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Abstract

Although pre-trained language models (PLM)
have achieved great success in question answer-
ing (QA), their robustness is still insufficient to
support their practical applications, especially
in the face of distribution shifts. Recently, test-
time adaptation (TTA) has shown great poten-
tial for solving this problem, which adapts the
model to fit the test samples at test time. How-
ever, TTA sometimes causes model collapse,
making almost all the model outputs incorrect,
which has raised concerns about its stability
and reliability. In this paper, we delve into why
TTA causes model collapse and find that the
imbalanced label distribution inherent in QA is
the reason for it. To address this problem, we
propose Anti-Collapse Fast test-time adaptation
(Anti-CF), which utilizes the source model‘s
output to regularize the update of the adapted
model during test time. We further design an
efficient side block to reduce its inference time.
Extensive experiments on various distribution
shift scenarios and pre-trained language mod-
els (e.g., XLM-RoBERTa, BLOOM) demon-
strate that our method can achieve comparable
or better results than previous TTA methods at
a speed close to vanilla forward propagation,
which is 1.8× to 4.4× speedup compared to pre-
vious TTA methods. Our code is available at
https://github.com/yisunlp/Anti-CF.

1 Introduction

Pre-trained language models (PLMs) have achieved
great success on many NLP tasks (Devlin et al.,
2019; Liu et al., 2019; Lewis et al., 2020a; Raf-
fel et al., 2020; Brown et al., 2020; OpenAI, 2022,
2023; Touvron et al., 2023). However, their success
is based on the assumption that the test distribution
is consistent with the training distribution. In many
scenarios, this assumption is not true, such as ad-
versarial attack (Wang et al., 2022), cross-lingual
(Li et al., 2021), cross-domain (Ramponi and Plank,
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2020), and so on. This situation is known as distri-
bution shift. Unfortunately, even the most advanced
models currently available, such as ChatGPT, do
not perform well under the distribution shift (Ye
et al., 2023; Wang et al., 2023).

To address this problem, researchers have pro-
posed many approaches such as adversarial training
(Zhu et al., 2020; Wang et al., 2021a), data augmen-
tation (Zhou et al., 2021; Chen et al., 2021a). These
methods improve the robustness of the model by
changing the training strategy, but according to the
No Free Lunch Theorem (Wolpert and Macready,
1997), a fixed model still cannot perform perfectly
in all distribution-shifted scenarios. Therefore,
some works (Wang et al., 2021b; Sun et al., 2020;
Niu et al., 2022; Ye et al., 2022) explore how to up-
date the model during the testing phase to adapt it
to the distribution shifts of the test samples, called
Test Time Adaptation (TTA). A typical approach
(Wang et al., 2021b) uses the Shannon entropy of
the probability given by the model as the loss to
update itself. However, due to the unreliable output
of the model, TTA may accumulate erroneous in-
formation learned in test samples, leading to model
collapse and a sharp decline in model performance,
which makes TTA extremely unstable and unreli-
able in practical applications.

To solve this problem, we take QA task as an ex-
ample and investigate why TTA causes the model
collapse. Our experiments indicate that the main
reason for the model collapse is the imbalanced
label distribution of the test data. In contrast to
the direct inference, TTA exacerbates this imbal-
anced distribution, making all outputs of the model
to be a specific class. Therefore, we propose
Anti-Collapse Fast test-time adaptation (Anti-CF),
which utilizes the output of the source model as a
soft label to regularize the update of the adapted
model during test time to ensure that the adapted
model will not deviate too far from the source
model, thus avoiding model collapse.
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However, to obtain the output of the source
model and the adapted model, we need to keep
the parameters of two models and conduct forward
propagation twice, which will bring a lot of addi-
tional costs in practical applications. Therefore, we
freeze the source model and add an efficient side
block as the adapted model to reduce the cost of ad-
ditional forward propagation and back propagation.
Extensive experiments on various distribution shift
scenarios and PLMs demonstrate that our method
can achieve comparable or better results than pre-
vious TTA methods at a speed close to vanilla for-
ward propagation, which is 1.8× to 4.4× speedup
compared to previous TTA methods.

Overall, our contributions in this work include:

• We investigate why TTA causes model collapse
in QA and find that the imbalanced label distri-
bution inherent in QA is the reason for it.

