MoPe <=:
Model Perturbation-based Privacy Attacks on Language Models

Marvin Li*
Harvard College

Jason Wang *
Harvard College

Abstract

Recent work has shown that Large Language
Models (LLMs) can unintentionally leak
sensitive information present in their training
data. In this paper, we present MoPey (Model
Perturbations), a new method to identify with
high confidence if a given text is in the training
data of a pre-trained language model, given
white-box access to the models parameters.
MoPey adds noise to the model in parameter
space and measures the drop in log-likelihood
at a given point x, a statistic we show
approximates the trace of the Hessian matrix
with respect to model parameters. Across
language models ranging from 70M to 12B
parameters, we show that MoPey is more
effective than existing loss-based attacks and
recently proposed perturbation-based methods.
We also examine the role of training point
order and model size in attack success, and
empirically demonstrate that MoPegy accurately
approximate the trace of the Hessian in practice.
Our results show that the loss of a point alone is
insufficient to determine extractability—there
are training points we can recover using our
method that have average loss. This casts some
doubt on prior works that use the loss of a point
as evidence of memorization or “unlearning.”

1 Introduction

Over the last few years, Large Language Models
or LLMs have set new standards in performance
across a range of tasks in natural language
understanding and generation, often with very
limited supervision on the task at hand (Brown
et al.,, 2020). As a result, opportunities to use
these models in real-world applications proliferate,
and companies are rushing to deploy them in
applications as diverse as A.l. assisted clinical
diagnoses (Sharma et al., 2023), NLP tasks in
finance (Wu et al., 2023), or an A.L. “love coach”

*Alphabetical order; equal contribution.
fSenior author, email: sneel @hbs.edu for correspondence.

Seth Neel
Harvard University

Jeffrey Wang *
Harvard College

(Soper, 2023). While early state of the art LLMs
have been largely trained on public web data
(Radford et al., 2019; Gao et al., 2021; Biderman
et al., 2023b; Black et al., 2021), increasingly
models are being fine-tuned on data more relevant
to their intended domain, or even trained from
scratch on this domain specific data. In addition to
increased performance on range of tasks, training
models from scratch is attractive to companies
because early work has shown it can mitigate some
of the undesirable behavior associated with LLMs
such as hallucination (Ji et al., 2022), toxicity
(Gehman et al., 2020), as well as copyright issues
that may arise from mimicking the training data
(Franceschelli and Musolesi, 2021; Vyas et al.,
2023). For example, BloombergGPT (Wu et al.,
2023) is a 50-billion parameter auto-regressive
language model that was trained from scratch
on financial data sources, and exhibits superior
performance on tasks in financial NLP.

While all of this progress seems set to usher in an
era where companies deploy custom LLMs trained
on their proprietary customer data, one of the main
technical barriers that remains is privacy. Recent
work has shown tha language model’s have the
potential to memorize significant swathes of their
training data, which means that they can regurgitate
potentially private information present in their
training data if deployed to end users (Carlini
et al., 2021; Jagannatha et al., 2021). LLMs are
trained in a single pass and do not “overfit” to the
same extent as over-parameterized models, but on
specific outlier points in the training set they do
have loss much lower than if the point had not
been included during training (Carlini et al., 2021),
allowing an adversary to perform what is called a
membership inference attack (Shokri et al., 2017):
given access to the model and a candidate sample
2, the adversary can determine with high-accuracy
if 2’ is in the training set.

While prior work shows privacy is a real

13647

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 13647-13660
December 6-10, 2023 ©2023 Association for Computational Linguistics

concern when deploying language models, the
membership inference attacks used can extract
specific points but perform quite poorly on average,
leaving significant room for improvement (Yu
et al., 2023; Carlini et al., 2021). At the same
time, recent works studying data deletion from
pre-trained LLMs (Jang et al., 2022) and studying
memorization (Carlini et al., 2023a) cite the loss
of a point as a determinant of whether that point
has been “deleted” from the model, or conversely
is “memorized.” Given that loss of a point is a
relatively poor indicator of training set membership
for LLMs, this raises a series of tantalizing research
questions we address in this work: (i) If a point has
average “loss” with respect to a language model 0,
does that imply it cannot be detected as a training
point? (ii) Can we develop strong MIAs against
LLMs better than existing loss-based attacks?

We develop a new membership inference attack
we call MoPey, based on the idea that when the
model loss is localized around a training point,
is likely to lie in a “sharper” local minima than
if the point was a test point— which does not
necessarily imply that the absolute level of the
loss is low. Concretely, our attack perturbs the
model with mean zero noise, and computes the
resulting increase in log loss at candidate point x
(see Figure 1).

Ttest

0+ e 0+

Ttrain

6+ €

LOSSy

0 0

Figure 1: MoPey detects training point membership by
comparing the increase in loss on the training point
when the model is perturbed, relative to the increase in
loss of the perturbed model on a test point.

Contributions. In this paper we make several
contributions to the developing story on language
model privacy.

* We show in Section 2.2 that our MoPey statistic
is approximating the trace of the Hessian
matrix with respect to model weights 6 at
(0, x), and so can be seen as an approximation
of how “sharp” the loss landscape is on z
around 6.

* We evaluate MoPey on the recently developed
Pythia suite from EleutherAl (Biderman et al.,

2023b) on models that range in size from 70M
to 12B. Our experimental results in Section 3
show that compared to existing attacks based
on the loss (LOSSy), MoPey boasts significantly
higher AUC on all model sizes up to 2.8B, and
comparable AUC at 6.9B and 12B parameters.
Furthermore, at low FPRs of the attack, MoPey
maintains high true positive rates, whereas
LOSSy fails to outperform the random baseline
(Figure 2).

* We evaluate whether the DetectGPT statistic
proposed for detecting LLM-generated text
can be repurposed as a privacy attack against
pre-trained models. Our experimental results
show that DetectGPT outperforms the loss-
based attack at all model sizes up to 2.8B, but
is dominated by our MoPey attack at all model
sizes.

* Since all the models we evaluate were
trained on the same datasets in the same
training order, we can make a principled
study of the relationship between model sizes
and order of the training points to attack
success. Surprisingly, we find in Table 1 and
Figure 7 that consistent with prior work LOSSg
attack success increases with model size and
proximity during training, but that these trends
fail to hold for MoPey.

Finally in Section 4 we train a network on
MNIST (Deng, 2012) that is sufficiently small
that we are able to compute the Hessian.
We use this network to show that our MoPey
statistic does in practice approximate the
Hessian trace. We also find that while MoPey
does outperform the random baseline, the
attack performs worse than loss in this setting,
highlighting that our results may be unique to
language models.

