation directions (§3).

3. We propose LIMIT, a misidentification-based
hierarchical model, that can use limited data to
better identify low-resource languages (§4).
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Dataset New languages New pairs Script Languages Examples
Microsoft 67 2835 Devanagari 38 Hindi, Marathi
FLORES-200 51 1449 Cyrillic 14 Russian, Bulgarian
OPUS 82 2853 Arabic 8 Arabic, Persian
Tibetan 3 Tibetan, Ladakhi
Table 2: MCS-350 enables MT evaluation between 1400+ Telugu 3 Telugu, Konda
new pairs compared to existing benchmarks. Odia 3 Odia, Ho, Kui

2 MCS-350 Data Curation

We identify two large-scale parallel repositories -
African Storybooks Initiative and Pratham Books’
Storyweaver, both under permissive Creative Com-
mons Licenses, with their storybooks available for
non-commercial and research use. African Story-
books Initiative hosts parallel translated and human-
verified children’s stories in over 200 African lan-
guages. Pratham Books is a non-profit Indian pub-
lisher that aims to increase literacy of children and
adults alike in Indian languages. Their digital repos-
itory, Storyweaver, publishes parallel translated sto-
ries in 300+ languages. This includes not only In-
dian languages but also African, European, and
Indigenous languages from the Americas.

2.1 Parallel Dataset

We collect stories through a mix of web scraping
and public APIs, preprocess them to remove mis-
matched/incorrect text, extract monolingual text
for language identification and parallel text for ma-
chine translation. We maintain metadata about au-
thors, translators, illustrators, reading level, parallel
translations, and copyrights for each story. We re-
move stories that are either empty or those from
non-English languages that have over 50% pages
containing majority English text with 90% con-
fidence using langdetect (Nakatani, 2010). This
leaves us with ~52K stories.

Note that both African Storybooks Initiative and
Pratham Storyweaver human verify stories and lan-
guage. However, there are several abandoned trans-
lation projects and completed but unverified stories
that need automated checking. Therefore, our pre-
processing is meant for unverified stories, and may
introduce noise in the collected data. By improv-
ing the preprocessing filters, we can likely further
improve the quality of the unverified stories in the
corpus. Collected stories in the pre-merge stage
are available with their associated metadata in the
repository.

Table 3: Our dataset contains stories in many writing
systems other than Latin, especially those from the In-
dian Subcontinent. Prominent non-Latin writing sys-
tems in MCS-350 are shown above.

2.2 Multilingual Documents

MCS-350 contains multilingual stories with lan-
guage identifiers denoted by L;_ L5 for a story mul-
tilingual in L and Lo. Such stories include text in
multiple languages within the same page. Text may
be code-mixed or consecutively presented. To ex-
tract as many parallel sentences as possible to sup-
port vulnerable languages and also create new trans-
lation directions, we employ string-similarity based
matching to identify the segments corresponding
to the high-resource language in the pair, and there-
fore automatically generating parallel sentences
from 10K pages across 52 languages. E.g., through
this process, we extracted 1000+ sentences in Kui
(0 sentences pre-extraction), a minority Dravidian
language with about 900K native speakers. We
manually verified all extracted monolingual text
after using string matching on multilingual stories.

2.3 Language Varieties/Lects

We attempt to separate language varieties/lects into
unique prediction classes if there is sufficient train-
ing data for them (> 1000 sentences). If an ISO
code is unavailable for the lect, we assign a class
name with the ISO code and the subdivision speci-
fied as: ISO_SUBDIVISION. For instance, we sep-
arated Gondi’s South Bastar lect (GON_BASTAR,
4000+ sentences) from the generic language code
for Gondi (GON). For fair evaluation and compar-
ison, we provide manual mappings for any non-
standard identifiers from the output space of vari-
ous language identification tools. Lects with too lit-
tle data are merged into their parent language, e.g.,
“Bangla (Bangladesh)” merged into “Bengali”.

2.4 Data Overview

MCS-350 covers over 350 languages from a diverse
pool of language families. In Table 1, we share the
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Model ‘ Avg,,, ‘ AVE, irimarri AVExoeng  AV8ingox  AVEypra  AVErgaLy
Baseline 11.87 10.19 18.79 13.20 15.64 12.55
(6.31) (5.06) (7.75) (8.19) (5.22) (5.81)
L-Fine 19.52 18.21 30.38 17.46 21.93 17.86
(10.33) (10.06) (13.63) (8.46) (4.87) (6.86)
F-Fine 24.93 23.58 35.66 25.26 27.06 21.36
(11.74) (11.31) (14.36) (13.72) (6.00) (7.32)

Unique Pairs | 88 | 58 16 16 14 14

Table 4: spBLEU across 176 translation directions involving African languages, we see that including phylogenetic
information helps in translation, with the family-based F-Fine model showing the best performance, on average.
AVg, .1 arr; denotes the overall average spBLEU of translation between two African languages. Avg,/y_, vc/era
and Avg_\/rra_x/y denote translating into and out of English/French respectively. Parentheses below the averages
represent standard deviations. Baseline refers to a DeltaLM model finetuned on 26 languages without adapters.
We can see that it is harder to translate out of English than into English.

Lang Pair A ‘ Lang Pair A
ENG-XHO 20.1 | ENG-HAU 18.8
FRA-LUG 3.6 | NSO-LUG 3.0
LUG-KIN 2.9 KIN-LUG 2.4
NYA-LUG 2.1 | ENG-KAM 1.8
IBO-LUG 1.7 | ENG-LUG 1.5
ZUL-LUG 1.5 FRA-TSO 1.3
XHO-LUG 1.2 | FRA-YOR 1.1
NSO-TSO 1.0 | AMH-LUG 1.0

Table 5: Despite MCS-350 and FLORES-200 having
widely different domains, several translation directions
see cross-domain improvements. A indicates spBLEU
improvements in the F-Fine model over the Baseline

number of languages and the number of sentences
in each language family in the dataset. The data
is roughly evenly split between stories from the
large Niger-Congo and Indo-European language
families, with a sizeable minority in other language
families like Nilo-Saharan, Sino-Tibetan, Austrone-
sian, Dravidian, Creole, etc. About 70% of the
dataset’s languages use the Latin script or its ex-
tended variants with diacritics. However, the data
is still quite typographically rich, and stories with
non-Latin scripts are in abundance, enumerated in
Table 3.

Compared to highly multilingual translation
benchmarks like NTREX (parallel data of 128 lan-
guages; Federmann et al., 2022), FLORES-200 (n-
way, 200 languages; NLLB Team et al., 2022), or
OPUS-100 (parallel data for 99 languages to/from
English; Aharoni et al., 2019), our benchmark in-
troduces up to 82 new languages leading to more
than 1400 new language pairs (see Table 2).

3 Machine Translation Benchmark

While it is true that resource creation in low-
resource languages requires fine-grained and high-
quality language identification, collecting parallel
data additionally requires high-quality MT (§1). In
this section, we explore phylogeny-based hierarchi-
cal adapter units to improve translation quality be-
tween two African languages, and between African
languages and English/French.

3.1 Data

We exploit the parallel nature of children’s stories
in MCS-350 and ensure that all training stories are
separate from test (1000 pages) stories. This is
done to get a more realistic estimate of translation
quality on new stories. For languages with < 1000
pages across stories, we use 500-page test sets.

3.2 Experimental Settings

As our baseline, we used the model from Alam
and Anastasopoulos (2022), which is the best-
performing publicly available model from the
WMT Shared Task on Large Scale Evaluation for
African Languages (Adelani et al., 2022).5 They
first fine-tuned the DeltaLM’ model (Ma et al.,
2021) in 26 languages. After that, they added
lightweight language-specific adapter layers (Pfeif-
fer et al., 2022) and fine-tuned only the adapters
in those 26 languages. We can either use a sin-
gle adapter per language (L-Fine) or organize the
adapters in a phylogenetically-informed hierarchy

Ranked third in the Shared Task. Top two systems were
industry submissions that are not publicly available.
7https: //aka.ms/deltalm
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Supported Common

Total (with LIMIT)

Model Fy
CLD3 (Salcianu et al., 2020) 0.11
langid.py (Lui and Baldwin, 2012) 0.09

Franc® 0.18
fastText (Joulin et al., 2017) 0.10
HeLI-OTS (Jauhiainen et al., 2022a) 0.13

101 81 376
97 73 380
369 116 609
176 117 415
200 81 475

Table 6: This table shows different popular language identification ssytems, their F; scores on MCS-350, supported
languages, common languages, and total coverage with LIMIT. Franc, trained on UDHR data, outperforms other
systems both on performance and coverage, and will serve as the root model for our experiments. Macro F} score
is computed across all 355+ languages to identify a system with the best overall coverage and accuracy.

