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Abstract

Although Non-autoregressive Transformer
(NAT) models have achieved great success in
terms of fast inference speed, this speedup
comes with a performance drop due to the inher-
ent multi-modality problem of the NAT model.
Previous works commonly alleviate this prob-
lem by replacing the target side of the raw data
with distilled data generated by Autoregressive
Transformer (AT) models. However, the multi-
modality problem in the distilled data is still
significant and thus limits further improvement
of the NAT models. In this paper, we propose a
method called Sequence-Level Self-Distillation
(SLSD), which aims to generate distilled data
by the NAT model itself, eliminating the need
for additional teacher networks. Furthermore,
SLSD can adapt to different NAT models with-
out precise adjustments since the self-distilled
data is generated from the same types of NAT
models. We conduct extensive experiments on
WMT14 EN↔DE and WMT16 EN↔RO and
choose five classic NAT models as the back-
bones to validate the generality and effective-
ness of SLSD. The results show that our ap-
proach can consistently improve all models on
both raw data and distilled data without sacri-
ficing the inference speed.

1 Introduction

Non-autoregressive Transformer (NAT) mod-
els (Gu et al., 2018) have significantly improved
inference speed compared to autoregressive Trans-
former (AT) models (Vaswani et al., 2017). NAT
models make the conditional independence assump-
tion in the output space and generate the entire se-
quence in parallel. However, this speedup comes
at the cost of translation quality due to the multi-
modality problem (Gu et al., 2018), where the data
distribution typically includes numerous potential
translations of the same sequence. Unlike AT mod-
els, which generate subsequent tokens conditioned
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on the previous ones, NAT models lack contextual
dependency and are therefore more likely to gener-
ate sequences with mixed modalities, leading to a
decline in performance.

One way to improve the ability of NAT mod-
els to handle complex data is by enhancing their
capacity (Ghazvininejad et al., 2020; Qian et al.,
2021; Du et al., 2021; Shao et al., 2022). Latent
alignment models (Libovický and Helcl, 2018; Sa-
haria et al., 2020) relax the alignment restriction
by marginalizing out all monotonic latent align-
ments using the connectionist temporal classifica-
tion (CTC) loss (Graves et al., 2006). Recently,
Huang et al. (2022c) proposed the Directed Acyclic
Transformer (DAT) that can capture multiple trans-
lation modalities simultaneously by modeling sev-
eral decoding paths. Despite the success of these
two models, they struggle to handle non-monotonic
alignments in machine translation (Shao and Feng,
2022; Ma et al., 2023), which are also common in
multi-modality problems.

Another common approach to alleviate the
multi-modality problem is modifying the target se-
quence (Huang et al., 2022b). One standard method
is to simplify raw data with sequence-level knowl-
edge distillation (Kim and Rush, 2016), which re-
places the target side of training data with the out-
put of AT models. However, AT distilled data still
has two issues. First, the multi-modality issue in
distilled data still remains (Zhou et al., 2020). Sec-
ond, Zhou et al. (2020) find that higher-quality
distilled data does not necessarily improve the per-
formance of NAT models generally. Weaker NAT
models achieve the best performance on distilled
data generated by smaller AT, while stronger NAT
models prefer the data generated by stronger AT.
This phenomenon suggests that, when simplifying
data for training a specific NAT model, high qual-
ity may not be the first consideration, but rather
making the data more suitable for NAT to learn.
Considering the aforementioned problems, some
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recent works focus on modifying the distillation
strategy to generate more adaptive distilled data for
NAT models. For instance, Guo et al. (2021) con-
struct the distilled data in five steps via re-ranking
and filtering the data using an AT model, and Shao
et al. (2022) generate multi-reference distilled data
with multiple AT models. However, these works
introduce a redundant pipeline and only achieve
limited performance improvements.

Therefore, most existing works only consider
knowledge distillation as a necessary data process-
ing technique, rather than producing adaptive data
for NAT models to learn better. In this paper, we
propose a simple yet effective approach to generate
distilled data that is more adaptive for NAT models
to learn, named Sequence-Level Self-Distillation
(SLSD). Inspired by Shao et al. (2022) and Sun
and Yang (2020), which suggest that targets with
a higher likelihood of the NAT models have fewer
problems with multi-modality, we search for self-
distilled targets in the space of the output distri-
butions produced by the NAT models. We define
a score function to select the self-distilled targets
to ensure the quality of the self-distilled data. In
the SLSD framework, the NAT model itself pro-
duces the distilled data, eliminating the need for
additional teacher networks. Furthermore, it can
adapt to the training processes of different NAT
models without requiring precise adjustments.