These results establish our technique as state of
the art for MIA against pre-trained LLMs in the
white-box setting where we can access the model
weights. They also challenge conventional wisdom
that the loss of a point is in isolation a sufficently
good proxy for training set membership.

2 Related Work

DetectGPT. The most closely related work to
ours on a technical level is the recent paper

13648

(Mitchell et al., 2023) who propose a perturbation-
based method for detecting LLLM-generated text
using probability curvature. Their method
DetectGPT compares the log probabilities of a
candidate passage x and its randomly perturbed
versions m(z) using the source model and another
generic pre-trained mask-filling model m; large
drops in the log probability correspond to training
points. While superficially similar to our MoPey
method, there are significant differences: (i) We
focus on the problem of membership inference
which tries to determine if an example = was
present in the training data, whereas their focus
is determining if x was generated by 6—an
orthogonal concern from privacy and (ii) As a
result, we perturb the model 0 using Gaussian
noise, rather than perturbing x using an additional
model.

Memorization and Forgetting in Language
Models. There are many recent works studying
issues of memorization or forgetting in language
models (Biderman et al., 2023a; Thakkar et al.,
2020; Kharitonov et al., 2021; Zhang et al.,
2021; Ippolito et al., 2023). (Jagielski et al.,
2023) measures the forgetting of memorized
examples over time during training, and shows
that in practice points occurring earlier during
training observe stronger privacy guarantees. They
measure “forgetting” using membership inference
attack accuracy, using an attack based on loss-
thresholding with an example-calibrated threshold.
By contrast (Biderman et al., 2023b) studies
memorization using the Pythia suite, and finds
that the location of a sequence in training does
not impact whether the point was memorized,
indicating that memorized points are not being
forgotten over time. This finding is further
confirmed in (Biderman et al., 2023a), which
shows that memorization by the final model can be
predicted by checking for memorization in earlier
model checkpoints. Our work sheds some light
on the apparent discrepancy between these two
works, indicating that results in (Biderman et al.,
2023a) are possible because loss value alone does
not necessarily imply a point is not memorized.

Membership Inference Attacks (MIAs).
Membership Inference Attacks or MIAs were
defined by (Homer et al., 2008) for genomic
data, and formulated by (Shokri et al., 2017)
against ML models. In membership inference,

an adversary tries to use model access as well as
some outside information to determine whether
a candidate point z is a member of the model
training set. Since (Yeom et al., 2018), MIAs
typically exploit the intuition that a point x is
more likely to be a training point if the loss of
the model evaluated at x is small, although other
approaches that rely on a notion of self-influence
(Cohen and Giryes, 2022) or distance to the model
boundary (Pawelczyk et al., 2022; Choquette-Choo
et al., 2020) have been proposed. (Sablayrolles
et al., 2019) argue (under strong assumptions)
that the loss-thresholding attack is approximately
optimal by the Neyman-Pearson lemma. The
assumptions needed to show optimality do not
hold in practice, however, which opens the door to
substantially improving this simple attack. State
of the art membership inference attacks still rely
on loss-thresholding or functions of the loss (Ye
et al., 2021; Carlini et al., 2022; Sablayrolles
et al., 2019), but try to calibrate the threshold
at which a point z is declared a training point
to account for the component of the loss that is
specific to the example . One way they do this
is by (i) Training shadow models that do/don’t
contain the candidate point x, and (ii) Using the
loss of these models on the point to empirically
approximate the ratio of the likelihood of the
observed loss £(6, z) given = was in the training
set to the likelihood if x was not (Carlini et al.,
2022). A simpler, but related attack assumes
access to a reference model 0,.; that was not
trained on the point x in question, and thresholds
based on the ratio log(¢(x, 0)/¢(x, 0,cf)) (Carlini
et al., 2021). In this paper, we make the realistic
assumption that the adversary does not have access
to the computational resources to train additional
language models from scratch on fresh data, or
have access to a reference model that has been
trained without the candidate point . We note that
in the case where this was possible, these same
threshold calibration techniques could be used to
accelerate the effectiveness of our MoPey attack as
well.

MIAs on LLMs. Concurrent work proposes
several new MIAs tailored to LLMs. (Abascal et al.,
2023) investigates MIAs where the adversary has
access only to a fine-tuned model, and tries to make
inferences back to the pre-trained model. Their
method operates in a different access model than
ours, and more importantly relies heavily on the

13649

training of additional shadow models, and therefore
does not scale to the large model sizes studied
here. (Mattern et al., 2023) use a statistic similar
to that used in DetectGPT (Mitchell et al., 2023)
for detecting model-generated text for membership
inference, in that they perturb the example x using
a mask-filling model (BERT) and use the resulting
losses to calibrate the threshold. They conduct
their experiments on the 117M parameter version
of GPT-2, which they then fine-tune AG News
and Twitter Data. As such their results can also
be viewed as focused on small models in the fine-
tuning setting, where it is known that much stronger
attacks are possible (Jagielski et al., 2022; Abascal
et al., 2023), in contrast to the pre-training regime
studied here.

Discussion of additional related work focused
on privacy issues in language models, including
training data extraction, data deletion or
machine unlearning, and mitigation strategies via
differential privacy, are deferred to Section A of
the Appendix.

2.1 Preliminaries

An auto-regressive language model denoted by
0 takes as input a sequence of tokens x =
x1x2 ... 27, and outputs a distribution py(-|z) €
A(V) over a vocabulary V), the space of tokens.
Given a sequence of tokens z, the loss is defined as
the negative log-likelihood [of the sequence with
respect to 6:

T
L0SSp(x) = — Y log(pp(wt|z<t))
=1

Alternatively, flipping the sign gives us the
confidence confy(x) = —LOSSp(z). Given
a training corpus C sampled ii.d from a
distribution D over sequences of tokens,
@ is trained to minimize the average loss,
ﬁmingzweCLOSSQ(x). This is typically
referred to as “pre-training” on the task of
next token prediction, to differentiate it from
“fine-tuning” for other downstream tasks which
occurs subsequent to pre-training.