(F-Fine) so that similar languages share language-
family and genus-level adapters (Faisal and Anas-
tasopoulos, 2022). We perform both L-Fine and
F-Fine experiments using the publicly available
code ® and also share an additional baseline by
finetuning the DeltaLM model without adapters.
Details on phylogenetic trees and reproducibility
are in Appendix §A.3.

3.3 Evaluation

In Table 4, we show the performance of our
L-Fine and F-Fine models compared to the base-
line on our test set. We evaluate using three well-
known MT metrics: BLEU (Papineni et al., 2002),
CHRF++ (Popovi¢, 2017), and spBLEU (NLLB
Team et al., 2022). For spBLEU, we use the FLO-
RES200 SPM model to create subwords.

Based on all three metrics, our L-Fine model
outperforms the Baseline model consistently by
4.0-11.5 spBLEU points by just fine-tuning with
language-specific adapters. Our F-Fine model out-
performs the L-Fine model by 5.0-7.5 spBLEu
points by fine-tuning only some shared parameters
among languages and language-specific adapters.
We also test our models on a public benchmark,
FLORES200 (Appendix §B), and observe that due
to the domain shift, L-Fine and F-Fine models
under-perform the Baseline.

Despite this domain shift, several low-resource
language pairs benefit from adapter fine-tuning
across domains. We report these language pairs
and their respective SpBLEU gains for the F-Fine
model in Table 5. We get the highest gains for
English-Xhosa (20.1 points) and English-Hausa
(18.8 points) across domains, both of which had
poor performance from the Baseline model with
spBLEU of 3.5 and 4.5, respectively. We also no-

8https://github.com/mahfuzibnalam/large-scale_
MT_African_languages

tice cross-domain improvement in some translation
directions involving two African languages such
as Ganda-Kinyarwanda (2.9 points) and Northern
Sotho-Ganda (3.0 points). Exhaustive results for
other language pairs can be found in Appendix §B.

4 Language (Mis)Identification
Benchmark

Language identification (LID) affects low-resource
language resource creation efforts severely (Jauhi-
ainen et al., 2019; Schwenk et al., 2021a) because
to collect data, we need accurate language iden-
tifiers that themselves need high-quality data to
train(Burchell et al., 2023) , creating a vicious cy-
cle. Low-quality systems often make mispredic-
tions which increases inter-class noise and reduces
the crawled data’s quality (Kocyigit et al., 2022;
Burchell et al., 2023) both for the predicted lan-
guage and the true language. To correct mispredic-
tions and improve accuracy in supported languages
with limited data, we propose a hierarchical model-
ing approach.

Hierarchical modeling is an extremely popular
choice for a wide variety of algorithmic tasks and
it has been explored for language identification as
well (Goutte et al., 2014; Lui et al., 2014; Best-
gen, 2017; Jauhiainen et al., 2019). However, pre-
vious work has focused on predicting language
group/family first, followed by finer-grained pre-
dictions with a smaller set of classes. Our work
departs from this paradigm in two ways - first, we
bring focus onto expanding language identification
coverage in pre-trained or off-the-shelf systems
without retraining, and second, we predict a prior
and posterior language based on confusion and mis-
prediction patterns of the model directly (without
predicting language family/group first).

Under our technique, we first choose a well-
performing root model with high-coverage that
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Multilingual Root Model

H\

Gujarati Ambharic Tigrinya

—

AMH-TIR-SLV Unit

Kutchi Bhilori Ambharic  Tigrinya Silt’e

Figure 2: Subset of the multilingual root model’s confusion matrix (6 languages). Using the confusion matrix,
clusters of highly confused languages are identified and confusion-resolution units trained according to the tree
shown on the right. The tree, for demonstration purposes, is a subset of the entire tree which has 9 confusion-

resolution units

provides us with the base/prior prediction. Such
base predictions are obtained for a sample of
MCS-350’s training set, allowing us to identify
systemic confusion patterns embedded within the
model using a confusion matrix. Based on the iden-
tified misprediction patterns (which may or may
not be between languages in the same family), we
train lightweight confusion-resolution subunits that
can be attached onto the root model to make the
posterior prediction. Our results show that, with
this architecture, a small sample of data is sufficient
to investigate pretrained, off-the-shelf, or blackbox
commercial models and identify systemic mispre-
diction patterns across domains.

4.1 Experimental Settings

Wide-Coverage root Model To pick an appro-
priate root model to test our misidentification-
based hierarchical approach, we compare sev-
eral state-of-the-art pre-trained models (§4.2) and
choose the system with the highest macro-F;
score, giving equal importance to all languages
in MCS-350.

Traditional Hierarchical group-first Model
Classical hierarchical models predict language fam-
ily/group first, followed by the specific language
(Goutte et al., 2014; Lui et al., 2014; Bestgen,
2017; Jauhiainen et al., 2019). These groups of-
ten have phylogenetic backing and are not learned
through the output distribution of the root model.
For benchmarking, we train this traditional hierar-
chical group model as well (Table 7).

N-Way Multilingual multi Model To contrast
our work with typical large multilingual model-
ing where there is no architectural class hierarchy,
we train a large fastText multilingual model with
all 350+ languages (multi). With a large number
of classes, we know that low-resource languages
suffer due to class imbalance, even with upsam-
pling. But, we still include performance results
from multi in Table 7 to compare it with the two
hierarchical approaches.

LIMIT’s Confusion-resolution Units We use
fastText (Joulin et al., 2017) to train small mod-
els that will specialize in distinguishing between
2-3 highly-confused languages each.’ Up to 1000
sentences/language are used for training, and 100
randomly selected sentences across stories are re-
served as the final test set. We train our own embed-
dings because existing multilingual embeddings
(Devlin et al., 2019) are not trained on sufficiently
wide low-resource language data.

Evaluation Metric To select a root model, per-
formance is compared based on aggregated macro-
F scores across languages (Table 6). To compare
the performance of the root model and LIMIT (our
proposed approach) on MCS-350, our benchmark
dataset, and the existing FLORES-200 benchmark,
we report language-level F scores (Table 7).

*embedding dim= 100, learning rate= 0.5, loss= negative
sampling. We explored several starting learning rates and set-
tled on 1r=0.5 due to optimal performance on a small sampled
dev set. FastText’s IrUpdate parameter, by default, reduces
the starting learning rate gradually over epochs. We don’t
optimize for embedding dimension and use fastText’s default,
100, for supervised training.

14501



MCS-350 (LIMIT’s Domain)

FLORES-200 (Out-of-Domain)

Lang root multi group LIMIT root multi group LIMIT
GuJ 049 044 058 0.63 100 081 099 099
KFR 078 083  0.80
BHIL 063 003 028
AMH 020 081 078 083 060 095 093 0.99
TIR 056 093 094 085 099 096 095 0095
stV 0 0 0.00
BEN 047 082 005 08 100 094 096 099
ASM 063 089 0.8 000 098 096 0.66
cDzZ 057 087 093
ZHO 061 0 0O 068 099 0 001 099
L yuE 0 002 014 000 0 0 000
TEL 092 075 080 094 100 083 091 1.00
L kFC 066 0.66  0.66
KAN 070 077 078 081 100 096 093 099
LkFA 066 068 052
TSO 049 053 034 067 097 079 072 097
L1sc 074 052 077
DAGAARE (083 048 054  0.87
L mzm 069 088  0.82
KAT 066 046 042 080 100 072 070 1.00
LBBL 082 066  0.66
AVG 029 056 047 0.68 077 070 073  0.86

Table 7: LIMIT improves F} scores over the root, multi, and group models on both our children’s stories dataset
and out-of-domain FLORES-20@0. The traditional hierarchical approach group underperforms the multilingual model
multi on both MCS-350 and FLORES-200. Empty entries indicate unsupported languages and bolded entries indicate
noteworthy differences in F; scores. Nested languages are misidentified as the parent in root. Note that for
FLORES-200, the root model gets O £ score on ASM and YUE but both languages are covered by the dataset.

4.2 Pre-trained root Models

In Table 6, we show macro-F} scores across all
350+ languages for popular pretrained identifi-
cation systems like Google’s CLD3, Langid.py,
Franc, fastText (Joulin et al., 2017), and HeLI-OTS
(Jauhiainen et al., 2022a). Franc, built using the
Universal Declaration of Human Rights (UDHR)
data, comes out with the best macro-F}, covering
30% of our languages (105/356 languages). It is
derived from guess-language'® which uses a mix
of writing system detection and character-level tri-
grams. Hence, we use Franc as the root system
for our misprediction-based hierarchical modeling
experiments. The overall low scores on human-

10https ://github.com/kent37/guess-1language

written sentences in MCS-350 (all systems achieve
an F7 score < 0.20) are worth noting, and indicate
that off-the-shelf systems ultimately tend to per-
form really well only on some languages, despite
officially supporting hundreds of languages.

