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Abstract
Neural machine translation has achieved great
success in the past few years with the help of
transformer architectures and large-scale bilin-
gual corpora. However, when the source text
gradually grows into an entire document, the
performance of current methods for document-
level machine translation (DocMT) is less sat-
isfactory. Although the context is beneficial
to the translation in general, it is difficult for
traditional methods to utilize such long-range
information. Previous studies on DocMT have
concentrated on extra contents such as multi-
ple surrounding sentences and input instances
divided by a fixed length. We suppose that
they ignore the structure inside the source text,
which leads to under-utilization of the con-
text. In this paper, we present a more sound
paragraph-to-paragraph translation mode and
explore whether discourse structure can im-
prove DocMT. We introduce several methods
from different perspectives, among which our
RST-Att model with a multi-granularity atten-
tion mechanism based on the RST parsing tree
works best. The experiments show that our
method indeed utilizes discourse information
and performs better than previous work.

1 Introduction

Transformer (Vaswani et al., 2017) based ap-
proaches, together with adequate bilingual datasets,
have led to significant progress on machine trans-
lation (MT). However, the performance of MT
models usually drops dramatically when process-
ing long texts. Although document-level machine
translation (DocMT) can be solved with sentence-
level MT by translating each sentence separately,
the potential information in the long-range context
may be ignored. To address these problems, many
methods in DocMT have been proposed to better
utilize the contextual information and improve the
overall translation quality of the document.

Among these methods, the dominant approaches
still adhere to the sentence-by-sentence mode, but

they utilize additional contextual information, in-
cluding the surrounding sentences (Zhang et al.,
2018; Miculicich et al., 2018; Kang et al., 2020;
Zhang et al., 2020b, 2021a), document contex-
tual representation (Jiang et al., 2020; Ma et al.,
2020) and memory units (Feng et al., 2022). In
recent years, many researches have turned to trans-
lating multiple sentences or the entire document
at once (Tan et al., 2019; Bao et al., 2021; Sun
et al., 2022; Li et al., 2022). However, previous
work (Zhang et al., 2018; Liu et al., 2020; Sun
et al., 2022) has demonstrated that direct Doc2Doc
translation may cause the model not to converge.
Therefore, those methods adopt pertinent measures
such as data augmentation, text truncation, and spe-
cific frameworks for sentence alignment.

Despite the effectiveness of previous efforts on
DocMT, some research, such as Kim et al. (2019),
suggested that existing methods may not fully uti-
lize the context and the improvement may come
from regularization. Kang et al. (2020) also indi-
cated that dynamic context selected from the sur-
rounding sentences can improve translation more
efficiently. The additional contexts used in most
previous work are simply based on the distance
from the current sentence or the length of the text,
which is somewhat arbitrary. In this paper, we aim
to explore a more reasonable way to encode context
through the discourse structure.

Discourse structure refers to how elementary
text units are organized to form a discourse and
logically linked to one another. Early studies
have demonstrated that discourse parsing can ben-
efit various downstream NLP tasks, including
sentiment analysis (Bhatia et al., 2015), relation
extraction (Wang et al., 2021), text summariza-
tion (Gerani et al., 2014; Xu et al., 2020), machine
translation evaluation (Guzmán et al., 2014; Joty
et al., 2014, 2017; Bawden et al., 2018) and so
on. RST parsing, based on Rhetorical Structure
Theory (Mann and Thompson, 1987), is one of
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the most influential parsing methods in discourse
analysis. According to RST, a text is segmented
into several clause-like units (EDUs) as leaves of
the corresponding parsing tree. Through certain
rhetorical relations among adjacent spans, underly-
ing EDUs or larger text spans are recursively linked
and merged to form their parent nodes, representing
the concatenation of them.

Although RST parsing would be better con-
ducted on an integral text to maintain discourse
structure, existing models perform poorly on long
texts. As a result, we present a new paragraph-to-
paragraph translation mode, where the original doc-
ument is divided into several shorter paragraphs.
Our paragraph segmentation is generated by the
TextTiling tool (Hearst, 1997) based on subtopic
shifts and discourse cues, since frequently-used
datasets of DocMT do not contain paragraph align-
ment tags. We suppose the discourse analysis of
paragraphs is a proper compromise and more sound
than previous partitioning methods. And it is more
labor-saving when dealing with other multilingual
corpora equipped with paragraph alignments.