Membership Inference Attacks. We now define
a membership inference attack (MIA) against a
model . A membership inference score M : © x
X — R takes a model 0, and a context x, and
assigns it a numeric value M(z,0) € R — larger
scores indicate x is more likely to be a training

point (x € C). When equipped with a threshold 7,
(M, 7) define a canonical membership inference
attack: (i) With probability % sample a random
point x from C, else sample a random point z ~ D.
(ii) Use M to predict whether z € C or x ~ D by
computing M(x, 6) and thresholding with 7:

TRAIN it M(x,0) > T
(M) =1 ey
OT TRAIN if M(xz,0) < 7
)]

Note that by construction the marginal distribution
of = is D whether z is a training point or not, and
so if M has accuracy above % must be through
0 leaking information about x. The “random
baseline” attack (M, 7) that samples M(x,0) ~
Uniform[0, 1] and thresholds by 1 — 7 € [0, 1]
has TPR and FPR 7 (where training points are
considered positive). The most commonly used
membership inference attack, introduced in (Yeom
et al., 2018), takes M(z,6) = —{(x,6), and so
it predicts points are training points if their loss
is less than —7, or equivalently the confidence is
greater than 7. We refer to this attack throughout
as the loss attack, or LOSSy. Throughout the paper,
as is common we overload notation and refer to
M as a membership inference attack rather than
specifying a specific threshold.

MIA Evaluation Metrics. There is some
disagreement as to the proper way to evaluate
MIAs. Earlier papers simply report the best
possible accuracy over all thresholds 7 (Shokri
et al., 2017). Different values of 7 correspond to
tradeoffs between the FPR and TPR of the attack,
and so more recently metrics like Area Under the
ROC Curve (AUC) have found favor (Carlini et al.,
2022; Ye et al., 2021). Given that the ability to
extract a very small subset of the training data with
very high confidence is an obvious privacy risk,
these recent papers also advocate reporting the TPR
at low FPRs, and reporting the full ROC Curve in
order to compare attacks. In order to evaluate our
attacks we report all of these metrics: AUC, TPR at
fixed FPRs of .25 and .05, and the full ROC curves.

2.2 MoPey: Model Perturbation Attack

Our Model Perturbations Attack (MoPey) is based
on the intuition that the loss landscape with respect
to the weights should be different around training
versus testing points. In particular, we expect that
since) ~ argming »__ - /(z,0), where £ is the

13650

negative log-likelihood defined in Section 2.1, then
the loss around 2z’ € C should be sharper than
around a random point. Formally, given a candidate
point z ~ D, we define:

MoPey(x) = B N (0,02 Lnpagams) [l(x,0+€)—L(z,0)],

2
where o° is a variance hyperparameter that we
specify beforehand, and § € R™=ms In practice,
rather than computing this expectation, we sample
n noise values ¢; ~ N (0,0°1y,,,.,) and compute
the empirical MoPejj (z) = 1 3% | [/(z,0 + ¢;) —
¢(x,0)]. This gives rise to the natural MoPey
thresholding attack, with M(z,) = MoPey(x) in
Equation 1. Note that computing each perturbed
model takes time O(nparams) and so we typically
take n < 20 for computational reasons. We now

provide some theoretical grounding for our method.

2

Connection to the Hessian Matrix. In order to
derive a more intuitive expression for MoPey(x) we
start with the multivariate Taylor approximation
(Konigsberger, 2000):

00 +e,x)=1L0,x)+Vel(0,z) - ¢+ (3)

%ETH$6 +0() @)

where H, = V2{(0,z) is the Hessian of log-
likelihood with respect to 6 evaluated at . Then
assuming o2 is sufficiently small that O(e?) in
Equation 3 is negligible, rearranging terms and
taking the expectation with respect to e of both
sides of (3) we get:

MoPeg(z) = EeNN(O,UQ)[E(H +€,2) — £(6, JJ)] ~

0.2

1
]EENN(O,O'2)[§€THQ,=6] = 7Tr(Hm),

where the last identity is known as the Hutchinson
Trace Estimator (Hutchinson, 1989). This
derivation sheds some light on the importance of
picking an appropriate value of 0. We need it to
be small enough so that the Taylor approximation
holds in Equation 3, but large enough that we
have enough precision to actually distinguish the
difference in the log likelihoods in Equation 2.
Empirically, we find that 0 = 0.005 works well
across all model sizes, and we don’t observe
a significant trend on the optimal value of o
(Table 2).

3 MIA Against Pre-trained LL.Ms

In this section we conduct a thorough empirical
evaluation of MoPey, focusing on attacks against
pre-trained language models from the Pythia suite.
We show that in terms of AUC MoPey significantly
outperforms loss thresholding (LOSSy) at model
sizes up to 2.8B and can be combined with LOSSy to
outperform at the 6.9B and 12B models (Figure 4).
We also implement an MIA based on DetectGPT,
which outperforms loss in terms of AUC up to size
1.4B, but is consistently worse than MoPeg at every
model size. Our most striking finding is that if we
focus on the metric of TPRs at low FPRs, which
state-of-the-art work on MIAs argue is the most
meaningful metric (Carlini et al., 2022; Ye et al.,
2021), MoPey exhibits superior performance at all
model sizes (Figure 2). MoPey is the only attack
that is able to convincingly outperform random
guessing while driving the attack FPR < 50%
(which is still a very high FPR!) at all model sizes.

Dataset and Models. We identified EleutherAl’s
Pythia (Biderman et al., 2023b) suite of models
as the prime candidate for studying membership
inference attacks. We defer a more full discussion
of this choice to Section B in the Appendix, but
provide some explanation here as well. Pythia
was selected on the basis that the models are
available via the open source provider Hugging
Face, cover a range of sizes from 70M to 12B,
and have a modern decoder-only transformer-
based architecture similar to GPT-3 with some
modifications (Brown et al., 2020; Biderman et al.,
2023b). Models in the Pythia suite are trained
on the Pile (Gao et al.,, 2021) dataset, which
after de-duplication contains 207B tokens from
22 primarily academic sources. De-duplication
is important as it has been proposed as one
effective defense against memorization in language
models, and so the fact that our attacks succeed
on models trained on de-duplicated data makes
them significantly more compelling (Kandpal et al.,
2022; Lee et al., 2021). Crucially for our MIA
evaluations, the Pile has clean training vs. test
splits, as well as saved model checkpoints that
allow us to ensure that we use model checkpoints
at each size that correspond to one full pass over
the dataset.

We evaluate all attacks using 1000 points
sampled randomly from the training data and
1000 points from the test data. Since the MoPey

13651

and DetectGPT attacks are approximating an
expectation, we expect these attacks to be more
accurate if we consider more models, but we

also need to balance computational considerations.

For MoPey we use n = 20 perturbed models
for all Pythia models with < 2.8B parameters,
and 10 perturbed models for the 6.9B and 12B
parameter models. For DetectGPT we use n = 10
perturbations throughout rather than the 100 used
in (Mitchell et al., 2023) in order to minimize

computation time, which can be significant at 12B.