4.3 Language (Mis)identification

Next, we inspect the best-performing root
model’s confusion matrix on MCS-350’s training
set (a representative example is shown in Figure
2) to understand and identify misprediction
patterns. For each test language, we divide the
root model’s predictions by the total number
of tested examples giving us a hit ratio for each
pair. E.g., (Gujarati, Kutchi) would represent the
ratio of Kutchi sentences that were misidentified
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as Gujarati. Upon inspection of the confusion
matrix, we identified the following 9 clusters with
a high confusion ratio (> 0.7). According to our
experimental approach outlined in §4.1, we train a
lean fastText classifier for each of these clusters,
that will specialize in differentiating between these
highly-confused languages:

Gujarati, Kutchi, Bhilori
Ambharic, Tigrinya, Silt’e
Koda, Bengali, Assamese
Mandarin, Yue Chinese
Konda, Telugu

Kodava, Kannada
Tsonga, Tswa

Dagaare, Mumuye

Bats, Georgian

S A i e

L

4.4 Expanded Language Coverage

We report F} scores for each of the 9 highly con-
fused clusters’ languages (Table 7) and observe
that languages in each cluster share writing sys-
tems and are often phylogenetically related. Our
misidentification-based model, LIMIT, is success-
ful at improving Fj scores on both our newly
collected MCS-350 dataset as well as the public
benchmark, FLORES-200. On MCS-350, LIMIT
improves F) scores from 0.29 to 0.68, a 55%
error reduction. Of the multidomain data avail-
able in FLORES-200 (11/21 languages), LIMIT
improves F from 0.77 to 0.86, a 40% error reduc-
tion, demonstrating that our method’s utility is not
restricted to the training data’s domain.

Note that hierarchical modeling could be viewed
as further complicating a simple root model, but
we contend that this is valuable when retraining
is not an option due to lack of data, closed-source
code, etc (Section 5). This simple extension allows
us to extend a high-coverage root model to newer
languages or domains that have small amounts of
training data, while maintaining high-quality pre-
dictions. Furthermore, our hierarchical method
LIMIT also outperforms a system multi that is
trained on all the languages in the test set.

4.5 Sentence Length and Domain

For several languages like Gujarati, Amharic, Ben-
gali, and Mandarin, low Fj scores for MCS-350
compared to high F; scores on FLORES-200 indi-
cate that shorter texts in the children’s stories do-
main are much harder to identify. This is expected
due to limited feature signals in shorter texts but it

is worth noting that that is the opposite of our find-
ings in the machine translation task (§3.3), where
translating shorter texts in MCS-350 proved easier
than translating FLORES-200 data. Our mispredic-
tion-based hierarchical is not only easier to train
with limited data, but also brings valuable cross-
domain language identification improvements.

5 Related Work

5.1 Parallel Datasets

Language identification models tend to use pop-
ular training datasets like UDHR (Vatanen et al.,
2010), Blodgett et al. (2017) for social media, King
and Abney (2013) (web-crawl in 30 languages),
FLORES-200, JW-300 (Agi¢ and Vuli¢, 2019)
(multilingual articles from Jehovah’s Witness’ web-
site) etc.

A recently published dataset, BLOOM (Leong
et al., 2022), leverages text and audio in children’s
stories from similar sources (African Storybooks,
The Asia Foundation, Little Zebra Books etc.) to
create benchmarks for image captioning and speech
recognition. However, their data is monolingual,
unaligned, and cannot be used for machine transla-
tion. We leveraged the highly parallel nature of the
collected storybooks, five times the number of sto-
ries in BLOOM, and created test sets and baselines
for understudied translation directions.

It is also important to us to avoid representation
washing (Caswell et al., 2020) and we clearly high-
light the sources of noise from unverified stories
in our merged dataset. With stricter preprocessing
filters applied at the pre-merge stage, a ’cleaner’
dataset could be produced, like in Burchell et al.
(2023). We provide access to our data at all
such timesteps in the preprocessing pipeline so
researchers are not required to use the final dataset,
but may use an earlier raw version and preprocess
it themselves according to their needs.

5.2 Machine Translation

Thousands of languages are spoken worldwide, so
representing them with bilingual models would
require thousands of models. Neither scalabil-
ity nor adaptability makes this an ideal solution.
Through various training methods (Aharoni et al.,
2019; Wang et al., 2020), model structures (Wang
et al., 2018; Zhang et al., 2021), and data augmen-
tation (Tan et al., 2019; Pan et al., 2021) a variety
of research has attempted to improve multilingual
translation models. Adapter units were initially pro-
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posed for light-weight domain adaptation (Vilar,
2018) and then also for extending large pre-trained
models to a downstream tasks and using bilinugal
adapters (Houlsby et al., 2019; Bapna and Firat,
2019).

5.3 Language Identification

Text-based language identification is usually mod-
elled as a classification task. By increasing the
number of languages a classifier must predict, av-
erage accuracy generally tends to decrease (Jauhi-
ainen et al., 2017), a problem we propose to tackle
by leveraging a misprediction-based hierarchical
approach. To distinguish between closely related
languages, a lot of exciting research has been pub-
lished at various editions of VarDial - The Work-
shop on NLP for Similar Languages, Varieties and
Dialects (Aepli et al., 2022; Scherrer et al., 2022;
Chakravarthi et al., 2021; Zampieri et al., 2020,
2014).

Over the last 3 iterations of VarDial from 2019-
2022, many new datasets and techniques to identify
Romance languages (Jauhiainen et al., 2022b; Za-
haria et al., 2021), Nordic languages (Haas and Der-
czynski, 2021), Uralic languages (Jauhiainen et al.,
2020), German lects (Mihaela et al., 2021; Siewert
et al., 2020), and the Slavic language continuum
(Popovi¢ et al., 2020; Abdullah et al., 2020) were
published. In contrast, we see only a handful papers
and tasks on Indian languages at the venue with
2 focusing on Indo-Aryan and 2 focusing on Dra-
vidian languages (Nath et al., 2022; Bhatia et al.,
2021; Jauhiainen et al., 2021; Chakravarthi et al.,
2020), and no papers or tasks, to our knowledge,
on African languages. Outside the venue, recently
published models like AfroLID (Adebara et al.,
2022) for language identification and IndicTrans2
(Al4Bharat et al., 2023) for Indic-language transla-
tion are great large-scale efforts in the low-resource
language space.

Brown (2014), a notable technique, trains
richer embeddings with non-linear mappings and
achieves substantial improvements in downstream
language identification on 1400+ languages. How-
ever, we do not benchmark with this technique be-
cause the paper does not contain any experiments in
low-resource training setups. Training data is about
2.5 million bytes/language, while we are working
with <50K bytes/language. Therefore, exploring
non-linear embedding mappings in low-resource
settings (Brown, 2014) is left for future work.

5.4 Hierarchical Modeling

Hierarchical approaches have proved successful
in solving a myriad of computational problems,
and have proved useful in language identification
previously. The widely used approach first pre-
dicts a preliminary language group/family, and then
another fine-tuned prediction from a smaller set
of output classes contained within the language
group/family (Goutte et al., 2014; Lui et al., 2014;
Bestgen, 2017; Jauhiainen et al., 2019). In con-
trast, our work extends architecture to account for
mispredictions made by existing trained models,
and does not predict a group/language family first,
but rather directly learns confusion relationships
between language pairs. Then, similar to Bestgen
(2017); Goutte et al. (2014), we train smaller clas-
sifiers for a fine-tuned posterior prediction. How-
ever, our approach departs from their paradigm in
that our classifiers may also distinguish between
highly-confused languages which belong to differ-
ent language families.

6 Conclusion

In this work, we tackle the lack of resources
for many of the world’s languages and release a
large, massively parallel children’s stories dataset,
MCS-350, covering languages from diverse lan-
guage families, writing systems, and reading lev-
els. Since translation is crucial for parallel re-
source creation, we explore adapter-based networks
fine-tuned on a phylogenetic architecture, and uti-
lize MCS-350 to create new translation benchmarks
for vulnerable and low-resource languages. We
demonstrate large improvements in the children’s
story domain and cross-domain improvement for
several language pairs (on the FLORES bench-
mark dataset). On the algorithmic front, we in-
troduce LIMIT, a hierarchical, misprediction-based
approach to counter the inaccuracies of pre-trained
language identification systems. Our method in-
creases language coverage and prediction accuracy
bypassing complete retraining, and shows cross-
domain generalization despite being trained on our
MCS-350 dataset.