• We propose Anti-Collapse Fast test-time adap-
tation (Anti-CF) to solve the problem that TTA
sometimes leads to model collapse.

• Experimental results show that Anti-CF can ef-
fectively prevent the model from collapsing with
a fast inference speed. It improves the stability
and reliability of TTA in practical applications.

2 Preliminary

In this section, we begin by introducing extractive
question answering and the application of TTA to
enhance its robustness. Subsequently, we focus on
Tent (Wang et al., 2021b) as a case to discuss the
potential risks of TTA, specifically the occurrence
of model collapse. Additionally, we conduct an
analysis of generative QA in Section 5.5.

2.1 Test-time Adaptation for Question
Answering

In extractive QA, the input of the model is a com-
bination of a context and a question. The goal is
to determine the start and end positions of the an-
swer within the context, where the text between
them represents the answer. However, in practice,
the context-question pairs are often too long to be
directly processed by the model. To address this,
we divide the context into smaller spans. For each
span, the model predicts the start and end positions
of the answer within that specific span. In cases
where the model determines that the answer does
not exist within a given span, it will output the start
and end positions of a special token, such as the

[CLS] token, indicating the absence of an answer
in that particular span.

Assume that we have training data pairs
{xis, yis}ns

i=1 ∈ Ds with the distribution Ps, where
xis ∈ Xs refers to the span-question pair and yis ∈
Ys refers to the corresponding position of the an-
swer. After successful training on the training data,
we obtain a model fθ : Xs −→ Ys. In the test phase,
we have test data samples {xit}nt

i=1 ∈ Xt with un-
derlying corresponding labels {yit}nt

i=1 ∈ Yt. The
distribution of the test data is Pt ̸= Ps. If we
use the trained model fθ to predict test samples,
the model’s performance will degrade due to the
distribution shift. Test-time adaptation provides a
promising paradigm to mitigate performance degra-
dation, which updates the model during the testing
phase to accommodate the distribution shifts of test
data. Tent (Wang et al., 2021b) and EATA (Niu
et al., 2022) use the model’s prediction probability
of the test sample as a soft label to optimize the
model by minimizing the entropy:

L(xt) = −
∑

c

p (yc|xt) log p (yc|xt) (1)

where p (yc|xt) is the probability of the c-th cate-
gory of xt.

2.2 The Risk of TTA Leading to Model
Collapse

We use XLM-RoBERTa-base (Conneau et al.,
2020) as the backbone to train a source model on
SQuAD (Rajpurkar et al., 2016) and evaluate it on
NaturalQA (Kwiatkowski et al., 2019), which is a
cross-domain setting. We compare the results of
direct inference and Tent. We experimented with
various optimizers and learning rates for Tent, as
illustrated in Figure 9. We find that no matter what
kind of optimizer and what learning rate we set,
the performance of the model will decrease. Obvi-
ously, the smaller the learning rate, the smaller the
impact of TTA on the model. However, if we set
the learning rate to be very small, this will make
TTA almost ineffective, and if we set the learning
rate to a more reasonable range, the model may col-
lapse. TTA does not always improve the robustness
of the model and even has a risk of model collapse,
which would seriously hinder the application of
TTA in real-world scenarios.

To explore why TTA causes model collapse,
we study the entropy of test data. As Figure 2
shows, the entropy of Tent sharply decreases until
approaching 0, which means the collapsed model
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Figure 1: The start positions of NaturalQA given by the model using Forward, Tent, and Anti-CF. Forward: direct
inference.
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Figure 2: The entropy of NaturalQA predicted by the
model using Forward, Tent, and Anti-CF. Forward: di-
rect inference.

makes wrong predictions with high confidence. We
further explored the start positions given by the
model (Figure 1, the ground truth and end posi-
tions can be found in the Appendix C). We find
that 0 (indicates that the answer is not in this span)
accounts for the majority. Furthermore, after using
Tent, the model’s prediction tends to be more and
more inclined towards 0, which directly leads to
almost all of the model’s predictions being incor-
rect. Therefore, the imbalanced distribution of test
labels has led to TTA leaning too much towards the
majority class during the update process, resulting
in all outputs being biased towards some specific
classes, which is why TTA causes model collapse.