To validate the effectiveness and generality of
the proposed SLSD approach, we conduct ex-
tensive experiments on four machine translation
benchmarks: WMT14 EN↔DE and WMT16
EN↔RO. We chose five classic NAT methods
as the baseline methods, including VNAT (Gu
et al., 2018), CMLM (Ghazvininejad et al., 2019),
GLAT (Qian et al., 2021), CTC, and DAT. The
results show that the SLSD approach can con-
sistently improve all models for different trans-
lation directions on both raw and distilled data.
Additionally, under the same training strategy,
the model fine-tuned on self-distilled data can
achieve better performance than the raw data
and distilled data generated by AT. The exper-
iments indicate that self-distilled data can miti-
gate the multi-modality problem in raw and dis-
tilled data, thereby improving the performance
of the NAT models. Our code is released at
https://github.com/BlueZeros/SLSD_NAT.

The major contributions of our paper are sum-
marized as follows:

• We propose a simple yet effective method,
SLSD, to generate the distilled data by NAT
models itself, which can significantly alleviate
the multi-modality problem in the data and be
more adaptive for NAT models to learn.

• We further explore the application of SLSD
on various NAT models and find that the pro-
posed framework can be directly applied to
raw data without sacrificing inference speed
or relying on additional teacher networks.

2 Preliminary

In this section, we first briefly describe the task
formulation and then introduce three types of NAT
models. The machine translation task can be for-
mally defined as a sequence-to-sequence genera-
tion problem. Given the target language sequence
y={y1, y2, ..., yT } and source language sequence
x={x1, x2, ..., xS}, the non-autoregressive models
assume conditional independence between the out-
put tokens and factorize the output probabilities
as pθ(y|x)=

∏T
t=1 p(yt|x), where θ represents the

parameters of the NAT models.

2.1 Vanilla Non-autoregressive Models
Vanilla NAT models are typically trained with
cross-entropy loss to maximize the likelihood of
the training data:

LCE = −
T∑

t=1

log pθ(yt|x) (1)

However, the conditional independence assumption
makes it difficult for vanilla NAT models to learn
directly from raw data. So some works attempt to
improve the modeling ability of NAT models by
adding contextual information to the inputs:

LCE = −
T∑

t=1

log pθ(yt|Ω(y),x) (2)

where Ω(y) is a function to generate the input con-
text. For example, Ω(y) randomly samples words
from y and masks these sampled words in the in-
puts in CMLM and GLAT further adaptively con-
trols the sampling number according to the distance
between the output and target sequences.

2.2 Connectionist Temporal Classification
Instead of the strict position-to-position calculation
in the cross-entropy loss, CTC models a flexible
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monotonic alignment between the output sequence
and the target sequence. There are two differences
between CTC models and NAT models: 1) The
input length of the CTC model is typically λ times
the length of the source sentence. 2) CTC mod-
els are allowed to output a “blank” token. With
these unique features, the output of the CTC mod-
els can align with the target sequence by removing
all consecutive repeated tokens and the “blank” to-
kens. Assume that β(y) is the set of all possible
alignments between the output sequence and target
sequence, the training object of the CTC models is
calculated by marginalizing the likelihoods of all
possible alignments:

LCTC = − log
∑

b∈β(y)
pθ(b|x) (3)

2.3 Directed Acyclic Graph

Previous NAT models hardly handle the multi-
modality problem in the raw data. Directed Acyclic
Transformers (DAT) attempt to address this issue
by stacking a directed acyclic graph (DAG) on the
top of the NAT decoder, where the vertices and
edges in DAG correspond to hidden states of the de-
coder and the transitions between the hidden states
respectively. The transitions between the connect-
ing vertices constitute multiple possible decoding
paths, allowing DAT to capture multiple translation
modalities simultaneously. The path probability
pθ(a|x) is factorized based on the Markov hypoth-
esis:

pθ(a|x) =
|a|∏

i=1

pθ(ai+1|ai,x) (4)

where |a| is the DAT output length and typically
λ times the length of the source sequence. Once
path a is determined, token yi can be generated
conditioned on the decoder hidden state with index
ai. And the DAT can be trained by minimizing the
negative log-likelihood loss as below:

LDAT = − log
∑

a∈Γ
pθ(y|a,x)pθ(a|x) (5)

where Γ is all possible output paths with the same
length of target sequence y.