We employ the end-to-end method of Hu and
Wan (2023) to train our RST parsing model. The
parsing task is reformulated into a Seq2Seq task
through a linearization process and then trained
based on a pretrained language model. Several at-
tempts have been made from different perspectives
to investigate how to utilize the discourse struc-
ture, including the integration of the RST sequence,
an RST-specific attention mechanism, and graph
learning based on the RST tree. Among them, our
RST-Att model, designed with a multi-granularity
attention mechanism to inject the RST tree into the
translation encoder, achieves the best performance.
Specifically, each token at the first encoder layer
can only notice other tokens from the EDU it be-
longs to, when calculating self-attention scores. As
the encoder layer moves backward, the range of
attention continuously expands to complete con-
text according to the structure of the RST tree. We
believe such a progressive pattern can reduce the
difficulty of modeling long-range context.

Overall, our main contributions are as follows:

1) We generate the paragraph segmentation and
introduce a more sound paragraph-to-paragraph
translation mode than traditional text partition.

2) We explore several methods to take advantage
of the discourse structure predicted by the RST

parsing model to improve document-level ma-
chine translation.

3) Our RST-Att model achieves superior perfor-
mance on three widely used datasets of DocMT
and further linguistic evaluation, compared with
existing works.1

2 Methodology

In this section, we will elaborate on the relevant
steps to obtain the discourse structure information
and explore its utilization in DocMT. In Section
2.1, we compare two text segmentation methods
and determine the TextTiling tool for our paragraph
segmentation according to the distribution of re-
sults. In Section 2.2, we introduce the brief train-
ing process of the RST parsing model and how to
linearize the corresponding RST tree. Section 2.3
describes the construction and details of our pro-
posed RST sequence integration method, as well as
the RST-Att model with the RST-specific attention
mechanism of multiple levels of granularity.

2.1 Paragraph Segmentation

In this step, we consider two distinct approaches for
paragraph segmentation. The first is the traditional
TextTiling method, which detects topic and lexical
co-occurrences. The other is a neural segmentation
model proposed in recent years by Lukasik et al.
(2020), based on a pretrained language model and
cross-segment attention.

TextTiling Algorithm TextTiling is an algo-
rithm for tokenizing a document into multi-
paragraph units that represent subtopics, proposed
by Hearst (1997). The algorithm identifies subtopic
shifts based on the discourse cues of lexical co-
occurrence and distribution patterns. It first divides
the whole document into several parts, each of
which contains multiple unbroken sentences. Then
the similarity scores are calculated between sen-
tences, and the peak differences between them are
found to become the final segmentation boundaries
after the normalization.

Neural Segmentation Model Lukasik et al.
(2020) proposed a neural model with transformer-
based architectures. They represented each candi-
date break using its left and right local contexts
and then turned to the pretrained language model

1Codes and data are available at
https://github.com/herrxy/RST-DocMT.
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Figure 1: The distribution of the number of tokens in
each divided paragraph.
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Figure 2: The distribution of the number of sentences
in each divided paragraph.

for judging whether the candidate break was rea-
sonable. The LM was finetuned on a large-scale
dataset, Wiki-727K (Koshorek et al., 2018).

We apply the two methods above to the most
commonly used dataset of document-level machine
translation and obtain the respective paragraph seg-
mentation. We take the dataset News as an example,
and the distributions of the number of tokens and
sentences contained in each paragraph are shown
in Figure 1 and Figure 2. The vertical axis of the
legends shows the proportion of the corresponding
category in all samples. The paragraphs from the
TextTiling method have a more reasonable distri-
bution, and most of them contain moderate num-
bers of tokens and sentences. On the other hand,
a considerable part of the paragraphs obtained by
the neural segmentation model only contain a few
sentences, which is not conducive to subsequent
discourse parsing. Therefore, we finally choose the
results of the TextTiling method for the following
experiments, and the statistical details of paragraph
segmentation can be found in Table 1.

2.2 RST Parsing

Previous studies have proposed many methods for
RST parsing (Lin et al., 2019; Zhang et al., 2020a;
Kobayashi et al., 2020; Nguyen et al., 2021). How-
ever, most of them split the parsing process into two
steps: EDU segmentation and RST tree prediction,
for which the gold EDU labels are often required.
Considering that the datasets of DocMT are not
equipped with such information, we follow Hu and
Wan (2023) to train an end-to-end RST parser from
scratch through a Seq2Seq reformulation method.
The training data comes from the standard RST
Discourse TreeBank (Carlson et al., 2001) and has
been processed with a similar length distribution to
our paragraph segmentation.