3 Method

In this section, we propose Anti-collapse Fast Test-
time adaptation (Anti-CF). Anti-CF consists of two
strategies. (1) Entropy minimization with source
constraints (Section 3.1) seeks to ensure that the
adapted model does not deviate too far from the
source model, thus avoiding the occurrence of
model collapse. (2) Efficient side block (Section

3.2) aims to reduce the inference time by building
a small network next to the backbone.

3.1 Entropy Minimization with Source
Constraints

To solve the problem we mentioned in Section 2.2,
we want to use the output of the source model as a
constraint to the adapted model during test time so
that the adapted model does not deviate too far from
the source model, thus avoiding model collapse.

Like many previous TTA methods, we also
choose entropy minimization as one of our opti-
mization goals, which can be formulated as:

Le = − 1

n

n∑

i=0

∑

c

pa (yc|xi) log pa (yc|xi) (2)

where {x}ni is a batch of test samples and pa (yc|xi)
is the prediction probability of xi given by the
adapted model. We use forward Kullback-Leibler
(KL) divergence to constrain the update of the
adapted model, which will make the output of the
adapted model close to that of the source model:

Lc =
1

n

n∑

i=0

∑

c

ps(yc|xi) log
ps(yc|xi)
pa(yc|xi)

(3)

where ps (yc|xt) is the probability of the c-th cat-
egory given by the source model. We introduced
a hyper-parameter α to balance the two losses, so
the loss function of Anti-CF is:

L = (1− α)Le + αLc (4)

We can briefly analyze why Anti-CF can avoid
model collapse. Suppose model collapse has oc-
curred, with extremely low entropy like that in
Section 2.2. At this point, the first part of the loss
Le is close to 0, and the loss approximately has
only the second part Lc. Therefore, the main objec-
tive of the loss is to pull the adapted model closer
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Figure 3: The structure of efficient side block. There is
an adapter added between every two layers. Gradients
only propagate through adapters, and the backbone is
frozen. The adapted output will be used as the final
output for prediction, while the source output is only
used to constrain the update of the efficient side block.

to the source model, which effectively avoids the
occurrence of model collapse.

3.2 Efficient Side Block
To minimize Eq.4, we need to obtain the predicted
probability of the source and adapted model. How-
ever, this requires at least two forward propaga-
tion and one back propagation for each sample,
which undoubtedly dramatically increases the cost
of practical application. To break this dilemma, we
propose an efficient side block, which is plugged
into the backbone as the adapted model so that we
only need one forward propagation to obtain the
two outputs simultaneously. In addition, the gradi-
ent only back propagates through the efficient side
block, reducing the cost of back propagation.

As shown in Figure 3, the efficient side block
consists of a series of adapter modules (Houlsby
et al., 2019). We plug an adapter between every
two Transformer layers (Vaswani et al., 2017). The
input of each adapter is the combination of the
hidden state of its corresponding two layers and the
hidden state of the previous adapter:

hk = Layerk(hk−1), k = 2i, 2i+ 1 (5)

si = Adapteri(si−1 + h2i + h2i+1) (6)

where hk is the hidden state of the k-th Trans-
former layer, s is the hidden state of the i-th adapter,

i ranges from 1 to the number of layers in the ef-
ficient side block. Both h0 and s0 are initialized
as embedding outputs. For example, the XLM-
RoBERTa-large has 24 Transformer layers, we take
12 adapter modules as the side block.

When a sample is given, since the backbone
and side block are parallel, only one forward
propagation is needed to obtain the output of the
source model and the adapted model. During
back propagation, the backbone is frozen and only
the parameters of the efficient side block are up-
dated, which prevents gradient propagation in the
backbone, thus significantly accelerating the back-
propagation speed.

Since the efficient side block is additionally
plugged into the backbone in the TTA phase, it
is not trained in the training phase. Thus, its param-
eters are randomly initialized. We believe that the
efficient side block without learning task-specific
information may cause performance degradation of
TTA, so we train the efficient side block before per-
forming TTA, which we call the warmup process.
Since the warm-up phase only learns task-related
information, the warmup data can be either the
training data of the original model or other avail-
able data of the same task.