3 Method

In this section, we first explain the motivation of the
proposed SLSD framework. Then we describe the
process of generating self-distilled targets in two

steps: the sampling of the self-distilled targets and
the selection of the self-distilled targets. Finally,
we will discuss the training details of the SLSD
framework.

3.1 Motivation

Previous studies have shown that the data distilled
by AT models may not be simple enough for NAT
models to learn from, and that high-quality dis-
tilled data does not necessarily lead to improved
performance of the NAT models in general. This
can be attributed to two main reasons: 1) There is
a mismatch between the modeling types of NAT
models and AT models. The distilled data gener-
ated by AT models in an autoregressive manner
may not be the most suitable for the learning pro-
cess of NAT models (Guo et al., 2021). 2) It is
challenging to balance the quality and suitability
of the distilled data. While higher data quality can
prevent information loss, it also indicates that the
distilled data is more complex and has a more seri-
ous multi-modality problem (Zhou et al., 2020). To
address these issues, we propose using NAT models
as distillation teachers instead of AT models, which
can alleviate the mismatch problem. Additionally,
our proposed method allows for the control of the
quality and suitability of the self-distilled data by
adjusting the size of the candidate set, as discussed
later in Section 5.1. To prevent confusion, in this
paper, we refer to the data generated by the AT
models as distilled data and the data generated by
our method as self-distilled data.

3.2 Sampling process of the SLSD

Vanilla NAT Sampling all possible combinations
of the whole vocabulary is computationally forbid-
den as there are a total of |V|T samples, where |V|
is the vocabulary size. Instead, we sample N candi-
dates from the output distributions of NAT models
to form the candidate set for the selection of the
self-distilled targets. A candidate h in the candi-
dates set H(x) is sampled from the distribution as
below:

hnat ∼
T∏

t=1

pθ(h
nat
t |x) (6)

CTC Unlike vanilla NAT models, the tokens in
the outputs of CTC models are not totally condi-
tionally independent, which makes it difficult to
calculate the probability of the output sequences.
Specifically, the probability of the candidate is the
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marginalization of all possible corresponding align-
ment sequences:

hctc ∼
∑

b∈β(hctc)

pθ(b|x) (7)

However, the corresponding alignment set β(hn)
is exponentially large, making Equation 7 in-
tractable. Alternatively, we sample the alignment
sequence b from the output distribution of CTC
models to approximate the candidates sampling
process:

b ∼ pθ(b|x) (8)

Then we can get the candidates with the collaps-
ing function hctc = β−1(b) (Saharia et al., 2020).
Note that multiple different alignments may corre-
spond to the same candidate during sampling, so
the candidate set may contain duplicate samples.

DAT Similar to CTC models, it is intractable to
marginalize all possible output paths for the can-
didates. So we factorize the probabilities into the
production of the output paths and the output to-
kens and thus sample the output sequence from the
DAT models following a two-step sampling pro-
cess. The decoding paths are sampled from the
transition distributions:

a ∼
|a|∏

i=1

pθ(ai+1|ai,x) (9)

Then the output tokens are sampled based on the
decoding path to get the output sequence f :

f ∼ pθ(f |a,x) (10)

Finally, we can get the candidates with the collaps-
ing function hdag = β−1(f).

3.3 Selection Process of the SLSD
It is intuitive that samples in the candidate set sam-
pled from the output distribution of the NAT mod-
els are the ones that NAT models prefer and are
easy to learn. In this section, we mainly focus on
selecting the high-quality sample in the candidate
set.