Linearization Based on the priority of brackets,
we represent hierarchical architecture by nesting
several pairs of brackets. The linearization is car-
ried out from the bottom up, according to post-
order traversal. We replace each leaf that represents
a single EDU with a sequence comprised of a left
bracket, text content, a right bracket, and its nucle-
arity and rhetorical relation labels. The same pro-
cess is performed for other nodes, except that the
concatenation of new representations of two child
nodes serves as the text content. The linearized
sequence is designed to contain the complete orig-
inal input text for better performance, according
to the observation of Paolini et al. (2021). More
details can be found in Hu and Wan (2023), and an
example is shown in Figure 3(d).

Seq2Seq Training Since the input and new out-
put of the task are both sequences, we have trained
our RST parsing model on the pretrained Seq2Seq
model T5-base (Raffel et al., 2020). The related
latent knowledge may be transferred and utilized
during training since the reformulated sequences
are close to natural language text, which aligns
with the pretraining of T5. Moreover, we modify
and align the output predicted by the model with
the format we design before to obtain the final RST
parsing tree through a recursive algorithm.

2.3 Utilizing RST Structure

2.3.1 RST Sequence Integration
We first attempt a simple method that directly in-
tegrates the discourse parsing tree into the inputs
of the model, called RST-Seq. The source input
during training is replaced with the correspond-
ing linearized RST tree, and the target output is
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[ [ Government lending was not intended to be a way ] Nucleus span [ [ to obfuscate spending figures, ] Nucleus joint [ [ hide 
fraudulent activity, ] Nucleus joint [ or provide large subsidies. ] Nucleus joint ] Nucleus joint ] Satellite elaboration ]

EDU1

(a) Input Text

Government lending was not intended to be a way to obfuscate 
spending figures, hide fraudulent activity, or provide large subsidies.

EDU1: Government lending was not intended to be a way
EDU2: to obfuscate spending figures,
EDU3: hide fraudulent activity,
EDU4: or provide large subsidies.

(b) EDU Segmentation

(c) RST Parsing Tree

(d) Linearization

Figure 3: A brief example from RST Discourse TreeBank, with the EDU segmentation (part b), the RST parsing
tree of the input text (part c), and the corresponding sequence of the linearized RST tree (part d).

kept the same. The experiments have been made
on the well-trained mBART25 (Liu et al., 2020),
similar to the previous work. We expect that the
pretrained language model can encode the informa-
tion of discourse structure together with the context
through latent knowledge. The results of our RST-
Seq method and the baseline without the discourse
structure will be shown in Section 4.

2.3.2 Multi-Granularity Attention
To further take advantage of the discourse struc-
ture, we propose the RST-Att model with a multi-
granularity attention mechanism based on the RST
tree, inspired by Wu et al. (2018). From the first
layer of the encoder to the last, the range that each
token can attend to continuously expands accord-
ing to the bottom-up nodes of the RST parsing tree.
According to Beltagy et al. (2020), context may be
better integrated in the higher layer, whereas the
lower layer tends to encode local information. We
suppose the model will better understand the source
context in a progressive way under the instruction
of discourse structure.

Specifically, we first transform the RST pars-
ing tree, combining the leaf nodes and their parent
nodes. Then each node in the tree is assigned its
height, which refers to the number of edges on its
longest path to a leaf node. We ignore the label
information and replace each node with the range
of EDUs it represents, as shown in Figure 4. Obvi-
ously, each leaf node has a height of 0, and only the
root has the largest height. We construct the initial
node set Sl which consists of all nodes with heights
no more than l. Then we delete the node from Sl if
it is a descendant node of another node in Sl, until

the set will not change. It can be simply proved that
the text ranges represented by the nodes of finally
obtained set Ŝl perfectly cover the entire paragraph
content. We assume that Ŝl = (r1, r2, · · · , rnl

),
where the node rk covers the token range from the
position of kbegin to kend in the paragraph.

In the encoder layer l of the original transformer
model, the multihead self-attention is computed as:

Al = MultiHead(Softmax(
QlK

T
l√
d

))

where Ql and Kl are the query and key matrices
with the vector dimension of d in the l th layer. We
then modify the calculation of the attention matrix
Al to Âl according to the text ranges in Ŝl:

Âl = MultiHead(Softmax(
QlK

T
l√
d

+M l))

M l
ij =

{
0 ∃ rk ∈ Ŝl, kbegin ≤ i, j ≤ kend
−∞ else

where the matrix M l has the size of N ×N and N
presents the number of tokens in the paragraph.