4 Experiments

4.1 Datasets and Evaluation Metrics

To verify the effectiveness of our proposed Anti-CF,
we conduct experiments in three distribution shift
scenarios: adversarial attack, cross-lingual, and
cross-domain. Datasets we use as the following:
NoiseQA (Ravichander et al., 2021) adds three
common types of noise to the SQuAD dataset (Ra-
jpurkar et al., 2018): speech recognition, keyboard
inputs, and translation systems. Then, NoiseQA
adds natural and synthetic noise, generating two
subsets named NoiseQA-syn and NoiseQA-na.
XQuAD (Artetxe et al., 2020) is a cross-lingual
QA dataset. XQuAD translates a subset of the
development set from SQuAD into ten languages.
MLQA (Lewis et al., 2020b) is also a cross-lingual
dataset. Compared to XQuAD, it annotations the
new dataset from English Wikipedia and translates
it into six languages.
MRQA (Fisch et al., 2019) is a cross-domain
dataset which includes HotpotQA (Yang et al.,
2018), NaturalQA (Kwiatkowski et al., 2019),
NewsQA (Trischler et al., 2017), SearchQA (Dunn
et al., 2017), and TriviaQA (Joshi et al., 2017).
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Models NoiseQA-syn NoiseQA-na XQuAD MLQA MRQA Avg. Time
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

xlmr-base 66.61 78.64 66.08 77.92 55.59 71.43 48.27 65.83 40.12 52.79 55.33 69.32 4.25
+Tent 68.14 79.47 67.44 78.78 56.40 71.74 48.11 65.61 20.77 32.35 52.17 65.59 9.43
+EATA 68.25 79.55 67.57 78.88 56.42 71.64 48.11 65.53 19.16 30.62 51.90 65.24 11.01
+OIL 68.36 79.55 67.74 79.01 56.69 71.92 48.28 65.62 37.65 49.60 55.74 69.14 23.07
+SAR 67.63 79.30 67.36 78.76 55.94 71.77 48.01 65.41 31.71 42.68 54.13 67.58 18.30
+Ours 68.08 79.45 67.50 78.82 56.75 71.72 48.32 65.66 40.16 52.86 56.16 69.70 5.23

xTune 70.92 81.49 69.72 80.65 58.81 73.77 50.66 67.86 43.36 56.04 58.70 71.96 4.25
+Tent 71.52 81.89 70.78 81.24 59.48 74.08 51.10 68.07 26.96 38.24 55.97 68.70 9.43
+EATA 71.49 82.01 70.67 81.14 59.36 73.91 51.30 68.24 24.51 35.70 55.47 68.20 11.01
+OIL 71.42 81.91 70.80 81.15 59.66 74.16 51.36 68.28 39.54 51.63 58.57 71.42 23.07
+SAR 70.90 81.46 70.34 80.85 59.23 73.93 51.19 68.11 36.73 48.50 57.68 70.57 18.30
+Ours 71.32 81.75 70.19 80.91 59.01 73.83 51.18 68.28 43.44 56.05 59.02 72.16 5.23

xlmr-large 65.55 79.91 64.17 78.37 63.15 78.77 54.40 72.50 46.17 59.45 58.69 73.80 12.37
+Tent 70.07 82.74 67.21 80.34 63.66 79.02 54.50 72.51 27.65 36.83 56.62 70.29 26.27
+EATA 70.59 83.03 68.37 81.07 63.65 78.97 54.60 72.52 24.87 33.43 56.42 69.81 29.94
+OIL 69.83 82.92 68.22 81.05 63.86 79.18 54.77 72.72 40.98 52.29 59.53 73.63 66.37
+SAR 69.29 82.38 67.70 80.56 63.52 78.98 54.43 72.37 46.41 59.25 60.27 74.71 52.47
+Ours 71.53 83.27 69.28 81.08 63.78 79.00 54.93 72.81 46.24 59.47 61.15 75.13 15.36

Table 1: Main results (%). We select three source models: XLM-RoBERTa-base (xlmr-base), xTune-XLM-
RoBERTa-base (xTune), and XLM-RoBERTa-large (xlmr-large). Bold: the best results.

We report the EM (Exact Match) and F1 score
for each dataset. We also provide the Time of each
TTA method, which means the time (ms) the model
requires to process a sample.