We use a score function score(y,h) to measure
how similar the candidate h is to the reference
y. If a sample in the candidate set is close to the
reference, we can assume it is high-quality. Our im-
plementation uses n-gram overlap as the function
to measure the distance between two sequences.
We define the set of non-repeating n-grams in the

target sequence as Gn(y), and the number of times
each n-gram g ∈ Gn(y) appears in y as Cg(y).
Therefore, the number of n-gram matches between
the candidate and reference can be defined as:

Mn(y,h) =
∑

g∈Gn(y)

min (Cg(y), Cg(h)) (11)

and the total number of n-gram in the reference
and the self-distilled data can be defined as:

Mn(y) =
∑

g∈Gn(y)

Cg(y) (12)

Mn(h) =
∑

g∈Gn(h)

Cg(h) (13)

Based on the denotation above, the similarity
function is defined as the minimum value of n-
gram precision and recall of the candidate against
the reference

sim(y,h) =

∑N
n=1 Mn(y,h)∑N

n=1 min (Mn(y),Mn(h))
(14)

where N is the maximum size of n-gram. Consider-
ing candidates sampled from the output distribution
of CTC and DAT models have different lengths, we
further add a length penalty to constrain the lengths
of the candidates:

BP(y,h) = e−|1−|h|/|y|| (15)

where |h| and |y| are the length of the candi-
date and reference, respectively. Note that when
adopted on the vanilla NAT models, the length
penalty is equal to 1. Finally, the score function
can be formulated as below:

score(y,h) = BP(y,h) · sim(y,h) (16)

With the score function to measure the quality of
the candidates, we choose the sample with the high-
est score as the self-distilled targets r:

r = argmax
h∈H(x)

score(y,h) (17)

3.4 Training Schedule
To make sure the candidates sampled from the out-
put distribution of NAT models are meaningful and
close enough to the reference, NAT models that
have been pretrained on the data are chosen as the
initialization of the model in SLSD framework.
Then we adopt the self-distilled targets sampling
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Categories Models
WMT14 WMT16

SpeedupEN-DE DE-EN EN-RO RO-EN

AT Transformer (Vaswani et al., 2017) 27.74 31.09 34.16 34.46 ×1.0

VNAT

VNAT (Gu and Kong, 2021) 11.40 16.47 24.52 24.79 ×15.3
VNAT (Ours) 11.42 15.85 24.79 24.44 ×15.3
SLSDVNAT 23.69 28.20 31.30 31.76 ×15.3

CMLM

CMLM1 (Ghazvininejad et al., 2019) 10.64 - 21.22 - ×15.3
AXE (Ghazvininejad et al., 2020) 20.40 24.90 30.47 31.42 ×14.2
OaXE (Du et al., 2021) 22.40 26.80 - - ×14.2
ngram-OaXE (Du et al., 2022) 23.60 27.90 - - ×15.3
CMLM1 (Ours) 11.67 15.32 21.17 22.28 ×15.3
SLSDCMLM 24.81 28.35 31.30 32.31 ×15.3

GLAT

GLAT (Qian et al., 2021) 19.42 26.51 - - ×15.3
LatentGLAT (Bao et al., 2022) 24.71 29.16 - - ×11.3
GLAT (Ours) 19.56 26.03 30.58 31.76 ×15.3
SLSDGLAT 24.66 28.77 31.21 32.27 ×15.3

CTC

CTC (Libovický and Helcl, 2018) 18.42 23.65 - - ×14.6
CTC+GLAT (Qian et al., 2021) 25.02 29.14 - - ×14.2
CTC+DSLP (Huang et al., 2022a) 24.81 28.33 - - ×14.0
CTC+GLAT (Ours) 24.73 28.79 31.03 32.06 ×14.2
SLSDCTC 26.17 29.77 32.27 32.96 ×14.2

DAT

DAT (λ = 4) (Huang et al., 2022c) 26.16 - - - ×14.2
DAT (λ = 8) (Huang et al., 2022c) 26.57 30.68 - - ×13.9
DAT (λ = 4) (Ours) 26.06 30.38 32.67 33.02 ×14.2
SLSDDAT 26.76 31.41 33.04 33.42 ×14.2

Table 1: The performance of the baseline models and SLSD models on WMT14 EN↔DE and WMT16 EN↔RO
raw data. The baseline model with (Ours) indicates our re-implementation. CMLMn refers to the CMLM model
that inferences with n iterations. The best performance of each type of NAT model is bold. SLSDmodel represents
our method with a different backbone.

and selection pipeline described above to generate
the self-distilled data.

For each step in the self-distillation process, we
sample from the current output distribution of the
model to generate self-distilled targets, which can
ensure that the quality of the targets and the per-
formance of the model are synchronously updated.
For the decoder input of the NAT models, previ-
ous works found that giving some context in the
input helps the learning process of NAT models.
In contrast, we adopt full masked sequences as the
input of the NAT decoders for the targets in the
self-distillation process is easy to learn and can
reduce the context mismatch between the training
and inference process.