Through the modified attention mechanism, dif-
ferent granularities for context modeling can be
implemented by different encoder layers with spe-
cific attention ranges of tokens. Specifically, at the
first layer, each token can only notice other tokens
from the EDU that it belongs to. As for the last
layer, each token can attend to all tokens in the
paragraph, which turns back to the original full at-
tention mode. We simulate as many levels of granu-
larity as possible, and our method is illustrated with
a simple example in Figure 4. The RST-Att model
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Layer 0: [ Government lending was not intended to be a way ] !"#! [ to obfuscate spending figures, ] !"#" [ hide 

fraudulent activity, ] !"## [ or provide large subsidies. ] !"#$
Layer 1: [ Government lending was not intended to be a way ] !"#! [ to obfuscate spending figures, ] !"#" [ hide 

fraudulent activity, or provide large subsidies. ] !"##$!"#$
Layer 2: [ Government lending was not intended to be a way ] !"#! [ to obfuscate spending figures, hide fraudulent

activity, or provide large subsidies. ] !"#"$!"#$
Layer 3: [ Government lending was not intended to be a way to obfuscate spending figures, hide fraudulent activity, 

or provide large subsidies. ] !"#!$!"#$

Transformer Encoder
Attention matrix !𝐴%

Layer 0 to Layer 3

EDU1 – EDU4 , h = 3

EDU1 , h = 0 EDU2 – EDU4 , h = 2

EDU2 , h = 0 EDU3 – EDU4 , h = 1

EDU3 , h = 0 EDU4 , h = 0

RST Parsing Tree

Figure 4: The illustration of our RST-Att model with a simple example whose RST parsing tree has a height of 3,
mapping to only four encoder layers. The multi-head attention of the vanilla transformer encoder (Vaswani et al.,
2017) is modified for different layers.

does not introduce additional parameters; instead,
it theoretically reduces computational overhead and
improves efficiency with incomplete attention.

Moreover, it should be mentioned that the en-
coder contains a fixed number of layers, while the
heights of RST trees vary. So we should construct a
mapping to guarantee each encoder layer is linked
to a certain node set. To keep the mapping uniform,
the new set S̃i is calculated as follows:

S̃i = ˆSmi , mi = ⌊ H

L− 1
i⌋

where i = 0, 1, · · · , L − 1 and L,H denote the
number of encoder layers and the height of the
RST tree respectively. And mi refers to the old
layer index to be mapped.

3 Datasets and Settings

We evaluate our models on three widely used
datasets for document-level machine translation
for English to German, from Maruf et al. (2019).

TED The corpus includes TED talks and corre-
sponding translations from IWSLT 2017. tst2016-
2017 is used as the test set and the rest as valid.

News The corpus comes from News Commen-
tary v11. Newstest2016 is used as the test set and
newstest2015 as valid.

Europarl The corpus is extracted from Europarl
v7, which is split into the training, test, and valid
sets, as mentioned in Maruf et al. (2019).

The detailed statistics of these datasets and their
paragraph segmentation are displayed in Table 1.
Similar to the previous work, Moses (Koehn et al.,
2007) is used for data processing and sentence true-
case. We apply BPE (Sennrich et al., 2016) with
32K merge operations on both sides for all datasets.

Following previous work (Bao et al., 2021; Li
et al., 2022; Sun et al., 2022; Feng et al., 2022),
we apply sentence-level BLEU score (s-BLEU)
and document-level BLEU score (d-BLEU) as the
metrics of evaluation. Since our methods are fo-
cused on the DocMT and do not involve sentence
alignments, the d-BLEU score is our major metric,
which matches n-grams in the whole document.

Since our method can be directly applied to pre-
trained language models that have been commonly
employed in current research, we conduct our ex-
periments based on mBART25 (Liu et al., 2020). It
is a strong multilingual model with the transformer
architecture and contains about 610M parameters.
The setting aligns with the previous state-of-the-
art model G-Transformer (Bao et al., 2021), which
serves as our primary comparison objective. More
experiment details are described in Appendix A.
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Dataset #Sentences #Documents #Paragraphs Avg #Tokens/Para Avg #Sents/Para

TED 0.21M/9K/2.3K 1.7K/93/23 23K/966/230 217/217/232 9.0/9.3/9.9
News 0.24M/2K/3K 6.1K/71/155 35K/296/429 212/200/189 6.7/7.3/7.0
Europarl 1.67M/3.6K/5.1K 118K/240/360 318K/691/988 169/170/170 5.3/5.2/5.2

Table 1: The detailed statistics of the datasets used for DocMT in the form of train/vaild/test.