In the future, we hope to further investigate
misprediction-based hierarchical language identifi-
cation across more datasets, with more configura-
tions, and extensions such as probabilistic branch-
ing, automated constructions etc. As a natural next
step, we will utilize LIMIT in a web-crawl to find
and collect more low-resource language data.
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Limitations

Our dataset covers 350+ text-based languages.
However, out of the 7000 languages in the world,
many are primarily spoken languages and do not
have a presence in the form of articles, textbooks,
stories etc. Therefore, language identification for
speech is crucial and we plan on extending our
text-based work to speech in future work.

While our proposed method LIMIT shows cross-
domain improvements, we acknowledge that our
system, like other language identification system:s,
is not perfect and may still make classification er-
rors on new domains, text lengths, or orthogra-
phies. We encourage researchers to keep this in
mind when applying our proposed method to their
work.
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A Reproducibility

In this section, we outline how to reproduce the dif-
ferent aspects our work. Data collection, data pre-
processing, machine translation experiments and
evaluation, and language identification experiments
have been completed in a manner that is fully re-
producible.

A.1 Data Curation

All data can be replicated and reproduced
through code/data-collection. Interme-
diate preprocessing steps can be applied
through code/preprocessing, merged through
code/merging, and summary statistics be pro-
duced through code/summary-stats. Data paths
are set up so that any retrieved, preprocessed,
merged data is located in data/.

A.2 Language ID

code/language-id/ contains the relveant scripts
to replicate all language identification experi-
ments, training, model architecture, and results.
Relevant language identification data is decou-
pled from the code directory and is located in
data/language-id.

A.3 Machine Translation

Our machine translation experiments are
performed using publicly available code
from  https://github.com/mahfuzibnalam/
large-scale_MT_African_languages. To
produce results regarding novel translation
directions enabled by our data, please refer to
code/new_lang_pairs. Table A.1 shows the
phylogeny configuration we use to fine-tune the
MT system.

B Supplementary Machine Translation
Benchmarks

On the following pages, we report the aggre-
gate evaluation results of our MT models on the
FLORES200 devtest of 176 languages (BLEU,
CHRF++, spBLEU). We also report BLEU,
CHRF++, and spBLEU for baseline, language-fine,
and family-fine scores for all language pairs we per-
form machine translation experiments for (African
focus languages from the WMT tasks’ focus lan-

guages)

Family Genus (Group) Language
Indo- Germanic English
European Afrikaans
Romance French
Afro- Hausa Hausa
Asiatic Ambharic Ambharic
Cushitic Oromo
Cushitic Somali
Nilo-Saharan Luo Luo
Atlantic Wolof Wolof
Fula Nigerian
Fulfulde
Volta-Niger Igboid Igbo
Yoruboid Yoruba
Bangi Lingala
Shona Shona
Nyasa Chichewa
Umbundu Umbundu
Tswana
Bantu 'l§sovtv}:r)1a Northern
Sotho
Zulu
Nguni- Xhosa
Tsonga Swati
Xitsonga
Kamba
Northeast- Swahili
Bantu Kinyarwanda
Luganda
Table A.l1: This table highlights the three-tiered

phylogeny-informed tree structure we use for L-Fine
and F-Fine models. Other than the high-resource lan-
guages English, Afrikaans, and French, all other eval-
uated languages are from Africa and cover 5 different
language families.
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MetrlCS ‘ MOdelS ‘AVgALL AVgX—)ENG AVgENG—)X AVgAFRICAN—)AFRICAN AVgY—)FRA AngRA—>Y

| Baseline | 959 | 17.84 10.56 7.83 13.42 9.79

BLEU | L Fine | 1657 | 2855 1368 1528 1906 1424
| F-Fine | 2152 | 33.77 21.79 20.01 23.99 17.28

| Baseline | 29.59 | 3547 30.88 28.05 32.54 31.25
CHRE* | | Fine | 37.04 | 4554 3524 35.89 3901 3682
| F-Fine | 4133 | 49.83 41.28 40.18 43.27 39.28

| Baseline | 11.87 | 18.79 13.20 10.19 15.64 12.55
SPBLEV | [ Fine | 1952 | 3038 1746 1821 2193 1786
| F-Fine | 2493 | 35.66 25.26 23.58 27.06 21.36

Table B.1: Evaluation results on our test set of 176 language directions. Avg, ... denotes the average score of
directions between other languages and English. Avg,.._  denotes the average score of directions between English
and other languages. AVg, ...can—arrican denotes the average score of directions between African languages to
other African languages. Avg, _, ... denotes the average score of directions between other languages and French.
Avg..._.y denotes the average score of directions between French and other languages. Avg,,, denotes the average
result of all translation directions.

Metrlcs ‘ MOdels ‘ AVgALL AVgX—>ENG AVgENG—)X AVgAFRICAN—>AFRICAN AVgY—>FRA AVgFRA—>Y

|

| Baseline | 14.01 | 2821 13.68 23.62 11.66 11.23

BLEU | LFine | 1201 | 2598 1419 2221 1098 10.05
| F-Fine | 1225 | 2515 13.99 20.98 10.88 9.34

| Baseline | 39.16 | 49.54 37.16 46.24 38.03 37.29
CHRE® | Fine | 37.89 | 4728 3986 44.80 3726 3557
| F-Fine | 37.03 | 46.57 39.64 43.68 37.41 34.50

| Baseline | 18.23 | 30.77 17.22 28.01 16.69 15.64
SPBLEV | [ Fine | 1701 | 2823 1891 26.46 1575 1422
| F-Fine | 16.15 | 27.41 18.69 25.25 15.69 13.21

Table B.2: Evaluation results on FLORES200 devtest of 176 language directions. Avg, .. denotes the average
score of directions between other languages and English. Avg, . .. denotes the average score of directions between
English and other languages. AVg, .. 1canoarrican denotes the average score of directions between African languages
to other African languages. Avg, _, ... denotes the average score of directions between other languages and French.
Avg..._y denotes the average score of directions between French and other languages. Avg,,, denotes the average
result of all translation directions.
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| BLEU CHRF++ spBLEU

‘ Baseline L-Fine F-Fine | Baseline L-Fine F-Fine | Baseline L-Fine F-Fine

LUG-ENG 10.1 17.3 23.4 25.1 33.8 39.6 10.9 18.2 24.5
YOR-ENG 16.2 222 26.3 33.6 40.1 43.8 16.3 22.1 26.5
HAU-ENG 15.9 21.5 24.6 33.6 39 40.7 17.2 22.7 25.7
AMH-ENG 21.4 27.8 30.1 41.3 45.8 47.6 23.2 29 31.3
SWA-ENG 22.5 26.6 333 41.1 44.1 494 234 27.5 34.5
IBO-ENG 15.1 20.9 22.8 34 40.2 41.8 15.8 22.3 24.1
NYA-ENG 17.9 25.2 334 37.3 44.5 51.4 18.7 25.5 35.2
ORM-ENG 7.9 11.3 15 24.1 30 33.3 94 12.6 16.5
NSO-ENG 22.5 46.7 53.5 39.5 61.7 66.5 23.4 51.1 57.1
XHO-ENG 21.9 36.5 42.2 39 52.1 56.9 22.4 38.2 44.7
TSO-ENG 20.5 48.3 57.1 37.1 62 68.7 21.1 52.1 60.3
KIN-ENG 13.4 22.5 29.1 31.1 40.3 45.8 13.9 23.1 30
KAM-ENG 53 8 11.7 21.8 24.6 29.9 6.1 8.9 12.9
ZUL-ENG 19.5 34.8 41.3 37.9 51.9 57.1 20.7 39.1 45.5
SSW-ENG 17.4 419 48.8 33.8 56.6 61.9 17.9 45.9 52.5
AFR-ENG 38 453 47.7 57.2 61.9 62.9 40.3 47.7 49.3
ENG-SWA 16.8 18.1 24.5 41.4 43 47 20 22.1 27.8
ENG-IBO 13.6 17.6 20.9 33.4 37.4 39.7 17.1 21 24.3
ENG-NYA 104 11.7 15.6 33.5 36.3 394 12 14.3 18.4
ENG-ORM 1.1 3.1 2.9 14.1 18.5 17.7 1.7 4.4 4.4
ENG-NSO 19.5 25.1 43.2 37.7 43.6 59.9 19.8 26 46.4
ENG-TSO 16 23.6 44.6 36.8 43.8 61.2 16.9 25.6 47.8
ENG-KIN 5.3 7.8 10.1 26.3 31.1 33.5 7.7 11.2 13.9
ENG-KAM 1.6 2.1 29 16.3 18.6 20.2 2.4 3.1 4.3
ENG-ZUL 9 11.2 27.8 36.4 38.9 49.3 16 18.7 32.9
ENG-SSW 5.7 9.9 36.2 29.3 36.8 53.5 10.2 16.7 37.9
ENG-AFR 33.1 35.1 40.3 52.8 54.6 57.7 35.6 37.4 42 .4
ENG-XHO 4.5 12.4 28.2 26.5 37.7 48.2 8.1 18.1 31.5
ENG-LUG 4.2 5.9 8.1 25.7 29.8 31.9 7 9.8 12.3
ENG-YOR 13.3 15.8 20.4 30.9 32.5 35.7 14.8 17.3 20.8
ENG-HAU 10.4 12.4 15 31.3 34.9 37.8 8.7 14.2 17.8
ENG-AMH 4.4 7 7.9 21.7 26.3 27.7 13.2 19.4 21.3
FRA-SWA 8.9 12.9 17.6 34 39 42.6 11.1 16 21.3
FRA-KIN 5 7.6 9.9 28.4 32 34.5 7.6 11.6 14.5
FRA-HAU 6.5 8.9 11.8 29.5 33.6 36.1 7.8 10.7 14
FRA-NSO 15.2 23.9 29.2 34.2 454 49.9 16 26.3 32.3
FRA-AMH 2.9 5 5.9 17.6 21.7 21.9 10.2 14.3 15.8
FRA-XHO 9.2 12.2 15.8 35.8 40.1 42.1 14.5 19 22.2
FRA-ZUL 6.9 94 12.7 353 38.8 41.1 13 16.3 20
FRA-LUG 2.3 53 7.3 21.9 29.2 31.3 4.3 8.7 11.3
FRA-IBO 13 18.1 20.5 32 37.1 38.6 16 21.2 23.5
FRA-AFR 27.1 30.1 31.6 47.3 49 50.3 28.5 31.3 33.3
FRA-NYA 9 11.8 14.9 33.2 36.3 39.1 10.6 13.8 17.4
FRA-SSW 5.7 12.4 17.7 29.8 39.8 44.2 9.7 18.2 24.1
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| BLEU CHRF++ spBLEU