4 Experiments

4.1 Settings

Datasets We conduct experiments on both
directions of two standard machine transla-

tion benchmarks: WMT14 English↔German
(EN↔DE, 4.5M sentence pairs) and WMT16
English↔Romanian (EN↔RO, 0.6M sentence
pairs). For WMT14 EN↔DE, we preprocessed the
datasets with a joint BPE with 40K merge opera-
tions following the pipelines provided in the fairseq
toolkit (Ott et al., 2019). For WMT16 EN↔RO,
we use the pre-processed data provided by Lee et al.
(2018). Besides, we choose two additional datasets,
Quora1 and ROCStory (Mostafazadeh et al., 2016),
to validate the generalization and effectiveness of
the SLSD method. In this paper, we evaluate the
performance of models using the BLEU metric (Pa-
pineni et al., 2002) for all datasets.

Hyperparameters of the initialization Follow-
ing previous works, we adopt the basic implemen-
tation of Transformer-base for machine translation
tasks. Each model consists of a 6-layer encoder and

1https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs
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Models WMT14
EN-DE DE-EN

Transformer (Vaswani et al., 2017) 27.61 31.48

Vanilla NAT (Gu et al., 2018) 17.69 21.47
CTC (Libovický and Helcl, 2018) 25.52 28.73
AXE (Ghazvininejad et al., 2020) 23.53 27.90
OaXE (Du et al., 2021) 26.10 30.20
Seq-NAT (Shao et al., 2021) 25.52 29.91
CTC+GLAT (Qian et al., 2021) 26.39 29.54
n-gram-OaXE (Du et al., 2022) 26.50 30.50
CTC+DSLP (Huang et al., 2022d) 27.02 31.61
DAG (λ=8) (Huang et al., 2022c) 27.49 31.37

CMLM1 (Ours) 21.06 25.36
SLSDCMLM 26.50 30.36
GLAT (Ours) 26.11 30.51
SLSDGLAT 26.36 30.74
CTC+GLAT (Ours) 26.51 30.08
SLSDCTC 27.15 31.35
DAT (λ=4) 26.78 31.42
SLSDDAT 27.22 31.75

Table 2: The performance of the baseline models and
the SLSD models on WMT14 EN↔DE distilled data.

a 6-layer decoder with 8 attention heads. The hid-
den dimension and feed-forward layer dimension
are 512 and 2048, respectively. For optimization,
we use the Adam optimizer (Kingma and Ba, 2015)
with β = (0.9, 0.98). The weight decay is set to
0.01 and the label smoothing (Szegedy et al., 2016)
is set to 0.1. The learning rate warms up for 10k
steps to 5e− 4 and decays with an inverse square
schedule. For WMT16 En↔Ro, we use a dropout
rate of 0.3 and a batch size of 32K tokens, while for
WMT14 En↔De, we switch to 0.1 and 64K accord-
ingly. All models are trained with 300k steps on
both datasets. For Quora and ROCStory datesets,
we train Transformer-small with dropout rate of 0.3
for 100k steps. Code implementation is based on
fairseq.

Finetuning Hyperparameters for SLSD We se-
lect the last checkpoint of pretrained stage as the
initialization of the self-training stage. We finetune
models on machine translation dataset and other
generation task dataset for 100k steps and 30k steps,
respectively. The learning rate is set to 2e−6 for all
models. The batch size of tokens and the dropout
rate are set following the corresponding pretrained
stage configuration. The size of the candidate set is
100 for DAT models and 40 for the other models.
The n-gram size of the score function is set to 4.

Model Quora ROCStory
BLEU BLEU-1 BLEU-2

VNAT 21.37 29.40 4.70
SLSDVNAT 24.69 35.70 8.30
CTC 25.72 38.40 7.60
SLSDCTC 27.19 41.60 10.30

Table 3: The performance of the baseline models and
SLSD on other generation tasks. Note that for the CTC
methods we adopt λ = 2 on Quora and λ = 8 on ROC-
Story due to the length ratio of the source sequences
and the target sequences.

Inference For CMLM and GLAT, we use Length
Parallel Decoding (LPD) (Wei et al., 2019) with
l = 5 length candidates during inference. For CTC
models, we directly decode the output sequence.
For decoding steps in DAT, we use lookahead de-
coding algorithm. We select the 5 best checkpoints
on the validation sets and average them as the eval-
uation checkpoint.