We found the best MoPey noise level o for the
models of size < 2.8B parameters by conducting a
grid search over o = [.001,.005,.01,.05]. The
highest AUC was achieved at .01 for the 1B
parameter model, .001 for the 2.8B model and
.005 for the remaining models. This suggests that
there is no relationship between the optimal value
of ¢ and the model size. For the 6.9B and 12B
parameter models, we chose a noise level of .005.
We record the AUCs achieved at different noise
levels in Table 2 in the Appendix. For DetectGPT
we follow (Mitchell et al., 2023) and use T5-small
(Raffel et al., 2019) as our mask-filling model,
where we mask 15% of the tokens in spans of 2
words.

Attack Success. The results in Table 1 show
that thresholding based on MoPey dramatically
improves attack success relative to thresholding
based on LOSSy or DetectGPT. The difference
is most pronounced at model sizes 160M, 410M
parameters, where the AUC for MoPey is ~
27% higher than the AUC of .51 for LOSSy
and DetectGPT, which barely outperform random
guessing. This out-performance continues up to
size 2.8B, after which point all attacks achieve
AUC in the range of .50 — .53.

Inspecting the shape of the ROC curves in
Figure 2 there is an even more striking difference
between the attacks: All of the curves for the
LOSSy and DetectGPT-based attacks drop below
the dotted line (random baseline) between FPR =
.5—.6. This means that even at FPRs higher than
.5, these attacks have TPR worse than random
guessing! This establishes that, consistent with
prior work, LOSSy based attacks against LLMs
trained with a single pass work extremely poorly
on average, although they can identify specific
memorized points (Carlini et al., 2022).

By contrast, the MoPey curves lie about the dotted
line (outperforming random guessing) for FPRs

that are much much smaller. Table 1 reports
the TPR at FPR = .25,.05. We see that even at
moderately large FPR = .25, only MoPey achieves
TPR > .25 at all model sizes, with TPRs 1.2—2.5%
higher than DetectGPT and MoPey. We note that
none of the attacks consistently achieve TPR better
than the baseline at FPR = .05, but that MoPey still
performs better than the other attacks.

Model Method AUC | TPR o5 | TPR o5
7T0M LOSSy 507 .168 .025
160M LOSSy .512 170 .030
410M LOSSy 013 .167 .028
1B LOSSy .516 172 .029
1.4B LOSSg D17 176 .029
2.8B LOSSy .504 161 .021
6.9B LOSSg .523 181 .026
12B LOSSy .525 188 .024
70M | DetectGPT | .521 201 .035

160M | DetectGPT | .515 .202 .033
410M | DetectGPT | .525 .206 .032
1B DetectGPT | .532 207 .031

1.4B | DetectGPT | .534 .210 .029
2.8B | DetectGPT | .510 183 .022
6.9B | DetectGPT | .506 178 .024
12B | DetectGPT | .504 A7 .020
70M MoPey 612 .306 .049
160M MoPey .646 .376 .049
410M MoPey .650 411 072

1B MoPeg .H67 .261 .046

1.4B MoPeg 571 .259 .047
2.8B MoPeg .565 .280 .040
6.9B MoPeg 522 .252 .020
12B MoPeg 516 .257 .024

Table 1: For each model size and attack, we report the
AUC, TPR at FPR .25, and TPR at FPR .05.

Model Size. Recent work (Carlini et al., 2023a)
on the GPT-Neo (Black et al., 2021) models
evaluated on the Pile has shown that as model
size increases so does memorization. The data
in Table 1 support this conclusion, as with
increasing model size we see a (small) monotonic
increase in the AUC achieved by the LOSSy attack.
Interestingly, we observe almost an opposite trend
in curves for MoPey, with the highest values of AUC
actually coming at the three smallest model sizes!
DetectGPT has AUC that is also flat or slightly
decreasing with increased model size. We note
that while this does not directly contradict prior

13652

LOSS across model sizes

1.0 - o
T

0.8 1

0.6

70m (AUC = 0.5075)
160m (AUC = 0.5118)
410m (AUC = 0.5135)
1b (AUC = 0.5161)

0.4

True Positive Rate

0.2 L 1.4b (AUC = 0.5168)
e 2.8b (AUC = 0.5039)
o
L —— 6.9b (AUC = 0.5227)
004 =F 12b (AUC = 0.5252)
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

DetectGPT across model sizes

1.0

0.8 1

0.6

70m [AUC = 0.5208)
160m (AUC = 0.5155)
410m (AUC = 0.5254)
1b (AUC = 0.5322)
1.4b (AUC = 0.5336)
2.8b (AUC = 0.5103)
—— 6.9b (AUC = 0.5060)
00 ~ 12b (AUC = 0.5041)

0.4

True Positive Rate

0.2

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

MoPe across model sizes

1.0 ,@’//

0.8 1

0.6

70m (AUC = 0.6120)
160m (AUC = 0.6457)
410m (AUC = 0.6502)
1b (AUC = 0.5666)
1.4b (AUC = 0.5710)
2.8b (AUC = 0.5652)
— 6.9b (AUC = 0.5217)
12b (AUC = 0.5164)

0.4

True Positive Rate

0.2

0.0

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 2: LOSSy, DetectGPT, and MoPey ROC Curves
across all model sizes. Only MoPey outperforms the
baseline at FPR < .5.

results from (Carlini et al., 2023a) which use a
definition of memorization based on extraction
via sampling, it is surprising given the intuition
from prior work. One potential explanation could
be that the attack success of perturbation-based
methods like MoPey and DetectGPT is actually

partially inversely correlated with model size, due
to variance of the Hutchinson Trace Estimator in
Equation 3 increasing for larger models, and may
not reflect the fact that larger Pythia suite models
are actually more private.

Training Order. In this section we study the
degree to which the models in the Pythia suite
exhibit “forgetting” over time, as measured by
the change in LOSSy and MoPey statistics during
training. (Jagielski et al., 2023) show that,
particularly on large data sets (like the Pile for
example), MI accuracy increases (equivalently
loss decreases) for points in more recent batches.
In Figure 7 in the Appendix, we investigate
how LOSSy and MoPey statistics vary on average
depending on when they are processed during
training. Concretely, we sample 2000 points from
10 paired batches {0 — 1,9999 — le4, 19999 —
2e4,...89999 — 9e4,97999 — 9.8e4}, which
approximately correspond to the first and last data
batches that the Pythia models see during pre-
training. For each set of 2000 points, we compute
the average LOSSy and MoPey values with respect
to the 6 reached at the end of the first epoch. We
see that, consistent with findings in (Jagielski et al.,
2023), loss declines for more recent batches, but
by contrast, there is no such observable pattern at
any fixed model size for the MoPey statistic! This
finding is consistent with recent work (Biderman
et al.,, 2023a,b) that study memorization in the
Pythia suite, and find no correlation between order
in training and if a point is “memorized” (as defined
in terms of extractability).