‘ Baseline L-Fine F-Fine | Baseline L-Fine F-Fine | Baseline L-Fine F-Fine
FRA-YOR 9.6 14.1 15.5 23.9 28 29.5 9.9 13.8 16
FRA-TSO 15.8 27.6 31.5 34.6 45.5 48.7 16.5 28.9 33.3
HAU-FRA 9 13.9 17.3 26.2 325 35.8 11.4 16.8 20.7
NSO-FRA 15.2 23.3 29.9 35.8 44.5 49.7 18 26.3 33
AMH-FRA 12 16.7 19.1 30.2 35.6 374 13.4 18.9 21.2
XHO-FRA 16.7 22.1 26.6 37.1 42.9 46.2 18.2 23.9 28.8
ZUL-FRA 14.4 19.9 24.5 36.2 41.5 45.5 16.9 23.1 28.3
LUG-FRA 6.4 14.1 19.5 21.6 32.6 38.5 8.4 16.5 222
IBO-FRA 10.9 15.1 17.6 31.5 36.8 38.9 13.6 18.5 21.5
AFR-FRA 26 28.5 31.5 47.8 50.3 51.8 29.6 324 35.2
NYA-FRA 14 20.4 27.2 32.7 39.5 45.6 15.7 22.5 29.6
SSW-FRA 14.7 214 28.8 34.2 42 48 16.7 24 .4 32.3
YOR-FRA 10.4 16 18.2 30.1 35.6 38 11.9 18.2 21
TSO-FRA 18.3 26 355 36.1 439 51.3 20.4 29 38.5
SWA-FRA 12 15.3 19.2 30.5 34.5 38.4 14.1 18 22.2
KIN-FRA 7.9 15.5 21 25.5 354 40.7 10.6 18.5 243
TSO-SWA 13.4 17.7 27.2 37.6 41.8 48.8 17.4 22.8 31.9
SSW-TSO 13.7 35.6 40.9 33.5 54.3 58.3 13.8 38.9 44.1
AMH-KIN 2.6 5.8 7.1 21 26.2 27.3 4.6 8.2 9.7
TSO-NYA 6.4 8.7 17 31.5 36.6 43.7 9.4 12.5 22.7
TSO-NSO 18.6 37 43.6 36.4 55.4 60.2 17.8 40.7 46.8
NSO-KIN 4.8 9.2 14.2 27.9 33.9 37.7 8.2 13.7 19.7
YOR-IBO 13.3 24.9 26.7 28.4 39.3 41.5 15.6 26.2 28.4
SSW-SWA 8.6 13.2 23.2 34.1 39.8 48.4 11.7 16.8 28.6
NYA-SWA 9.8 14 22.9 35.1 38.6 45.6 12.2 17.2 27.4
YOR-SWA 10.4 17.8 21.5 30.3 39.1 42.8 12.2 18.5 23.4
SSW-NSO 13.8 38.2 44.9 31.6 54.9 60.4 13.8 40.6 47.5
SSW-NYA 5.9 9.3 17.7 28.1 35.5 42.1 7.9 13.5 22.5
AFR-SWA 11.8 15.5 23.7 38.7 41.7 46 16.1 19.8 28.6
XHO-TSO 13.1 35.6 42.1 34 53.7 59.7 14.1 37.1 44 .4
LUG-NYA 2.3 7.4 12.2 20.2 30 34.2 4 9.7 15.3
AMH-AFR 10.4 16.9 19.5 28.6 34.1 36.8 11.9 18.1 21
LUG-NSO 5.7 14.6 18.8 20.7 31.9 36.1 5.5 14.8 19.3
NSO-AFR 20.6 30.9 433 40 50.9 58.9 21.9 334 45.2
HAU-KIN 2.6 5 6.1 21.7 26.8 27.6 5.2 8.6 9.5
IBO-SWA 14.1 19.9 26.7 35 39.8 44.6 15.6 21 27.6
AMH-ZUL 3.1 6.7 7.9 26.2 31.2 32.5 7.5 11.8 13.5
LUG-SWA 6.3 11.4 17.7 26.5 34.8 40 8.2 14.7 21.8
LUG-IBO 4.8 13.7 17.3 18 28.6 33 6.8 15.6 19.7
NSO-ZUL 7.8 23.9 27 34.3 45.6 48.8 13.6 27 30.9
ZUL-SWA 9.5 13.7 20.9 349 37.9 434 13.3 17.7 25.8
XHO-SWA 13 16.6 23.4 37.1 40.2 45.3 16.2 20.1 27.4
LUG-XHO 3.7 7.7 12.4 22.1 29.7 34.9 5.5 11.2 16.8
XHO-NSO 15.1 32.8 40.5 34.5 51.6 57.9 15.5 35.5 43.5
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| BLEU CHRF++ spBLEU