4.2 Main Results
Table 1 shows the BLEU scores for each baseline
and our methods on the WMT14 EN↔DE and
WMT16 EN↔RO raw datasets. We validated the
efficacy of our method on five types of models:
VNAT, CMLM, GLAT, CTC, and DAG. The results
indicate that our method considerably improves
all models on all datasets. Self-distillation can
boost CMLM models to exceed previous CMLM-
based methods and even achieve higher perfor-
mance compared to CTC-based models. Specif-
ically, our framework can improve CTC+GLAT
models by an average of more than 1 BLEU
score, which is a considerable improvement for
a strong NAT baseline on raw data. Moreover, the
CTC+GLAT model can achieve a BLEU score of
26.17 on WMT14 EN↔DE raw data, which even
surpasses DAT (λ=4) with only λ=2. Since train-
ing DAT (λ=8) requires significant computing re-
sources and time, we only implement our method
on DAT (λ=4), which still outperforms DAT (λ=8)
by up to 1.03 BLEU score. The effectiveness of our
method verifies that the self-training method can
significantly mitigate the multi-modality problem
in the raw data.

Besides, the improvement of our methods can be
seen not only in the raw data but also in the distilled
data, which is already simple for NAT models to
learn. The performance of our methods and base-
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Models (Steps) WMT14
EN-DE DE-EN

GLAT (300k) 19.56 26.03
w/ raw data (100k) 19.45 25.62
w/ distilled data (100k) 23.92 28.81
w/ self-distilled data (100k) 24.66 28.77

CTC+GLAT (300k) 24.73 28.79
w/ raw data (100k) 23.67 27.43
w/ distilled data (100k) 25.69 29.60
w/ self-distilled data (100k) 26.17 29.84

Table 4: The performance of continually training with
different data on WMT14 EN↔DE raw data.

line models on WMT14 EN↔DE distilled data are
shown in Table 2. All baseline models can bene-
fit from SLSD methods with an average of more
than 1 BLEU score gain. The improvements reflect
that self-training data generated by the same NAT
models is more adaptive for the learning process
of various NAT models. Furthermore, we also con-
duct the experiments on other generation tasks. As
the results shown in Table 3, the SLSD can also
improve VNAT and CTC methods on Quora and
ROCStory dataset, which again validate the gener-
alization and effectiveness of the SLSD method.

4.3 Effectiveness of Self-Distilled Targets

In order to eliminate the gain effect brought by
more training steps and fairly demonstrate the ef-
fectiveness of the proposed SLSD method, we
continually train each baseline for another 100k
steps. Since the models trained on raw data and
distilled data without the help of the GLAT train-
ing strategy will result in performance degrada-
tion (Qian et al., 2021), we adopt the GLAT ra-
tio fratio as the minimum one in the pretrained
stage for the self-distillation process. Specifically,
we adopt fratio=0.3 for GLAT and fratio=0.2 for
CTC+GLAT. The results are shown in Table 4. It
can be seen that continually training pretrained
models on raw data worsen the models’ perfor-
mance, which shows that simply increasing the
number of training steps cannot improve the per-
formance of the model. In contrast, distilled data
and self-distilled data can simplify the learning
process of the NAT models and thus help NAT
models achieve higher scores. Specifically, the per-
formance of models finetuned on self-trained data
exceeds the models finetuned on distilled data in
most language pairs, which again shows that the
self-distilled data is more suitable for NAT model

learning.

5 Analysis

|H(x)| score(y, r) NCMX (R) BLEU

0 - - 18.20

2 32.2 0.79 22.81
5 33.8 0.83 23.02
10 35.2 0.93 23.25
40 37.4 1.09 23.32

100 38.7 1.18 23.25

Table 5: Ablation study on the size of the candidates
set during self-distillation process. The experiments are
conducted on the WMT14 EN-DE validation set.
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Figure 1: The performance of the generated translations
with respect to the lengths of the target sequences. Re-
sults are reported on the WMT14 EN-DE test set.