Model TED News Europarl
s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU

Sent2Sent (Sun et al., 2022) 25.19 29.16 24.98 27.03 31.70 33.83
MCN (Zheng et al., 2020) 25.10 29.09 24.91 26.97 30.40 32.63
G-Transformer (Bao et al., 2021) 25.12 27.17 25.52 27.11 32.39 34.08
MR Doc2Sent (Sun et al., 2022) 25.24 29.20 25.00 26.70 32.11 34.18
MR Doc2Doc (Sun et al., 2022)∗ - 29.27 - 26.71 - 34.48
Recurrent Memory (Feng et al., 2022) 25.62 29.47 25.73 27.78 31.41 33.50
P-Transformer (Li et al., 2022) 25.67 27.94 25.93 27.67 32.62 34.49

Based on pretrained language models

Flat-Transformer (BERT) (Ma et al., 2020) 26.61 - 24.52 - 31.99 -
SDoc2SDoc (BART) (Bao et al., 2021) - 28.29 - 30.49 - 34.00
G-Transformer (BART) (Bao et al., 2021) 28.06 30.03 30.34 31.71 32.74 34.31
Para2Para Baseline (BART) - 30.35 - 31.43 - 34.19
RST-Seq (BART) - 30.47 - 31.62 - 34.22
RST-Att (BART) - 31.10 - 32.28 - 34.55

Table 2: Results of our models and previous work on document-level machine translation. ∗Although Sun et al.
(2022) achieved better results with additional sentence corpus, we do not consider them here for fairness.

4 Experiments and Analysis

We compare the experimental results of our meth-
ods with previous approaches to document-level
machine translation on TED, News, and Europarl,
as shown in Table 2. We choose the best result of
Sent2Sent here from Sun et al. (2022), which even
surpasses some DocMT models on d-BLEU, indi-
cating the underuse of context in their work. More-
over, some earlier studies are ignored since they
only reported s-BLEU scores and performed much
worse than recent work such as G-Transformer.
And we categorize all methods based on whether
they are based on pretrained language models.

Above all, we introduce our Para2Para baseline,
which is finetuned on the original mBART25 model.
It simply performs paragraph-to-paragraph trans-
lation based on the segmented paragraphs with-
out utilizing any RST discourse information. For
better comparison, we also present the results of
the traditional sub-document baseline SDoc2SDoc
from Bao et al. (2021). As described in Section 1,
many studies on DocMT have adopted splitting
each document into sub-documents for translation

based on a specified maximum length, since stan-
dard Doc2Doc translation was pointed out to be
prone to training failures.

The results show that our Para2Para baseline out-
performs the traditional SDoc2SDoc with the same
mBART25 model, proving the improvement of our
new translation mode. It can be attributed to the
fact that simple SDoc2SDoc mode, without any
other optimization, may arbitrarily ignore the inter-
actions between strongly related sentences. In con-
trast, our proposed paragraph-to-paragraph method
takes them into consideration and is expected to
make better use of contextual information.

Furthermore, we introduce discourse informa-
tion and propose our RST-Seq and RST-Att models.
Both of them follow the Para2Para translation mode
based on mBART25, and contain the same number
of parameters as the baselines mentioned above. Al-
though RST-Seq performs better than the Para2Para
baseline, the improvements are not prominent. We
suppose that much longer inputs of linearized RST
trees may increase the difficulty of training. More-
over, it may be difficult for mBART25 to directly
adapt to the format of the RST sequence since it
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Model TED News

RST-Att 31.10 32.28
Six-level granularity 30.80 (-0.30) 32.04 (-0.24)
Three-level granularity 30.75 (-0.35) 31.78 (-0.50)
Equal division 30.31 (-0.79) 31.55 (-0.73)

Table 3: The d-BLEU scores of the experiments in
granularity discussion with different settings.

has not been finetuned for such parsing tasks and
there are not enough hints in the translation task.

In addition, our RST-Att model achieves the best
results and improves d-BLEU scores by 1.07, 0.57,
and 0.06 on TED, News, and Europarl, respec-
tively, showing the effectiveness of our proposed
attention mechanism. Its superiority over the RST-
Seq demonstrates that discourse knowledge may
be applied to the model structure more effectively
than the input data. Furthermore, Table 1 shows
that the data scales of TED, News, and Europarl
are increasing while the improvements on the cor-
responding dataset are decreasing. We believe that
our RST-specific attention module can alleviate the
negative impact of small datasets to a certain ex-
tent. When the training data is sufficient, like in the
case of Europarl, the performance gaps between all
existing models are not significant.