‘ Baseline L-Fine F-Fine | Baseline L-Fine F-Fine | Baseline L-Fine F-Fine

ZUL-NYA 6.1 7.7 11.2 31.2 33.6 36.8 8.8 10.9 15.5
KAM-SWA 4.1 44 7.2 22.3 21.2 25.8 5.8 5.8 9.5
XHO-NYA 6.8 10 18 31.6 36.4 43.2 9.7 13.5 22.6
TSO-KIN 4.4 7.1 13 26.2 29.4 36.1 6.8 10.6 18.7
NSO-NYA 5.6 8.1 15 30.2 35.6 40.5 8.1 12.2 19
LUG-AFR 9.7 14.2 22.3 27.9 32.7 39.9 10.6 15.1 23.4
AMH-ORM 0.8 2 3.1 14.3 19.8 22.9 1.3 3.8 5.1
AMH-SWA 5.7 14.8 18.3 27 38 41.1 7.8 19 22.2
SWA-KIN 4.3 5.3 7.3 23.3 24.2 27.5 6.3 7.5 10.5
LUG-ZUL 3.3 5.7 8.6 229 28.1 322 5.7 9.3 13.3
NSO-SWA 13.5 19.5 27.9 36.8 42.9 48.4 16.9 24.3 324
XHO-SSW 4.5 36.2 40.9 27.4 51.9 56.9 8.9 37.4 43.2
SSW-KIN 5.3 10 15.3 26.9 33.5 39 8.2 13.9 20.7
NYA-KIN 49 9.2 13.3 26.7 31.8 36.9 7 12.4 18
YOR-LUG 2.1 5.7 7.9 18.7 26.8 27.9 3 7.5 9.7
XHO-ZUL 9.1 324 36.1 339 49.7 53.5 14.9 33.5 38.4
XHO-AFR 19.7 24.5 339 39.8 444 51.8 214 26.1 36
ZUL-AFR 18 22.4 30.2 38.4 42.8 49.1 20.1 24.4 32.8
TSO-ZUL 6.3 39.4 41.8 314 53.7 56 11.2 38 41.5
AFR-KIN 5 7.6 11.3 29.7 329 37.6 7.9 11.6 16.6
HAU-SWA 8.3 10.5 13.5 29.3 32.6 34.5 10 13.6 16.2
ORM-SWA 5.6 8.4 9.6 23.4 27.7 28.1 6.4 10.9 11.6
TSO-AFR 19.9 259 36.3 38.4 44.3 52.8 21.1 27.1 38.1
LUG-KIN 1.1 6.3 7.8 15 27.2 29.5 2 8.7 11
ZUL-KIN 4.8 6.8 10.4 27.4 30.6 33.4 7 10.1 14.6
SSW-ZUL 8.5 31 33.3 33.8 50.6 52.2 13.9 33.3 36
XHO-KIN 4.8 7.6 11.1 27.9 31.3 35.2 7.6 11.6 16.3
LUG-AMH 1 2.4 4.7 8.5 13.6 16.7 3.2 8.2 11.4
SSW-AFR 17.1 23.5 36.3 35 42.1 51.8 18.2 25.1 38.1
NYA-AFR 15.4 20.8 29.7 33 38.6 45.9 16.7 21.8 31.3
SWA-TSO 13.8 21.1 29.7 35.6 41.6 49.5 15.3 22.7 32.4
TSO-SSW 6.3 31.1 35 31 50 54.2 10.5 33.1 38.3
KIN-AMH 0.7 1.8 2.9 9.7 14.8 16.9 3.5 8.4 11
NYA-TSO 13.3 24.7 31.5 33.2 45.1 50.6 14.2 27.2 34.3
NSO-TSO 15.9 37.5 42.2 36.2 56.5 60.3 16.3 41.3 46.2
KIN-NSO 6.4 17.8 24.2 22.7 36.1 41.8 6.1 17.9 25
IBO-YOR 12.9 17.1 18.3 26.2 29.9 30.3 13 16.7 17.4
SWA-SSW 3.9 6.5 114 23.5 28.7 34.4 5.8 10.2 16.1
SWA-NYA 6.5 7.4 114 27.6 29 33.4 8.3 9.8 14.3
SWA-YOR 9.3 13.3 15.7 21.3 24.7 28 9.4 13.8 15.5
NSO-SSW 5.7 36.3 40.2 29.7 52.8 56.6 10 36.9 41.4
NYA-SSW 5.1 10.5 19.2 27.3 36.3 44.6 7.7 16 25.9
SWA-AFR 15.2 18.4 25 34 36.2 41.9 16.8 19.5 26.8
TSO-XHO 8.8 33.3 37.2 34.9 51.3 54.9 13.8 33.2 38.4
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| BLEU CHRF++ spBLEU

‘Baseline L-Fine F-Fine | Baseline L-Fine F-Fine | Baseline L-Fine F-Fine

NYA-LUG 2.5 4.7 8.1 229 26.4 29.7 4.5 7.5 11.3
AFR-AMH 2.6 3.8 5.3 17.4 21.1 23.8 9.2 12.7 15.6
NSO-LUG 2.6 4 5.1 23.3 27.4 28.1 4.6 7 8.9
AFR-NSO 18.6 28.5 34.7 38.3 48.7 53 18.8 29.5 36
KIN-HAU 6.3 8.3 11.1 26 28.4 32.8 7.6 10.3 13.9
SWA-IBO 18.4 23.5 27.3 32.5 37.4 41 20.1 24.7 28.5
ZUL-AMH 2 4.2 54 159 194 22.8 74 11.8 15.8
SWA-LUG 3.5 5.1 7.2 23.2 25.2 28.3 5.8 7.8 10.4
IBO-LUG 1.6 5.5 7.7 20.3 28.2 29.9 2.9 8.2 10.8
ZUL-NSO 15.7 29.1 34.6 36 47.8 52.8 159 30.6 36.6
SWA-ZUL 7.2 8.3 11.6 30.2 31.5 34.9 10.9 12.5 16.6
SWA-XHO 8.8 9.8 15.7 33.9 35.1 40.6 13.4 14.8 21.6
XHO-LUG 3.7 5.4 8.1 26.6 30.4 31.9 5.6 8.6 11.9
NSO-XHO 8 29.9 33.9 34.1 49.2 53 13.5 32.1 36.7
NYA-ZUL 6.9 8.8 14 31.3 34.5 39.4 11.2 14.2 20.1
SWA-KAM 1.5 1.3 1.8 16.2 16.3 17.8 2.3 2 3
NYA-XHO 8.1 11.3 20.5 33.2 38.9 46.1 12.8 18.2 27.5
KIN-TSO 6.2 15.8 22.2 22.9 34 39.8 6.6 17 24.1
NYA-NSO 14.9 24.2 329 34 44.2 50.5 15.1 25.8 34.5
AFR-LUG 4 54 7 28.3 31.2 32.6 6.9 9.3 11.4
ORM-AMH 1 1.8 2.8 10.5 15.7 16.3 3.2 9.9 10.8
SWA-AMH 2.1 44 5.8 14.8 194 22.5 74 12.9 16.9
KIN-SWA 6.3 11.2 18.7 28.4 342 40.1 9 14.8 23.2
ZUL-LUG 3.2 4 52 24 25.2 26.3 6 7.3 8.2
SWA-NSO 15.2 20.1 29.4 33.9 39.6 46.8 15.2 21.3 31
SSW-XHO 6.1 36.4 40.5 29.1 51.4 55.2 10.6 36.6 41.3
KIN-SSW 1.9 10 16.9 19.9 33.6 40.8 4 15.7 24.2
KIN-NYA 2.4 6.2 114 22.1 31.5 36.7 34 8.4 15.3
LUG-YOR 3.2 8 13.1 12.6 19.1 25.2 3.3 8.4 13.5
ZUL-XHO 8.9 32.6 35.7 34.4 49.8 52.7 14.5 334 37.2
AFR-XHO 10.1 12.3 16.2 37.7 40.3 43.2 16.3 19.2 23.4
AFR-ZUL 9.5 11.2 15.1 36.5 38.8 42 15.3 18 22.3
ZUL-TSO 13 39.6 44 34 56.6 59.9 13.8 42.1 46.6
KIN-AFR 10.9 15.3 23.6 29 33.6 41.3 11.3 16 25.3
SWA-HAU 7.8 10.7 13 30.4 31.1 35.1 9.3 12 14.8
SWA-ORM 2 2.2 3.3 17.9 20.1 22.2 3.3 3.6 5.2
AFR-TSO 18.2 24.9 29.5 39.6 48.2 52.3 19.6 28 33
KIN-LUG 0.3 4.6 6.2 14.6 26.6 28.4 1.4 8 9.6
KIN-ZUL 3.9 6.6 9.5 24.2 30.3 33.2 6.6 11.2 14.8
ZUL-SSW 6.4 30.4 33.8 33 51.2 53.9 12.4 32.8 37.2
KIN-XHO 34 8.7 12.1 24 31.3 34.3 5.8 12.8 16.8
AMH-LUG 1.4 4.2 4.6 18.4 24.7 24.9 3.1 6.2 7.2
AFR-SSW 6.4 11.9 18 28.9 37.8 43.4 10 18 25.1
AFR-NYA 6.4 8.4 13 30.1 33.5 37.7 9.6 12.1 17.5

Table B.3: Results of all language pairs on our test set
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| BLEU CHRF++ spBLEU