MoPey vs. LOSSy comparison. The disparities
in MIA performance between MoPeg and LOSSy
attacks shown in Figure 2 implies that there must
exist a number of training points where the MoPeg
and LOSSy statistics take very different values. The
fact that MoPey outperforms LOSSy, particularly at
smaller model sizes, implies that there are points
with average loss values but outlier MoPey values.
We visualize this for the 12B parameter model in
Figure 3, and include plots for all model sizes in
Figure 8 in the Appendix.

LOSSy and MoPey Ensemble Attack. Recall that
a point is more likely to be a training point if it has a
high MoPey value, or a low LOSSy value. The above
scatterplot shows that there are training points that
have average LOSSy values and high MoPey values
and are easily identified by the MoPegy attack as

13653

12b

Training o °
201 e \validation
[]

1.5 °
) ®e o o ®
- . .
8
E 1.0 1 ® ™
o []
ke °
Y 05 ° 40
ERR
& °* @& "". o

1 0o °
2> 2%
g e &
S ° s ® e
g 05 r] °
Y Ll X
2)
o] :. ° J’ L)
S 1.0 ° %
- o® & , wo
e ome ° >
-15 -1.0 -0.5 0.0 0.5 1.0 15

MoPe predictions (z-score, log-modulus)

Figure 3: —MoPey vs. LOSSy scatter plot, at model size
12B. We z-score the LOSSy and MoPey values and apply
a log-modulus transform f(z) = sign(z) log(|z| + 1)
(John and Draper, 1980) to the scores for visual clarity.

training points but not by L0OSSy, and vice versa.
This raises the obvious question of if the attacks
can be combined to yield stronger attacks than
either attack in isolation. We find that while for
the smaller model sizes, we don’t get a significant
improvement over MoPey in AUC by ensembling,
for the two largest model sizes, where both LOSSy
and MoPey perform relatively poorly, we do get
a significant improvement by thresholding on a
weighted sum of the two statistics (after z-scoring).
We plot the ROC curves for LOSSy, MoPey, and
the optimal ensemble (picked to optimize AUC) in
Figure 4. At 6.9B both LOSSy and MoPey achieve
AUC = .52, while the ensemble has AUC = .55.
At 12B AUC jumps from ~ .52 to .544 in the
ensemble.

4 MoPey on MNIST

In this section we run our MoPey attack on a small
network trained to classify images from MNIST
(Deng, 2012), which allows us to evaluate if the
MoPey statistic actually approximates the Hessian
trace in practice as the derivation in Section 2.2
suggests. To test this, we sample 5000 training
points and 5000 test points from the MNIST
dataset, a large database of images of handwritten
digits (Deng, 2012). Using a batch size of 8, we
train a fully connected 2 layer MLP with 20 and 10
nodes, using the Adam optimizer with a learning
rate of 0.004 and momentum of 0.9, until we reach
94% train accuracy and 84% test accuracy, a 10
percent train-test gap similar to that observed in

6.9b combination

1.0

0.8 1

o
o

True Positive Rate
=]
s

0.2

6.9b MoPe (AUC = 0.5217)
— 6.9b LOSS (AUC = 0.5227)
0.0 —— 6.9b 0.55*MOPE + 0.45*LOSS (AUC = 0.5500)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

12b combination

1.0 A

0.8

0.6

0.4

True Positive Rate

0.2

e 12b MoPe (AUC = 0.5164)

-,
—— 12b LOSS (AUC = 0.5252)
0.0 g = 12b 0.5*MOPE + 0.5¥LOSS (AUC = 0.5445)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4: LOSSy and MoPey Ensemble Attack

pre-trained language models (Carlini et al., 2021).
In Figure 5 we show the distribution of the Hessian
trace and scaled MoPey evaluated on all training
batches. The resulting distributions on training and
test points are close, with a correlation between
point level traces and scaled MoPey values of 0.42.

Given the generality of the proposed MoPeg
attack, it is also natural to ask if MoPey can be
applied to other machine learning models. On our
MNIST network, we run the MoPey attack with 40
perturbations and o = 0.05, calculating the ROC
curves in Figure 6 using 3000 train and test points.
We find that LOSSy outperforms MoPeg, with MoPeg
achieving an AUC of 0.635 and LOSSy achieving
an AUC of 0.783. While it does not outperform
LOSSy, MoPey easily beats the random baseline,
which warrants further study in settings beyond
language models.

5 Discussion

The main finding in this work is that perturbation-
based attacks that approximate the curvature in the

13654

Train vs Test MoPe Statistic (Scaled)

80 - Scaled Train MoPe
Scaled Test MoPe
70 4
60
£ 50 4
=
£
& 40
[}
4
30 A
201
10 -
0 T T T T T T T T
=50 0 50 100 150 200 250 300
Scaled Train MoPe
Exact Hessian Traces on MNIST
train
100 A test
80
"
9
o i
£ 60
©
w
o
2
40
20 1
0 T T T T T T T T
0 50 100 150 200 250 300 350

Hessian Trace

Figure 5: The distribution of MoPe statistics (left) and
exact Hessian traces (right) for the MNIST dataset.

MNIST Fully Trained LOSS vs MoPe

10 — —:"’7
_J/- /”
0.8 — -~
© -"f e
% ~ -
| .
g Dﬁ -/fl ’JJ
= 4 -~
= 04 e o
& L
02 e
; g LOSS {AUC = D.7830)
po{ ¥ MoPe {AUC = 0.6355)
0.0 02 0.4 0.6 0.8 10

False Positive Rate

Figure 6: ROC curve for LOSSy vs MoPey on MNIST
model.