4.1 Granularity Discussion

To demonstrate the effectiveness of our introduc-
tion of the RST discourse structure, we evaluate
the RST-Att model with different settings of the
involved multi-granularity attention mechanism.

Different Number of Levels We first verify
whether using as much granularity as possible can
improve the performance of the model. The node
sets are instead mapped to just six encoder layers,
corresponding to half of the original levels of gran-
ularity. We make a copy of each mapped layer to
fill the whole encoder progressively. Furthermore,
we attempt the case of much less granularity in
a clearer manner of partitioning, including three
levels of EDU, sentence and paragraph. And sim-
ilarly, each layer of these three levels is repeated
four times after mapping.

Equally Divided Tree We also pay attention to
the impact of discourse guidance in our multi-
granularity attention module. To exclude the dis-
course information, we conduct a more direct im-
plementation of multiple granularity based on the

Model deixis lex.c ell.infl ell.VP

Sent2Sent 50.0 45.9 53.0 28.9
Concat 83.5 47.5 76.6 76.2
CADec 81.6 58.1 72.2 80.0
LSTM-Transformer 91.0 46.9 82.2 78.2
MR-Doc2Doc 64.7 46.3 65.9 53.0
G-Transformer 89.9 - 84.8 82.4
ChatGPT 57.9 44.4 75.0 71.6
GPT-4 85.9 72.4 69.8 81.4
RST-Att (ours) 87.2 81.7 85.2 87.2

Table 4: Accuracy [%] of translation prediction for spe-
cific discourse phenomena (deixis, lexical consistency,
ellipsis of morphological inflection, and VP ellipsis)
among different models on the contrastive test sets.

equally divided tree. Specifically, each range of
content is divided into two equal ones, layer by
layer, until the current content contains no more
than three tokens.2

The results are shown in Table 3. The drops in
performance become larger from the model with
six-level granularity to the model with three-level
granularity, proving that more elaborate granularity
levels contribute to the improvement of the RST-
Att model. On the other hand, despite also con-
taining multiple granularity, the model constructed
through arbitrarily equal division gets even worse
results, which further demonstrates the crucial and
important role of discourse structure in our method.

4.2 Linguistic Evaluation

Furthermore, we have conducted linguistic eval-
uations about the performance of models when
dealing with discourse phenomena, based on the
frequently used contrastive test sets (Voita et al.,
2019) in existing works. They were designed for
targeted evaluation of several discourse phenom-
ena: deixis, ellipsis (two test sets for VP ellipsis
and morphological inflection), and lexical cohe-
sion. Each test instance consists of a true exam-
ple and several contrastive translations that dif-
fer from the true one only in the considered dis-
course aspect. The translation system needs to
select the one that it considers to be true, which
is evaluated by accuracy. We compared the re-
sults of Sent2Sent, Concat and CADec from Voita
et al. (2019), LSTM-Transformer from Zhang et al.
(2020b), G-Transformer, and MR-Doc2Doc, Chat-

2Smaller text units will cause the failure of training accord-
ing to our experiments.
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GPT3 and GPT-4 from Wang et al. (2023) with our
RST-Att model, as shown in Table 4.

Our RST-Att model has achieved superior perfor-
mance, with the highest accuracy in three aspects:
lexical cohesion, VP ellipsis, and morphological in-
flection, while having lower performance in deixis
compared to SOTA. And the improvement in terms
of lexical cohesion over previous methods is no-
tably significant. We suppose it may be because
the RST discourse structure that pays attention to
the relationship between text units can promote
the model to better handle lexical cohesion. More-
over, our approach outperforms LLMs comprehen-
sively, including ChatGPT and GPT-4, and more
discussions with LLM are described in Appendix B.
These results indicate the enhanced ability of our
model to adapt to contextual information and han-
dle discourse phenomena, which shows the promis-
ing way to introduce discourse information into
document-level machine translation.

4.3 Context Length

Next, we compare our RST-Att model with the
baseline with respect to different lengths of input
context. Since our translation is based on para-
graphs, we follow the d-BLEU to calculate the
p-BLEU score, which matches the n-grams in each
paragraph. Figure 5 depicts the results of two mod-
els on News. Surprisingly, the baseline, whose
structure is still the vanilla transformer, does not
fail on long contexts, contradicting the findings
of Li et al. (2022). We consider that the difference
may be due to the knowledge of the well-trained
LM. Moreover, the result of our RST-Att model
exceeds the baseline at each length, which is more
distinct as the length increases. And it maintains a
relatively stable performance when the input length
is more than 256, indicating the advancement of
our model in dealing with long inputs.