4.2 Baselines

We use the following strong baselines as a compar-
ison to verify the effectiveness of Anti-CF.
Tent (Wang et al., 2021b) updates the model by
minimizing the entropy of test samples.
EATA (Niu et al., 2022) only updates samples with
low entropy to improve the reliability of pseudo-
labels. In addition, it restricts the updating of the
model from changing too much to avoid forgetting.
OIL (Ye et al., 2022) uses a teacher-student
paradigm to increase the reliability of the pseudo-
labels. It utilizes the output of the teacher as the
pseudo-labels to guide the update of the student.
SAR (Niu et al., 2023) utilizes the sharpness-aware
optimizer to enhance the reliability of the model
updating process and enable adaptation to highly
challenging environments.

4.3 Implementation Details

In our main experiments, we utilize the XLM-
RoBERTa-base/large as the backbone model. In ad-
dition, we use xTune (Zheng et al., 2021), a strong
robustness tuning method to train a source model
on XLM-RoBERTa-base. We train the source

model on SQuAD using the default training setup
from XTREME (Hu et al., 2020).

For all baselines, to speed up TTA as much as
possible, we follow the setup of Su et al. (2023)
and only tune all LayerNorm parameters. When
reproducing EATA, we discard the step of filter-
ing redundant samples following (Niu et al., 2022)
because this method is unsuitable for NLP data.

For Anti-CF, we set the adapter’s hidden size the
same as the source model’s hidden size. Unlike
the setting in OIL, we believe that TTA should not
select a set of hyper-parameters for each test set
individually because in a complex and variable real-
world scenario, we cannot make a careful hyper-
parameter selection for each distribution shift.

We run all experiments with different random
seeds three times and take the averaged result as the
final experimental results. We tune the model with
the learning rate in {5e-5, 1e-4, 5e-4} and set the
batch size as 8. We use the validation set of SQuAD
to warmup the efficient side block for one epoch
with the learning rate of 5e-4. All experiments are
completed on NVIDIA RTX 3090 GPU. Details of
all hyper-parameters are given in Appendix B.

4.4 Main Results

Table 1 shows the main results of each TTA method.
We have the following observations:
Anti-CF can effectively avoid model collapse. On
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MRQA, Tent and EATA cause the model collapse,
resulting in a significant decrease in performance
compared to the source model, with the highest
EM decreasing by 21.3% (46.17% −→ 24.87%).
Although OIL can alleviate model collapse with
imitation learning from the mean teacher, there
will still be significant performance degradation,
at most from 46.17% to 40.98% on EM. Even the
latest baseline SAR cannot completely avoid model
collapse. However, Anti-CF has no performance
degradation on any dataset, avoiding the model col-
lapse that other TTA methods may encounter. We
also plot Anti-CF’s start position distribution (Fig-
ure 1(c)) and entropy of NatrualQA (Figure 2). We
note that the entropy on Anti-CF decreases slowly
compared to Tent, and the predictions avoid com-
pletely lean towards the majority of the labels. This
corroborates that Anti-CF can effectively prevent
the model collapse caused by TTA.

Anti-CF has superior inference speed among all
TTA methods. Anti-CF is about 1.8 times faster
than Tent, two times faster than EATA, 4.4 times
faster than OIL, 3.4 times faster than SAR, and
only about 20% slower than vanilla forward. This
speed is faster than all existing TTA methods and
has a vast advantage in real-world applications.

Anti-CF can achieve comparable or better re-
sults than other TTA methods. On the NoiseQA,
XQuAD, and MLQA datasets, each TTA method
performs well and can achieve performance im-
provements based on the source model. Anti-CF
can achieve comparable or better results than other
TTA methods without model collapse. Among
them, when using xlmr-large as the source model,
the EM of Anti-CF is 5.98% higher than that of
vanilla forward and 0.94% higher than the best per-
formance among other TTA methods on NoiseQA-
syn. On average, Anti-CF has a stable improvement
effect on all source models.

Anti-CF has great potential in real-world appli-
cations. Previously, TTA was challenging to apply
in real-world applications due to its instability. Al-
though it achieves performance improvements, it
will also sometimes causes the model to collapse,
resulting in almost all output being false, which
is unacceptable in real-world applications. Anti-
CF can avoid it. In addition, many existing TTA
methods are becoming increasingly complex, incor-
porating technologies such as contrastive learning
(Chen et al., 2022), data augmentation (Liu et al.,
2021; Zhang et al., 2022), and knowledge distilla-
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Figure 4: Effect of learning rate.

tion (Ye et al., 2022), resulting in a much slower
inference speed than vanilla forward, increasing
its cost in real-world applications. The inference
speed of Anti-CF is close to vanilla forward, which
can meet the speed needs of practical applications.