loss landscape around a given model and point,
seem to perform better than attacks that simply
threshold the loss. A key nuance here, is that for
computational reasons, all of the attacks studied
here apply a uniform threshold 7 that does not

depend on the point x. Prior work on MIAs
shows that calibrating the threshold 7, to a specific
point x greatly increases attack success, for the
obvious reason that certain types of points have
higher or lower relative loss values regardless of
their inclusion in training. Thresholding based
on a loss ratio with another language model or
approximating the likelihood ratio (LiRA) can all
be viewed as different ways of calibrating an
example-specific threshold. In this context, the
results in this paper can be viewed as showing
that when forced to pick a uniform threshold for
an MIA score, statistics like MoPey or DetectGPT
that approximate the local curvature transfer better
across different points than the loss. As such,
methods that try to efficiently approximate an
example-specific threshold, like applying LiRA or
loss-ratio thresholding in the fine-tuning regime
where they are more computationally feasible, or
applying the very recent work of (Bertran et al.,
2023) that uses quantile regression to approximate
a likelihood-style attack without training additional
models, in our setting is of great interest. We
conjecture that such techniques will be needed to
achieve high TPRs at very small FPRs. Another
major unresolved question in this work is why
MoPey and DetectGPT success actually scales
inversely with model size, which is likely a property
of the method, namely increasing error in the
Hutchinson trace estimator, rather larger models
having improved privacy properties. Future work
will explore other approximations to the Hessian
trace that may scale better to large model sizes.
Finally, future work could use MoPey as part of
a training data extraction attack in the style of
(Carlini et al., 2021; Yu et al., 2023; Carlini et al.,
2023b).

13655

Limitations

We now list several limitations of this work, all of
which present opportunities for future research.

* Our MoPey MIA operates in the white-box
setting that assumes access to the model
parameters #, whereas existing attacks are
typically in the black-box setting, where
only access to the model outputs or the
loss are assumed. Nevertheless, our attack
is still practical given that open source
models or even proprietary models are
often either published or leaked, and from
a security perspective it makes sense to
assume attackers could gain access to model
parameters. Moreover, the findings in
this paper have scientific implications for
the study of memorization and privacy in
language models that are orthogonal to the
consideration of attack feasibility.

* We are only able to test our techniques on
model sizes present in the Pythia suite (up
to 12B parameters), and so the question of
whether these results will scale to larger model
sizes is left open.

* We were only able to optimize over a
limited set of noise values in MoPey due to
computational reasons, and so MoPey may
perform even better with a more exhaustive
hyper-parameter search.

* Another drawback of MoPey as a practical
attack, is that computing perturbed models
can be computationally expensive at large
model sizes, potentially limiting our ability
to take enough models to accurately estimate
the Hessian trace.

Ethics Statement

We are satisfied this paper has been produced and
written in an ethical manner. While the purpose
of this paper is to demonstrate the feasibility of
privacy attacks on large language models, we did
not expose any private data in our exposition or
experiments. Moreover, all attacks were carried
out on open source models that were trained on
public data, and as a result, there was limited risk

of any exposure of confidential data to begin with.

Finally, we propose these attacks in the hope they
will spur further research on improving privacy in

language models, and on privacy risk mitigation,
rather than used to exploit existing systems.

References

John Abascal, Stanley Wu, Alina Oprea, and Jonathan
Ullman. 2023. Tmi! finetuned models leak private
information from their pretraining data.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi
Kumar, and Pasin Manurangsi. 2021a. Large-scale
differentially private bert.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi
Kumar, and Pasin Manurangsi. 2021b. Large-scale
differentially private BERT. CoRR, abs/2108.01624.

Martin Bertran, Shuai Tang, Michael Kearns, Jamie
Morgenstern, Aaron Roth, and Zhiwei Steven Wu.
2023. Scalable membership inference attacks via
quantile regression.

Stella Biderman, USVSN Sai Prashanth, Lintang
Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raf. 2023a.
Emergent and predictable memorization in large
language models.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023b.
Pythia: A suite for analyzing large language
models across training and scaling. arXiv preprint
arXiv:2304.01373.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
scale autoregressive language modeling with
meshtensorflow.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-
shot learners. In Advances in Neural Information
Processing Systems, volume 33, page 1877-1901.
Curran Associates, Inc.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang
Song, Andreas Terzis, and Florian Tramer. 2022.
Membership inference attacks from first principles.
In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1897-1914. IEEE.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023a. Quantifying memorization across neural
language models.

Nicholas Carlini, Utkarsh Kandpal, Jacob Lehman,
Nicolas Papernot, and Florian Tramer. 2023b. Lm-
extraction: A benchmark for training data extraction
from language models. https://github.com/
google-research/1lm-extraction-benchmark.

13656

http://arxiv.org/abs/2306.01181
http://arxiv.org/abs/2306.01181
http://arxiv.org/abs/2108.01624
http://arxiv.org/abs/2108.01624
http://arxiv.org/abs/2108.01624
http://arxiv.org/abs/2108.01624
http://arxiv.org/abs/2307.03694
http://arxiv.org/abs/2307.03694
http://arxiv.org/abs/2304.11158
http://arxiv.org/abs/2304.11158
https://doi.org/10.5281/zenodo.5551208
https://doi.org/10.5281/zenodo.5551208
https://doi.org/10.5281/zenodo.5551208
https://proceedings.neurips.cc/paper/2020/hash/8a1a5f2fba0c1a3f2a8e8506f65c8d41-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8a1a5f2fba0c1a3f2a8e8506f65c8d41-Abstract.html
http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/2202.07646
https://github.com/google-research/lm-extraction-benchmark
https://github.com/google-research/lm-extraction-benchmark

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B Brown, Dawn Song,
Ulfar Erlingsson, et al. 2021. Extracting training data
from large language models. In USENIX Security
Symposium, volume 6.

Christopher A. Choquette-Choo, Florian Tramer,
Nicholas Carlini, and Nicolas Papernot. 2020.
Label-only membership inference attacks. CoRR,
abs/2007.14321.

Gilad Cohen and Raja Giryes. 2022. Membership
inference attack using self influence functions.

Li Deng. 2012. The mnist database of handwritten digit
images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141-142.

Christophe Dupuy, Radhika Arava, Rahul Gupta,
and Anna Rumshisky. 2022. An efficient dp-sgd
mechanism for large scale nlp models.

Cynthia Dwork, Frank McSherry, Kobbi Nissim,
and Adam D. Smith. 2016. Calibrating noise
to sensitivity in private data analysis. J. Priv.
Confidentiality, 7(3):17-51.

Giorgio Franceschelli and Mirco Musolesi. 2021.
Copyright in generative deep learning.

Leo Gao, Stella Biderman, Sid Black, Laurence
Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.
CoRR, abs/2101.00027.

Samuel Gehman, Suchin Gururangan, Maarten
Sap, Yejin Choi, and Noah A. Smith. 2020.
Realtoxicityprompts: ~ Evaluating neural toxic
degeneration in language models. CoRR,
abs/2009.11462.