5.1 Size of Candidates Set
We conduct the ablation study about the size of
the candidates set and show its impact on the self-
distillation process. The self-distilled targets set
and the self-distilled corpus are denoted as R and
(X ,R), respectively. We measure the complexity
of the self-distilled targets set by the Normalized
Corpus-level Multi-modality (NCM) for NAT mod-
els (Sun and Yang, 2020), which can be calculated
as:

NCMX (R) =
E(x,r)∼(X ,R)[− log pθ(r|x)]

Er∼R[|r|]
(18)

For data with more complex and serious multi-
modal problems, NAT models tend to capture more
possible translations simultaneously and conse-
quently give rise to reduce probabilities in the mod-
els and an increase in NCM.
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Figure 2: The distribution of (a) the Absolute Score and (b) the Relative Score of candidates on two baselines,
GLAT and CTC+GLAT, in the first 5k steps of the self-distilled process. The three dashed lines in each violin
diagram from top to bottom represent the upper, middle, and lower quartiles, respectively.
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Figure 3: Output distribution of three GLAT-based NAT models. (a) shows the effect of the SLSD on GLAT and
CTC+GLAT models. The difference between the joint distribution of passing probability and max token probabilities
can be seen in the output distribution of (b) DAT and (c) SLSDDAT. Darker areas have higher probability values.

The results are shown in Table 5. As the size of
the candidate set increases, the score of the self-
distilled target and the NCM of the self-distilled
targets set are both increased. This shows that
a larger candidate set can generate self-distilled
targets with higher quality but more complexity.
We can achieve a balance between the quality and
complexity of the self-distilled data by controlling
the size of the candidate set, thereby adapting to
the training of the NAR model while ensuring data
quality. After tuning on the development set, we
can select the best number of candidates set as 40.

5.2 Impact on Sequence Length

We also investigate the effectiveness brought by
self-distillation on distinct target sequence lengths.
To this end, we split the test set into six buckets

based on the reference sentence lengths in a range
of 10. Figure 1 illustrates the results of adopting
SLSD on GLAT and CTC+GLAT backbones in the
WMT14 EN-DE test set. It is found that GLAT can
only handle short sequences, while SLSD bridges
the performance gaps between different lengths and
achieve consistent performances across all target
lengths. For CTC+GLAT, SLSD can improve its
performance in all cases. These results show that
SLSD can adapt well to the training of different
types of NAT models in different target sentence
lengths.

5.3 Candidates Score Distribution

We calculate the score distribution of the candi-
dates set in the first 5k steps to better understand
the self-distillation process. We use two metrics,
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i.e., Absolute Score and Relative Score, to observe
the distribution of scores of the candidates set from
two orthogonal aspects. The Absolute Score is
the maximum score of the candidate sets and re-
flects the distribution of the whole self-distilled
data. The Relative Score is calculated as the ratio
of each score to the maximum score in the can-
didate set, which can measure the distribution of
the scores in each candidate set. As shown in Fig-
ure 2, both the absolute score and the relative score
rapidly increase and stabilize at the beginning of
the 500 steps. After the stabilization of the distri-
bution, the absolute score of the GLAT is lower
than the CTC+GLAT on average, showing that the
self-distilled targets of the CTC+GLAT are better.
In contrast, the relative score of the GLAT is higher
than CTC+GLAT, which shows that the GLAT is
more prone to converge on self-distilled data and
CTC has more diverse candidates.

5.4 Output Distributions of NAT models

To verify that the SLSD suits the NAT models, we
calculate the output distributions of three GLAT-
based NAT models and present the result in Fig-
ure 3. After training on the self-distilled data, the
max token probabilities of GLAT and CTC+GLAT
are improved. Besides, for DAT, the passing proba-
bilities are close to 0 or 1, and token probabilities
are close to 1. This indicated that SLSD can reduce
the multi-modality problem in the data, and thus
improve the probabilities of the output path in the
DAT.

6 Conclusion

In this paper, we introduced a simple yet effec-
tive method, SLSD, to generate distilled data us-
ing NAT models themselves. This approach can
greatly reduce the multi-modality problem in the
data, and consistently improves the performance
of four types of NAT models across all datasets.
Ablation experiments verify that self-distilled data
is better suited for NAT models to learn from, com-
pared to the distilled data generated by AT models.

Limitations

The proposed SLSD method can produce self-
distilled data that is better suited for learning by
NAT models than the distilled data generated by
AT models, which does not need additional teacher
models. However, to obtain relevant and high-
quality candidates from the output distribution of

NAT models, a well-initialized model is necessary.
Moreover, selecting self-distilled targets from the
candidate set involves computing the score of each
candidate, which requires additional training time
and computational cost.
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