5 Further Analysis

5.1 Effects of the Learning Rate
The learning rate is a very important hyper-
parameter of TTA. Choi et al. (2022) shows that a
large learning rate may cause the model to collapse,
while a small learning rate can make TTA almost
ineffective. However, careful hyper-parameter se-
lection for TTA during test time is not feasible in
practice. Therefore, an advanced TTA approach
should be less sensitive to the learning rate. We
use the XLM-RoBERTa-base as the source model
to test the sensitivity of each TTA method to the
learning rate on the XQuAD dataset. The result
is shown in Figure 4. We can observe that Tent,
EATA and SAR are very sensitive to the learning
rate. With the increase in the learning rate, the per-
formance of them drops rapidly after reaching the
maximum, which indicates that they are prone to
model collapse under a large learning rate. OIL per-
forms better than Tent, EATA and SAR, but it still
rapidly deteriorates after maintaining performance
for a while. In contrast, Anti-CF is less sensitive to
the learning rate. As the learning rate increases, the
performance of Anti-CF will slowly decline until it
approaches the performance of the source model.

5.2 Effects of α
α is an important hyper-parameter of Anti-CF, sig-
nificantly influencing the results. To thoroughly in-
vestigate its impact, we conduct experiments on the
NaturalQA dataset. Figure 5 shows the effects of α.
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Figure 6: EM and F1 of Anti-CF under different quanti-
ties of warmup data.

When α is set to 0, indicating that Anti-CF does not
impose any constraints on the adapted model, the
model quickly collapses. However, even a slight in-
crease in α, such as 0.1, provides enough constraint
to prevent the model from collapsing, resulting in
a remarkable improvement in the EM score from
1.42% to 42.69%. This change demonstrates the
effectiveness of Anti-CF.

5.3 Effects of Warmup Data

We explore the impact of the amount of warmup
data on Anti-CF. We use xlmr-large as the source
model on the NoiseQA-syn dataset and conducted
experiments with different amounts of warmup
data. We randomly sample the warmup data from
the validation set of SQuAD. As shown in Figure
6, even if we do not perform warmup, Anti-CF
still achieves performance over direct inference,
which may be because source constraints make the
efficient side block learn the knowledge from the
source model in the process of TTA. As the amount
of warmup data grows, Anti-CF performs better,
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Figure 7: Memory usage of various TTA methods.

and when the amount of warmup data reaches the
thousand level, the performance of Anti-CF reaches
a plateau. It indicates that warmup is essential to
harness the power of Anti-CF and is data-efficient,
requiring only hundreds or thousands of samples
to achieve exciting performance gains when data
resources are limited. We speculate that because
the model capacity of the efficient side block is
small, there is less demand for training data.

5.4 Memory Usage for TTA Methods.

In practical applications, TTA requires additional
memory, which poses challenges when deploying
on lightweight devices with limited memory re-
sources. We discover that the efficient side block
of Anti-CF can potentially solve this problem by
reducing the memory required for back propaga-
tion. To demonstrate this, we record the mem-
ory required by each TTA method in Figure 7. It
is evident that Anti-CF incurs minimal additional
memory compared to vanilla forward. This is be-
cause Anti-CF does not require passing through
the backbone during back propagation and does
not need to record gradients within it. In contrast,
Tent and EATA require approximately twice the
amount of memory. Furthermore, OIL maintains
the state of teacher and student models, resulting
in a significant memory requirement. This renders
OIL almost impractical for real-world applications.
Thus, the memory efficiency of Anti-CF makes it
a promising choice for deployment, especially in
resource-constrained scenarios.

5.5 Applications in Generative QA

With the recent amazing progress in generative
large language models (LLMs), generative QA is
becoming increasingly valuable for research and
application. In light of this, we also investigate the
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Figure 8: Probability distribution of tokens generated
in BLOOM. The ordinate represents the sum of the
probabilities of generating the top-k tokens.