4.4 Label Utilization

Since the RST-Att model ignores nuclearity and
relations on the RST parsing tree, we have further
explored whether the in-depth utilization of label
information can lead to more improvements. We
apply graph learning to enhance the comprehen-
sion of the model for each EDU. RST parsing trees
are transformed into dependency trees according
to Hirao et al. (2013), so that each node will rep-
resent a different EDU. We serve the dependency

3https://chat.openai.com.
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Figure 5: The p-BLEU scores of the baseline and our
RST-Att model on different input lengths.

tree as a graph, and the connectivity and the path
to other nodes with label sequences can be calcu-
lated for each EDU. These features are encoded
to update the representation of each EDU with the
architecture of GraphFormer (Yang et al., 2021).
Then we integrate the learned representation into
the calculation of each token the EDU contains.

Although this method surpasses the baseline,
there is no significant improvement over the RST-
Att model. We suppose that the path with label
information can represent the relationship between
nodes at both ends, but it may be too complicated
for the model to encode such knowledge. On the
other hand, there are still many errors in the pre-
dicted labels on account of the limitations of cur-
rent RST parsing research, which may mislead the
model during training. We hope our exploration
can inspire future research to come up with more
effective approaches to utilizing RST labels.

5 Related Works

Document-level Machine Translation Al-
though early work has achieved great success on
machine translation, a document is often processed
by translating each sentence separately. As a result,
the information included in context is ignored.
Recently, document-level machine translation
has attracted more attention and many methods
have been proposed to better utilize the contextual
information to improve translation quality.

Most early attempts still followed sentence-to-
sentence translation, but they applied various frame-
works to utilize the context during training. Zhang
et al. (2018); Miculicich et al. (2018); Zhang et al.
(2020b); Zheng et al. (2020); Zhang et al. (2021a)
utilized surrounding sentences and integrated the
contextual information into encoding of the current
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sentence. Kang et al. (2020) indicated dynamic
context selected from the surrounding sentences
can improve the quality of the translation more
effectively. Jiang et al. (2020); Ma et al. (2020) de-
signed the specific module to encode the document
into a contextual representation. Feng et al. (2022)
introduced a recurrent memory unit to remember
the information thorough the whole document.

Although Zhang et al. (2018); Liu et al. (2020)
have shown that direct Doc2Doc translation may
cause the failure of training, many recent studies
have focused on translating multiple sentences or
the entire document at once (Tan et al., 2019; Bao
et al., 2021; Sun et al., 2022; Li et al., 2022). They
used various specific methods to avoid this problem
and achieved more advancement on DocMT.

Discourse Parsing Discourse parsing describes
the hierarchical tree structure of a text and can
be used in quality evaluations like coherence and
other downstream applications. RST parsing is the
most important role of discourse parsing, and the
existing approaches can be mainly divided into two
classes: top-down and bottom-up paradigms.

Bottom-up methods have been first proposed
since hand-engineered features were suitable for
representing local information. Models with CKY-
like algorithms (Hernault et al., 2010; Joty et al.,
2013; Feng and Hirst, 2014; Li et al., 2014) utilized
diverse features to learn the scores for candidate
trees and selected the most possible one. Another
common bottom-up method is the transition-based
parser with actions of shift and reduce (Ji and Eisen-
stein, 2014; Wang et al., 2017; Yu et al., 2018).

Recent advancements in neural methods made
global representation more effective, which pro-
moted top-down parsers. Lin et al. (2019) first
presented a Seq2Seq model based on pointer net-
works (Vinyals et al., 2015) and Liu et al. (2019) im-
proved it with hierarchical structure. Then Zhang
et al. (2020a) extended their methods to document-
level RST parsing. Kobayashi et al. (2020) con-
structed subtrees with three levels of granularity
and merged them together.

Despite the better performance of top-down mod-
els, most of them still need gold EDU segmen-
tation and drop a lot in performance when us-
ing automatic segmenters. To address the prob-
lem, Nguyen et al. (2021) introduced an end-to-end
parsing model, relying on specific frameworks for
different tasks. Zhang et al. (2021b) proposed a
system with rerankers to improve the performance.