Nils Homer, Szabolcs Szelinger, Margot Redman, David
Duggan, John Tembe, Jill Muehling, John V. Pearson,
Dietrich A. Stephan, Stanley F. Nelson, and David W.
Craig. 2008. Resolving individuals contributing trace
amounts of DNA to highly complex mixtures using
high-density SNP genotyping microarrays. PLoS
Genetics, 4(8):¢1000167.

Michael F. Hutchinson. 1989. A stochastic estimator
of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics -
Simulation and Computation, 18:1059—-1076.

Daphne Ippolito, Florian Tramer, Milad Nasr,
Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
Christopher A. Choquette-Choo, and Nicholas
Carlini. 2023. Preventing verbatim memorization
in language models gives a false sense of privacy.

Abhyuday Jagannatha, Bhanu Pratap Singh Rawat,
and Hong Yu. 2021. Membership inference attack
susceptibility of clinical language models.

Matthew Jagielski, Om Thakkar, Florian Tramer,
Daphne Ippolito, Katherine Lee, Nicholas Carlini,
Eric Wallace, Shuang Song, Abhradeep Thakurta,
Nicolas Papernot, and Chiyuan Zhang. 2023.
Measuring forgetting of memorized training
examples.

Matthew Jagielski, Stanley Wu, Alina Oprea, Jonathan
Ullman, and Roxana Geambasu. 2022. How to
combine membership-inference attacks on multiple
updated models.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2022. Knowledge unlearning for mitigating
privacy risks in language models.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2022. Survey of
hallucination in natural language generation. CoRR,
abs/2202.03629.

J. A.John and N. R. Draper. 1980. An alternative family
of transformations. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 29(2):190-197.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.
Deduplicating training data mitigates privacy risks in
language models.

Eugene Kharitonov, Marco Baroni, and Dieuwke
Hupkes. 2021. How bpe affects memorization in
transformers.

Konrad Konigsberger. 2000. Analysis 2. Springer
Berlin Heidelberg.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. 2021. Deduplicating
training data makes language models better. CoRR,
abs/2107.06499.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori
Hashimoto. 2022. Large language models can be
strong differentially private learners.

Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami
Smaili, Rahul Gupta, and Richard Zemel. 2022.
Differentially private decoding in large language
models.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing
Jin, Bernhard Scholkopf, Mrinmaya Sachan, and
Taylor Berg-Kirkpatrick. 2023. Membership
inference attacks against language models via
neighbourhood comparison.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn.
2023. Detectgpt: Zero-shot machine-generated text
detection using probability curvature.

Martin Pawelczyk, Himabindu Lakkaraju, and Seth
Neel. 2022. On the privacy risks of algorithmic
recourse.

13657

http://arxiv.org/abs/2007.14321
http://arxiv.org/abs/2205.13680
http://arxiv.org/abs/2205.13680
http://arxiv.org/abs/2107.14586
http://arxiv.org/abs/2107.14586
https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.29012/jpc.v7i3.405
http://arxiv.org/abs/2105.09266
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2009.11462
http://arxiv.org/abs/2009.11462
https://doi.org/10.1371/journal.pgen.1000167
https://doi.org/10.1371/journal.pgen.1000167
https://doi.org/10.1371/journal.pgen.1000167
http://arxiv.org/abs/2210.17546
http://arxiv.org/abs/2210.17546
http://arxiv.org/abs/2104.08305
http://arxiv.org/abs/2104.08305
http://arxiv.org/abs/2207.00099
http://arxiv.org/abs/2207.00099
http://arxiv.org/abs/2205.06369
http://arxiv.org/abs/2205.06369
http://arxiv.org/abs/2205.06369
http://arxiv.org/abs/2210.01504
http://arxiv.org/abs/2210.01504
http://arxiv.org/abs/2202.03629
http://arxiv.org/abs/2202.03629
http://www.jstor.org/stable/2986305
http://www.jstor.org/stable/2986305
http://arxiv.org/abs/2202.06539
http://arxiv.org/abs/2202.06539
http://arxiv.org/abs/2110.02782
http://arxiv.org/abs/2110.02782
https://doi.org/10.1007/978-3-662-05702-5
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2107.06499
http://arxiv.org/abs/2110.05679
http://arxiv.org/abs/2110.05679
http://arxiv.org/abs/2205.13621
http://arxiv.org/abs/2205.13621
http://arxiv.org/abs/2305.18462
http://arxiv.org/abs/2305.18462
http://arxiv.org/abs/2305.18462
http://arxiv.org/abs/2301.11305
http://arxiv.org/abs/2301.11305
http://arxiv.org/abs/2211.05427
http://arxiv.org/abs/2211.05427

Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language Models
are Unsupervised Multitask Learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683.

Alexandre Sablayrolles, Matthijs Douze, Yann Ollivier,
Cordelia Schmid, and Hervé Jégou. 2019. White-
box vs black-box: Bayes optimal strategies for
membership inference.

Brihat Sharma, Yanjun Gao, Timothy Miller,
Matthew M Churpek, Majid Afshar, and Dmitriy
Dligach. 2023. Multi-task training with in-domain
language models for diagnostic reasoning. arXiv
preprint arXiv:2306.02077.

Reza Shokri, Marco Stronati, Congzheng Song, and
Vitaly Shmatikov. 2017. Membership inference
attacks against machine learning models.

Rebecca Soper. 2023. Can ai help you
build relationships? amorai thinks so.
https://techcrunch.com/2023/05/13/
ai-relationship-building-amorai/.

Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews,
and Francgoise Beaufays. 2020. Understanding
unintended memorization in federated learning.

Nikhil Vyas, Sham Kakade, and Boaz Barak. 2023.
Provable copyright protection for generative models.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan
Kambadur, David Rosenberg, and Gideon Mann.
2023. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda,
and Reza Shokri. 2021. Enhanced membership
inference attacks against machine learning models.
CoRR, abs/2111.09679.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. 2018. Privacy risk in machine learning:
Analyzing the connection to overfitting.

Weichen Yu, Tianyu Pang, Qian Liu, Chao Du, Bingyi
Kang, Yan Huang, Min Lin, and Shuicheng Yan.
2023. Bag of tricks for training data extraction from
language models.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramer, and Nicholas
Carlini. 2021. Counterfactual memorization in neural
language models.

A Additional Related Work on LLM
Privacy.