Model NoiseQA-syn NoiseQA-na

Bloom 48.77 48.12

Tent 49.08 48.85

Ours 50.70 49.83

Table 2: EM on NoiseQA.

potential of TTA, especially Anti-CF in it.
We train BLOOM-1.7b (Scao et al., 2022) on

the SQuAD dataset using a generative QA setup.
Firstly, we study the distribution of generated to-
kens in generative QA. We employ three methods
during inference: direct inference, Tent, and Anti-
CF. For each method, we record the probability
of each token appearing throughout the inference
process. We then sum the probabilities of the top-k
tokens. The results of this analysis are presented
in Figure 8. The analysis reveals the presence of
an imbalanced label distribution in generative QA.
High-frequency words are easier to be generated
by LLMs. Moreover, Tent will still exacerbate the
imbalance. However, by utilizing Anti-CF, this
problem can be alleviated to some extent. Anti-CF
helps mitigate the imbalanced label distribution’s
effects and promotes a more balanced generation of
words during the inference process. Table 2 shows
the EM score of each method on NoiseQA. From
the results, we can see that the effect of Anti-CF is
better than that of Tent. TTA can still play a role in
generative LLMs, and applying TTA in LLMs is a
feasible path with great potential.

6 Related Work

Test-Time Adaptation Test-Time Adaptation
(TTA) is a promising paradigm to deal with the

distribution shift. TTA uses self-supervised signals
to update the model at the inference stage. It has
achieved surprising performance in various tasks
(Liang et al., 2023). Depending on whether or not
modifying the objectives of the training phase and
accessing the training data, TTA can be divided
into test-time training and fully test-time adapta-
tion. Test-time training (Sun et al., 2020; Liu et al.,
2021; Bartler et al., 2022; Gandelsman et al., 2022;
Chen et al., 2022) is dedicated to designing a distri-
bution shift-aware auxiliary task during the training
phase and using this task to update the model dur-
ing the testing phase. On the other line, the fully
test time adaptation (Wang et al., 2021b) updates
the model with test data using a self-training strat-
egy without modifying the training process. How-
ever, fully test-time adaptation faces performance
degradation due to the low quality of pseudo or soft
labels, so current works (Niu et al., 2022; Zhang
et al., 2022; Jang and Chung, 2022; Gong et al.,
2022; Niu et al., 2023; Song et al., 2023) focus on
improving the quality of pseudo-labels, designing
more robust and efficient tuning methods. In NLP,
TTA has also attracted researchers’ attention. Ye
et al. (2022) first evaluate the effectiveness of fully
test-time adaptation in the QA task and introduce
an imitation learning paradigm to ensure the quality
of pseudo-labels.

Robustness NLP Training a sufficiently robust
model is a prerequisite for the practical application
of a trustworthy NLP system. Wang et al. (2022)
divide robustness in NLP into two categories: ad-
versarial robustness under artificial attacks and nat-
urally occurring distribution shifts. For adversarial
robustness, researchers (Ebrahimi et al., 2018; Li
et al., 2018; Alzantot et al., 2018; Jia et al., 2019;
Garg and Ramakrishnan, 2020; Li et al., 2020; Lin
et al., 2021; Ravichander et al., 2021) have pro-
posed many methods for constructing adversarial
attack samples to evaluate the model’s adversarial
robustness. In NLP, naturally occurring distribu-
tion shifts also have rich real-world scenarios, such
as cross-lingual (Hu et al., 2020; Jafari et al., 2021;
Zheng et al., 2021; Yang et al., 2022; Mao et al.,
2022), cross-domain (Hendrycks et al., 2020; Ram-
poni and Plank, 2020; Malinin et al., 2021), and
on different styles of text. Many robustness tuning
methods are proposed to improve the robustness of
NLP models, such as data augmentation (Kaushik
et al., 2020; Khashabi et al., 2020; Chen et al., 2020,
2021b; Zhou et al., 2021) and adversarial training
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(Miyato et al., 2017; Madry et al., 2018; Zhu et al.,
2020; Wang et al., 2021a).