6 Conclusions

In this paper, we explore the role of discourse struc-
ture in document-level machine translation. We
introduce a more sound paragraph-to-paragraph
translation mode than the several surrounding sen-
tences or fixed length of texts used in previous stud-
ies. To better take advantage of the RST parsing
tree, we propose the RST-Att model with a multi-
granularity attention mechanism depending on the
tree structure. The experiment results prove the
superiority of our method, and further evaluation
indicates that both the guidance of discourse struc-
ture and more levels of granularity contribute to the
improvement. And the more effective utilization of
RST labels for DocMT is left to future research.

7 Limitations

Some limitations exist in our research and may be
able to be solved in future research. Firstly, cur-
rent studies on discourse parsing have not achieved
great success due to insufficient labeled data. How-
ever, the recent improvements in this domain are
significant, and the parsing model we employed
will directly benefit from the advancement of pre-
trained language models. We also believe that bet-
ter discourse understanding and dealing with mul-
tilingual issues would be more beneficial, and we
intend to dig into this field in future research and
attract more research attention. On the other hand,
despite the progressive attention module reducing
the calculation, our model does not significantly op-
timize the cost of time consumed in training. Since
we utilize mBART25 which contains quite a few
parameters, the process of finetuning may have a
minor environmental impact. In future research, we
will also further explore how to take better advan-
tage of RST labels in the parsing tree, which may
be useful for document-level machine translation.
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A Detailed Experiment Settings

All of the datasets and pretrained language mod-
els were obtained from publicly available sources
under the MIT license, which can be used in aca-
demic research. We conduct our experiments on
mBART25 (Liu et al., 2020), which involves 12
layers, 16 heads, 1024-dimension outputs, and an
intermediate size of 4096 in both the encoder and
decoder. The hyperparameters in our work were
determined according to the performance on the
valid set during the grid search, which started from
the hyperparameters in Liu et al. (2020). We use
0.3 dropout, 0.2 label smoothing, and the Adam
optimizer with a learning rate of 3e-5 for training.
The warm-up steps are 2000 on TED and News,

Model TED News Europarl

ChatGPT 33.60 39.40 30.40
RST-Att 31.10 32.28 34.55

Table 5: The comparison on the three prominent Doc-
MT datasets between ChatGPT and our RST-Att model.
The results of ChatGPT come from Wang et al. (2023).

Model Training time Inference time
seconds per epoch seconds per test set

Sent2Sent 906 86
Para2Para 1055 112
RST-Att 1127 115

Table 6: Time consumed in the training and inference
processes of different models.

and 2500 on Europarl. The beam size during infer-
ence is 5, and the BLEU score is calculated in a
maximum order of 4 after removing BPE tokens.

B Discussion with LLM

There have been some studies assessing the perfor-
mance of LLMs on prominent Doc-MT datasets,
using the prompt that translates the entire document
at once. The results of the popular LLM ChatGPT
compared to our RST-Att model are shown in Table
5 with the d-BLEU metric. ChatGPT outperforms
our RST-Att model on the TED and News datasets,
while it lags behind on the Eurparl dataset. We
speculate it may be due to the massive training data
of ChatGPT. And the domain of Europarl is not as
commonly used compared to the TED and News
datasets. Furthermore, we cannot verify whether
these datasets, particularly the test sets, have al-
ready been seen by ChatGPT, as they are publicly
available and have been released early. Therefore,
it is debatable whether these results are compara-
ble. Recent research (Golchin and Surdeanu, 2023)
has also focused on this problem and highlighted
concerns regarding data contamination in the test
sets of downstream tasks.

C Time Efficiency

We have compared the translation efficiency of
the training and inference processes with the same
settings, such as GPUs, batch size, etc. In Table
6, we present the relevant results of our RST-Att
model with Sent2Sent and Para2Para baselines on
the NC-2016 dataset, and the performance on other
datasets is similar. The training time consumed by
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Para2Para2 is about 1.16 times that of Sent2Sent,
and the inference time is about 1.3 times. We
suppose it is because a paragraph is considerably
longer than a sentence, and the computational com-
plexity of the transformer framework is quadratic
with respect to input length. Our RST-Att model
also adopts paragraph-to-paragraph translation and
does not introduce new training parameters. But
it requires some computation for multi-granularity
attention organization, so its time consumed is a bit
greater than the Para2Para baseline. Considering
the theoretically lower computation of the atten-
tion module, the further efficiency optimization of
the implementation of our method is left to future
work.
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