(Carlini et al., 2021; Yu et al., 2023) focus on the
problem of training data extraction from LLMs
by generating samples from the model, using loss-
based MIAs to determine if the generated point is
actually a member of the training set that has been
memorized. Both papers focus more on extraction
than explicitly evaluating membership inference
attack success, and acknowledge existing MIAs
against LLMs are relatively weak. (Jang et al.,
2022) studies the problem of unlearning a training
point from a trained model via taking gradient
ascent steps. One metric they use to determine if a
point has been unlearned is if the loss on a point x
that has been unlearned is close to the expected loss
for a test point. Our work has implications for this
kind of definition of unlearning, as our results show
that an average LOSSy value does not mean the
point cannot be easily detected as a training point.
Differentially private training (Dwork et al., 2016)
is a canonical defense against MIAs, and there
has been a flurry of recent work on private model
training in NLP (Anil et al., 2021a; Majmudar et al.,
2022; Dupuy et al., 2022). While (Li et al., 2022)
report success in fine-tuning language models with
differential privacy, it is know that privacy during
pre-training comes at a great cost to accuracy (Anil
et al., 2021b). Since pre-training with differential
privacy remains a challenge, existing work does not
provide theoretical mitigation guarantees against
our attacks on pre-trained models.

B Pythia Suite.

We identified EleutherAl’s Pythia (Biderman et al.,
2023Db) suite of models as the prime candidate for
studying membership inference attacks. Models
in the Pythia suite are trained on the Pile (Gao
et al., 2021) dataset, which is an 825GB dataset
of about 300B tokens, consisting of 22 primarily
academic sources. All our experiments are using
models trained on a version of the Pile that was
de-duplicated using MinHashLLSH with a threshold
of 0.87, which reduces the size to 207B tokens.
We perform our experiments in the de-duplicated
regime as it has been shown that the presence of
duplicated data greatly increases the likelihood
of training data memorization (Lee et al., 2021),
and so attacks in the de-duplicated setting are
significantly more compelling. We use a model
checkpoint corresponding to one full pass over the

13658

https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1908.11229
http://arxiv.org/abs/1908.11229
http://arxiv.org/abs/1908.11229
http://arxiv.org/abs/1610.05820
http://arxiv.org/abs/1610.05820
https://techcrunch.com/2023/05/13/ai-relationship-building-amorai/
https://techcrunch.com/2023/05/13/ai-relationship-building-amorai/
http://arxiv.org/abs/2006.07490
http://arxiv.org/abs/2006.07490
http://arxiv.org/abs/2302.10870
http://arxiv.org/abs/2111.09679
http://arxiv.org/abs/2111.09679
http://arxiv.org/abs/1709.01604
http://arxiv.org/abs/1709.01604
http://arxiv.org/abs/2302.04460
http://arxiv.org/abs/2302.04460
http://arxiv.org/abs/2112.12938
http://arxiv.org/abs/2112.12938

de-duplicated Pile. The data is tokenized using a
BPE tokenizer developed specifically on the Pile.
Training examples are 2048 tokens, and the batch
size used during training is 1024. In order to
maintain an apples-to-apples comparison between
train and test examples, we batch test examples
identically when evaluating our MIAs. Importantly,
the Pile contains train vs. test splits which allow
us to evaluate our MIAs, and is also annotated
with the order of points during the training of all
models which allows us to study the implications
of training order for privacy.

The models in the Pythia suite are open
source and available through Hugging Face, have
publicly available model checkpoints saved during
training, and range in size from 70m parameters
to 12B. The models follow the transformer-based
architecture in (Brown et al., 2020), with some
small modifications (Biderman et al., 2023b).

C Figure & Tables

Model | 0=.001 |c=.005| 0=.01 | 0=.05
70M | 0.6034 | 0.6069 | 0.5708 | 0.4906
160M | 0.6394 | 0.6478 | 0.5613 | 0.5121
410M | 0.5915 | 0.5958 | 0.5367 | 0.5190
1B 0.5028 | 0.5142 | 0.5924 | 0.5111
1.4B | 0.5652 | 0.5656 | 0.5502 | 0.5136
2.8B | 0.5320 | 0.5086 | 0.5109 | 0.5030

Table 2: MoPey AUC per model size and noise level o.

LOSS Value vs Iterations - 160m

—— Avg LOSS Stat in Train Batch

2.55 4

LOSS Values
o n n o
4 o £ &

n
b=}

1 le4 2e4 3e4 de4 5e4 6ed Te4 8ed %e4 9.8e4
Training Batch #
MoPe Value vs Iterations - 160m

—— Avg MoPe Stat in Train Batch
-1.56 1

-1.58 1

-1.60 4

-1.62 4

MoPe Values

3

-1.64 4

-1.66

1 led 2e4 3e4 4e4 5e4 6ed 7e4 8e4 %4 9.8ed
Training Batch #
LOSS Value vs Iterations - 1B

—— Avg LOSS Stat in Train Batch

2.12

LOSS Values
S o

1 le4 2e4 3e4 4e4 Se4 Ged 7e4 8e4 9e4 9.8e4
Training Batch #

MoPe Value vs Iterations - 1b

—— Avg MoPe Stat in Train Batch

—0.465

—0.470

—-0.475

MoPe Values

2

~0.480

—0.485

~0.490

1 le4 2e4 3e4 4E4Traimnzegatd] #694 Te4 8e4 9e4 9.8e4
Figure 7: For each batch size, we report the average
LOSSy or MoPey score over points in that batch, along
with a 95% CI for the average value for the 160M, 1B
models.

13659

LOSS predictions (z-score, log-modulus) LOSS predictions (z-score, log-modulus) LOSS predictions (z-score, log-modulus)

LOSS predictions (z-score, log-modulus)

70m

1.5 4

1.0

0.5 4

0.0

—0.5 1

-1.0 4

-1.51

2.0

1.5 4

1.01

0.5 4

0.0 4

—0.5 1

—1.0 4

=154

2.0 1

1519

1.0

0.5 4

0.0 1

—0.5 1

-1.04

2.01

1519

1.01

0.5 1

0.0

—0.5 1

-1.0 4

T T T T T
=2.0 -1.5 -1.0 —0.5 0.0 0.5 1.0
MoPe predictions (z-score, log-modulus)

160m

2.0

15 A

1.0

0.5

0.0 4

—0.5

~1.04

—1.54

2.0

15 A

1.0

0.5

0.0

—0.5 4

-1.01

—15- T T T T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

2.0 1

151

1.0

0.5 4

0.0 1

—0.54

—1.04

-15 T T T

Training L]
201 e Vvalidation

15 A

1.0 A

0.5 4

0.01

—0.5 4

~1.04

T T T
-1.5 -1.0 —-0.5 0.0 0.5 10 15
MoPe predictions (z-score, log-modulus)

Figure 8: LOSSy vs. MoPeg scatter plots across model sizes.

13660