7 Conclusion

In this paper, we attempt to improve the robustness
of QA models by testing time adaptation (TTA)
but find that TTA causes the models collapse. We
thoroughly investigate why previous TTA methods
cause the model collapse and find that the imbal-
anced label distribution is the main reason. We ad-
dress this problem by adding constraints between
the source and adapted model during the TTA pro-
cess. We also design an efficient side block to speed
up the inference time. Sufficient experimental re-
sults show that our proposed method is effective
and efficient, making TTA a big step closer to being
applied in real-world scenarios.

Limitations

Although our proposed Anti-CF has made signif-
icant progress in terms of stability and inference
efficiency compared with existing TTA methods,
there are still some limitations:

• Anti-CF constrains the adapted model’s predic-
tion with the source model’s prediction, which
prevents TTA from model collapse and effec-
tively improves the lower bound of the model
performance. However, the source model tends
to perform poorly under distribution shift, and a
strong constraint similar to KL divergence can
limit the upper bound of the model performance.
The experimental results in Table 1 also imply
this limitation. Therefore, we will explore more
flexible constraints in the future.

• In this paper, we empirically design the efficient
side block without exploring the impact of its
structure and capacity on the performance of
TTA. The side block still has great potential to
be explored, and we hope that future work will
focus on this aspect.

• In this paper, we only validate the effectiveness of
Anti-CF in extractive and generative QA. How-
ever, Anti-CF is task-independent and model-
independent, so we believe that Anti-CF is also
applicable to other NLP tasks and pre-trained lan-
guage models. But we do not verify it because of
time and computing power constraints. We will
further validate the generalizability of Anti-CF
in the future.
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Figure 9: EM (%) on NaturalQA of Forward and Tent
under different optimizers and learning rates.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced ad-
versarial training for natural language understanding.
In International Conference on Learning Representa-
tions.

A The Impact of Different Optimizers
and Learning Rates on Tent

B Hyper parameters

Table 3 shows the detail of hyper parameters.

Methods xlmr-base xTune xlmr-large

Tent LR: 5e-5 LR: 5e-5 LR: 5e-5

EATA
LR: 5e-5
β: 1/2000

E0: 0.4ln(512)

LR: 5e-5
β: 1/2000

E0: 0.4ln(512)

LR: 5e-5
β: 1/2000

E0: 0.4ln(512)

OIL

LR: 1e-4
K: 1
γ: 0.5
α: 0.99
β: 1

LR: 1e-4
K: 1
γ: 0.5
α: 0.99
β: 1

LR: 5e-4
K: 1
γ: 0.5
α: 0.99
β: 1

SAR

LR: 1e-4
Em: 0.9
ρ: 0.05

E0: 0.4ln(512)

LR: 1e-4
Em: 0.9
ρ: 0.05

E0: 0.4ln(512)

LR: 5e-4
Em: 0.9
ρ: 0.05

E0: 0.4ln(512)

Ours
LR: 5e-5
α: 0.2

LR: 5e-5
α: 0.2

LR: 5e-5
α: 0.01

Table 3: Details of hyper parameters.

C Other start and end positions

Figure 10 shows the start positions of ground truth
on NaturalQA and Figure 11 shows the end posi-
tions.
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Figure 10: Ground truth of start positions on NaturalQA.
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Figure 11: The end positions of NaturalQA given by the
model.

D Further analysis on Named Entity
Recognition (NER)

In cases where the label distribution in the test
dataset is extremely imbalanced, most TTA meth-
ods can lead to model collapse, and Anti-CF can
effectively avoid this situation. Based on this idea,
we design the following experiment.

We have extended Anti-CF to NER. We use
RockNER (Lin et al., 2021) to conduct our experi-
ment , which is generated from entity-level adver-
sarial attacks on the OntoNotes (Weischedel et al.,
2013) dataset. We want to demonstrate that Anti-
CF can effectively improve model performance on
RockNER and will not collapse in extreme situa-

Methods RockNER Corrupted Time

BERT-base 56.9 56.9 0.51
+Tent 60.6 10.7 1.71
+EATA 60.5 15.7 1.80
+OIL 58.3 56.8 4.25
+Ours 60.2 58.0 0.78

Table 4: Results on NER.
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tions. To prove the second point, we artificially
corrupted RockNER by placing samples with more
’O’ in front of it. The model will first infer and
update samples labelled with more ’O’, making the
model easier to collapse due to this extreme label
distribution. The results are shown in Table 4.
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