‘ Baseline L-Fine F-Fine | Baseline L-Fine F-Fine | Baseline L-Fine F-Fine
LUG-ENG 16.1 15.5 15.5 36.6 36 36.2 18.3 17.5 17.7
YOR-ENG 16.7 15.6 16.3 38.6 37.2 38.2 18.9 17.7 18.4
HAU-ENG 27.8 27.2 25.9 50.2 49.1 48 31.1 29.2 27.9
AMH-ENG 314 27.8 27.1 55.5 52.1 51.3 34 30.1 29.3
SWA-ENG 41.6 34.2 36.6 62.5 56.5 58.4 43.5 36.2 38.5
IBO-ENG 25.6 24 23.8 48.3 453 45.4 28.6 26.3 26.1
NYA-ENG 25.2 23.3 22.9 47.8 45.5 44.9 28.7 26.3 25.7
ORM-ENG 13.2 11.7 10.3 34.6 322 29.6 14.5 12.7 11.1
NSO-ENG 34.6 32.5 29.5 55 53 50.2 36.8 34.5 31.5
XHO-ENG 35.1 334 31.7 56.2 55.1 53.3 379 36.2 343
TSO-ENG 28.1 25.8 24.4 49.6 47.2 46.2 30.8 28.2 26.9
KIN-ENG 28.1 24.2 23.3 50 46.4 45.5 30.2 26.2 25.4
KAM-ENG 9.5 10 9.1 28.3 28.2 28.7 12.2 12.3 12.2
ZUL-ENG 35.8 323 31.1 57.5 53.8 52.8 38.7 34.6 333
SSW-ENG 26.1 25.6 24.1 47.6 47.1 45.7 28.5 27.9 26.3
AFR-ENG 56.5 52.6 50.8 74.4 71.8 70.7 59.6 55.7 53.9
ENG-SWA 33.8 30.8 29.8 59.4 57.3 56.4 38 353 34.4
ENG-IBO 15.8 16.1 16.3 39.5 40.1 40.2 18.6 19 19.2
ENG-NYA 14.2 13.8 13.4 44.5 44.5 43.6 18.1 17.7 16.9
ENG-ORM 1.3 1 0.7 18.2 17.1 154 2.4 1.7 1.2
ENG-NSO 23.1 19.1 19.4 47.9 44.9 45.7 24.4 21 21.5
ENG-TSO 16.4 15.6 16.8 437 42.5 43.9 19.6 18.2 19.4
ENG-KIN 12.5 11 11.3 37.9 38.1 38.2 15.9 14.5 14.7
ENG-KAM 2.8 3.9 4.2 19.3 22.4 22.8 3.8 5.4 5.6
ENG-ZUL 16.1 15.3 14.3 50.2 49.5 48.5 27.2 26.2 24.7
ENG-SSW 7.6 7 7 39 38.6 38.8 14.7 14.6 14.3
ENG-AFR 40.4 375 35.8 65.7 63.6 62.4 46.1 434 41.7
ENG-XHO 1.4 12.8 13.9 15.7 46.6 47.6 3.5 22.5 23.6
ENG-LUG 5.4 5.8 6.1 29.8 30.9 31.2 7 8 8.5
ENG-YOR 33 3.3 3.2 19.5 19.2 19.2 5.1 4.6 4.6
ENG-HAU 13.1 22.3 20.7 27.7 46.9 45.6 4.5 24.2 23.3
ENG-AMH 11.6 11.8 10.9 36.6 35.5 34.7 26.8 26.2 254
FRA-SWA 23.6 20.5 20.1 50.9 48.6 47.5 28.1 25.1 24.3
FRA-KIN 9.6 8.6 9.1 36.4 34.6 35.6 13.4 11.8 12.2
FRA-HAU 154 15.3 15.1 41 40.5 40.7 18.1 17.8 17.7
FRA-NSO 12.8 12.3 13.1 38.6 38 394 14.9 14.4 15.3
FRA-AMH 8.5 6.9 6.5 31.7 28.5 27.8 22.2 19.6 19.1
FRA-XHO 10.3 9.1 9 43.1 41.1 41.2 194 17 17.3
FRA-ZUL 11.1 10 9.6 44.9 43.5 42.9 21.6 19.9 19.1
FRA-LUG 2.2 4.3 4.2 22 28 28.7 3 6.4 6.6
FRA-IBO 13.1 12.1 12.5 36.9 35.6 36.4 16.1 14.9 15.3
FRA-AFR 26.7 24.6 22.6 54.9 52.6 50.8 32.7 30.1 28.2
FRA-NYA 11.6 10.1 10.1 42.2 39.7 39.6 15.6 13.4 13.5
FRA-SSW 49 4.8 49 33.7 34.2 35.1 11.3 11.2 114

Table B.4: Results of all language pairs on our test set

14516



| BLEU CHRF++ spBLEU

‘ Baseline L-Fine F-Fine | Baseline L-Fine F-Fine | Baseline L-Fine F-Fine
FRA-YOR 2.4 3.2 3 18.2 18.5 18.7 3.6 4.8 4.7
FRA-TSO 11 11.9 12.5 37.9 38.2 39.4 13.6 14.1 14.9
HAU-FRA 23.2 21.8 21.2 45.7 441 43.6 27.4 25.8 25.2
NSO-FRA 24.4 232 20.8 46.7 45.5 43.6 29 27.3 25.1
AMH-FRA 252 22.7 22.6 49.3 47.3 46.7 29.9 27.4 27.1
XHO-FRA 26.6 259 23.4 49.2 48.4 46 31.3 30.2 27.9
ZUL-FRA 28.1 25.3 22.7 51 48.4 46.1 32.5 29.6 27.1
LUG-FRA 13.1 13.6 12.5 33.8 34.3 33.6 16.2 16.6 15.6
IBO-FRA 20.2 18.8 18.1 43.1 41 40.7 24.2 22.5 22.4
AFR-FRA 37.9 37.1 35.8 60.8 59.9 58.9 43.6 42.7 41.5
NYA-FRA 20.5 19.7 18.5 44 42.5 41.2 254 24.3 23
SSW-FRA 19.7 20.4 18.3 41.9 43.1 40.9 24.1 24.5 22.4
YOR-FRA 15 13.5 13.5 37 354 35.3 18.9 17.5 17.5
TSO-FRA 224 20.9 19 44.8 43.5 41.5 26.7 252 22.8
SWA-FRA 31.7 273 27.7 54.4 50.4 50.8 36.1 31.9 32.2
KIN-FRA 22.7 20.7 19.6 45.7 434 42.6 26.8 24.9 23.7
TSO-SWA 19.3 16.3 13.8 45.7 42.8 39.3 229 20 17.1
SSW-TSO 12.1 13 12.4 38.6 394 38.2 15.1 15.5 14.6
AMH-KIN 8.2 6.7 6.5 35.1 32 314 11.6 9.5 8.9
TSO-NYA 10.3 9.9 8.3 39.2 38.4 35.1 13.8 13.2 11.2
TSO-NSO 17.3 15.5 14.1 42 40.6 39.2 18.9 17.3 15.9
NSO-KIN 9.6 94 7.9 35 34.6 31.9 12.9 12.4 10.3
YOR-IBO 8.4 7.9 8.2 29.7 29.2 29.4 11.1 10.6 10.9
SSW-SWA 17.4 16.4 13.1 43.5 42.6 38.6 20.6 19.5 16.2
NYA-SWA 17.8 15.1 13.3 449 414 39 21.6 18.9 16.7
YOR-SWA 11.9 94 9.9 37.6 33.4 34.2 14.6 11.9 12.4
SSW-NSO 16.1 14.9 13.8 40.8 39.9 38.1 17.7 16.7 15.3
SSW-NYA 9.2 10.2 8.3 37.4 38.5 35.2 12.5 13.1 11
AFR-SWA 27.6 24.2 20.9 54.8 51.5 48.4 32.1 28.7 25.7
XHO-TSO 13.8 13.7 13.7 40.5 40 40.1 16.8 16.4 16.2
LUG-NYA 7.2 7 6 32.5 324 30.4 9.4 9.4 8.1
AMH-AFR 194 17.3 16.3 46.5 44.1 43.1 23.3 20.8 19.6
LUG-NSO 9.9 10.7 9.5 32 33.7 32.8 10.9 12.1 11
NSO-AFR 20.9 18.8 16.8 45.8 434 41.1 24.2 21.3 19.2
HAU-KIN 10.1 8.4 7.6 36.5 32.7 31.5 13.7 10.8 9.9
IBO-SWA 16.6 15 14.7 44 .4 40.5 40.7 20.8 18.1 17.7
AMH-ZUL 9 8.3 7.5 42.1 40.5 394 18.1 16.7 15.5
LUG-SWA 11.9 9.9 8.7 36.7 33.9 323 14.2 12.2 10.9
LUG-IBO 7.5 8 7.1 26.6 28.1 27.4 9.8 10.3 9.8
NSO-ZUL 12.7 10.8 9.3 44.9 42.5 40.2 22 19.7 17.4
ZUL-SWA 25 20.9 17.7 51.6 47.2 43.1 29 24.6 21
XHO-SWA 22.5 20.6 17.8 494 47.3 43.5 26.6 24.7 214
LUG-XHO 5.1 4.6 4.5 31.8 31.1 30.7 10.3 9.8 8.9
XHO-NSO 18.2 17.5 16.1 43.2 42.2 40.7 19.7 18.8 17.6
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| BLEU CHRF++ spBLEU

‘ Baseline L-Fine F-Fine | Baseline L-Fine F-Fine | Baseline L-Fine F-Fine
ZUL-NYA 12.8 11.6 9.1 42.9 40.8 36.7 16.6 15 12.2
KAM-SWA 8.4 7.1 5.6 30.3 27.5 25.6 10.5 9.2 7.3
XHO-NYA 12.3 11.7 10.2 42.1 40.8 37.7 16 15.2 13.1
TSO-KIN 10 9 6.8 36.3 34.2 30.6 14.1 12.3 9.2
NSO-NYA 11.1 10.6 9.4 39.6 38.9 36.5 14.3 13.5 12
LUG-AFR 11.6 10.6 9.9 34 329 31.8 14 13 11.9
AMH-ORM 1.2 0.8 0.9 19.5 16.7 17.9 2.5 1.5 1.6
AMH-SWA 20.2 17.1 16.4 48.4 44.8 433 24.3 20.9 19.7
SWA-KIN 12.2 7.4 7.9 39.9 32.1 329 16.1 10.2 10.6
LUG-ZUL 54 5.3 4.7 33.1 32.6 31.1 11.9 114 10.2
NSO-SWA 21.7 19 15.3 48.2 45.1 40.6 25.2 22.3 18.4
XHO-SSW 7.2 7 6.3 37.7 37.2 35.6 14.3 14.1 12.7
SSW-KIN 7.9 8.7 6.6 324 33.5 30 10.7 11.3 8.6
NYA-KIN 9.2 7.7 7.1 35 322 31 12.5 10.7 9.5
YOR-LUG 3.6 3.9 3.3 252 249 24.6 4.9 5.6 5.2
XHO-ZUL 12.9 12.1 11.1 45.8 44.9 42.8 23.2 22.3 20.1
XHO-AFR 20.7 19.8 17.2 46.7 45.3 42.7 24.8 23.3 20.5
ZUL-AFR 22.4 18.8 17.4 48.3 443 42 .4 26.3 22.2 20.3
TSO-ZUL 10.5 94 8.4 42.7 41 39.1 20.3 18.1 16.3
AFR-KIN 11.5 9 8.8 38.9 35.2 349 159 12.2 12
HAU-SWA 20.9 17.1 15.2 47.4 42.7 40.9 24.2 20.3 18.3
ORM-SWA 10.5 7.2 6.3 347 28.8 26.5 12.2 8.6 7.3
TSO-AFR 17.1 16 14 42.2 41 38.4 20.9 19.3 17.1
LUG-KIN 2.9 6.3 5.3 19.9 29 27.5 4.2 8.5 7.1
ZUL-KIN 10.9 9.2 7.4 37.9 34.5 31.9 14.8 12.4 10
SSW-ZUL 11.1 10.2 9.1 43 42.2 40.4 20.5 19.2 17.5
XHO-KIN 10.9 9.8 8.2 37.1 353 324 14.4 12.9 10.5
LUG-AMH 3.5 2.6 2.4 18.1 17.2 16.5 10.7 10 9.1
SSW-AFR 16 15.6 13.2 41.3 40.4 37.7 19.7 18.6 16
NYA-AFR 16.4 14.7 13.1 42.4 39.8 37.7 20.7 18.2 16.4
SWA-TSO 14.8 12.1 13.5 41.5 37 39.5 17.7 13.9 15.4
TSO-SSW 6.6 5.9 5.2 36.8 354 33.4 13.1 12.2 10.6
KIN-AMH 6 4 4.1 25.7 21.9 22 16.4 13.5 13.4
NYA-TSO 11.7 10.7 10.7 37 36.1 36.3 14.5 13.5 13.3
NSO-TSO 12.8 13.9 14 39.4 39.7 39.8 15.3 16.5 16.3
KIN-NSO 14.6 12.1 12.3 39.1 36.7 36.7 16.2 14.1 13.9
IBO-YOR 2.3 2.9 2.5 17.5 18 17.4 3.8 5.2 4.2
SWA-SSW 5.9 4.3 4.7 36.2 31.9 34.1 12.4 9.5 10.5
SWA-NYA 12.4 94 10 43.6 38.6 39.3 16.5 12.7 13.3
SWA-YOR 2.7 3.7 3.1 18.4 18.8 18.5 3.8 6.6 4.5
NSO-SSW 7.1 6.4 6.1 37.2 35.8 35.1 13 12.4 12
NYA-SSW 4.7 4.6 4.7 33 33 32.6 10.4 10.6 10
SWA-AFR 253 20 19.9 51.8 46.2 45.9 29.1 23.5 23.2
TSO-XHO 9.2 8.6 8 40.1 39.1 38.1 16.9 15.6 15.1
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| BLEU CHRF++ spBLEU

‘ Baseline L-Fine F-Fine | Baseline L-Fine F-Fine | Baseline L-Fine F-Fine
NYA-LUG 3.2 4.6 4.6 24.2 27.4 26.9 4.5 6.9 6.6
AFR-AMH 9.3 7.6 8.2 33.1 30 30.7 23.1 21.1 219
NSO-LUG 34 5.3 5.3 24.6 293 28.5 4.4 7.6 7.4
AFR-NSO 18.7 14.9 15.4 44.8 41.1 42 20.7 17.3 17.8
KIN-HAU 14.9 12.9 12.3 39.6 36.4 36.3 17.5 15.3 14.6
SWA-IBO 14.3 11.8 12.7 38.3 34.9 36.4 17.2 14.9 15.7
ZUL-AMH 7.7 6.5 5.7 30.3 27.6 25.5 20.7 18.7 16.8
SWA-LUG 4.5 4.2 4.8 29.1 27.3 27.8 6.1 6.2 6.6
IBO-LUG 3.1 4.1 3.9 24.6 26.8 26.4 43 6.1 6
ZUL-NSO 18.8 16.7 15.8 44.5 41.6 41.1 20.8 18.3 17.5
SWA-ZUL 13.1 9.8 10.1 47.3 42.3 42.7 24 18.7 18.9
SWA-XHO 11.1 7.9 9.3 44.5 39 40.8 20.2 15 16.6
XHO-LUG 4 5.7 5 26.7 29.5 27.6 5.4 7.9 6.6
NSO-XHO 10.3 9.2 8.7 41.9 40.2 38.8 17.4 16.5 15.8
NYA-ZUL 8.8 7.8 7.2 40.6 38.6 37.1 17.8 16.2 14.8
SWA-KAM 2.7 2.8 2.8 19.5 20.7 20 4 43 4.1
NYA-XHO 7.7 6.7 6.4 38.7 36.4 35.6 15.7 13.7 13.2
KIN-TSO 13.1 10.7 10.9 39.3 35.8 36.2 15.9 12.9 12.8
NYA-NSO 12.4 12.1 12.5 36.6 36.6 37.4 14.2 14.1 14.6
AFR-LUG 4.8 4.7 4.7 28.8 28.5 28.9 6.3 6.7 7.1
ORM-AMH 3.8 2.8 2.2 21.1 18.4 16.4 11.8 10 8.4
SWA-AMH 8.5 5.5 7 31.9 26.4 28.5 21.8 17.5 19.1
KIN-SWA 19.6 15.6 13.8 46.2 41.6 39.1 23.1 19 16.7
ZUL-LUG 3.6 5.3 4.7 26.1 28.7 27.2 5 7.6 6.5
SWA-NSO 17.4 14.4 15.1 43.1 39.4 404 19.1 16 16.7
SSW-XHO 8.9 8.9 7.8 39.8 39.7 37.5 16.3 16.5 14.8
KIN-SSW 5.1 4.6 39 34.1 31.7 31.4 11.3 9.8 9
KIN-NYA 10.4 9 8.4 39.9 37.2 35.2 14 12.1 10.9
LUG-YOR 2.7 3.1 2.8 16.1 17.2 16.5 4.8 5.8 5
ZUL-XHO 12 10.4 10 45.1 42.9 41.5 21.3 19.2 18.1
AFR-XHO 11.1 9.7 9.5 44.6 42.4 42.1 20.5 18.3 18.1
AFR-ZUL 13 114 10.7 47.2 45.1 44.6 239 21.6 20.8
ZUL-TSO 14.3 14.1 14 41.9 40 40.3 174 16.9 16.7
KIN-AFR 17.2 15.3 14 42.3 39.7 37.8 20.4 17.8 16.2
SWA-HAU 19.5 14.8 16.5 45.8 38.9 41.6 22.3 17.2 19
SWA-ORM 1.1 0.7 0.6 18.3 15 14.6 2.3 1.1 0.9
AFR-TSO 154 13.5 13.8 43.2 40.1 41.2 18.9 16.2 16.6
KIN-LUG 1.9 4.1 4.1 19.3 26.8 26.5 34 6.2 5.8
KIN-ZUL 9.8 8.2 7.3 41.5 39.1 37.2 18.6 16.2 14.4
ZUL-SSW 7.3 7.2 6.6 39.3 38.2 37.1 14.9 15.1 13.7
KIN-XHO 8.6 6.9 6.8 39.1 36.6 35.7 15.7 13.5 12.6
AMH-LUG 2.6 3.2 3 24.7 25.8 25.4 3.6 5 4.6
AFR-SSW 6.3 5.4 5 37.7 36.1 359 13.6 12.5 11.9
AFR-NYA 12.3 11 10.3 43.1 41.1 40 16.4 14.6 13.9

Table B.5: Results of all language pairs on FLORES200 devtest

14519



