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Abstract

Large language models (LLMs) pretrained on
vast source code have achieved prominent
progress in code intelligence. However, ex-
isting code LLMs have two main limitations.
First, they often adopt a specific architecture
(encoder-only or decoder-only) or rely on a
unified encoder-decoder network for different
downstream tasks, lacking the flexibility to op-
erate in the optimal architecture for a specific
task. Secondly, they often employ a limited
set of pretraining objectives which might not
be relevant to some tasks and hence result in
substantial performance degrade. To address
these limitations, we propose “CodeT5+”, a
family of encoder-decoder LLMs for code in
which component modules can be flexibly com-
bined to suit a wide range of code tasks. Such
flexibility is enabled by our proposed mixture
of pretraining objectives, which cover span de-
noising, contrastive learning, text-code match-
ing, and causal LM pretraining tasks, on both
unimodal and bimodal multilingual code cor-
pora. Furthermore, we propose to initialize
CodeT5+ with frozen off-the-shelf LLMs with-
out training from scratch to efficiently scale up
our models, and explore instruction-tuning to
align with natural language instructions. We
extensively evaluate CodeT5+ on over 20 code-
related benchmarks in different settings, in-
cluding zero-shot, finetuning, and instruction-
tuning. We observe state-of-the-art (SoTA) per-
formance on various code-related tasks, and
our instruction-tuned CodeT5+ 16B achieves
new SoTA results of 35.0% pass@1 and 54.5%
pass@10 on the HumanEval code generation
task against other open code LLMs, even sur-
passing the OpenAl code-cushman-001 model.

1 Introduction

Large language models (LLMs) (Chen et al., 2021;
Wang et al., 2021b; Nijkamp et al., 2023b) have re-
cently demonstrated remarkable success in a broad

*Equal contribution. Corresponding authors: {wang.y,
hungle, shoi}@salesforce.com

set of downstream tasks in the code domain (Husain
etal., 2019; Lu et al., 2021; Hendrycks et al., 2021).
By pretraining on massive code-based data (e.g.
GitHub public data), these code LLMs can learn
rich contextual representations which can be trans-
ferred to various code-related downstream tasks.
However, we found that many existing models are
designed to perform well only in a subset of tasks.
We argue that this is mainly due to two limitations
in terms of architecture and pretraining tasks.

From an architectural perspective, existing code
LLMs often adopt encoder-only or decoder-only
models that perform well only on certain under-
standing or generative tasks. Specifically, encoder-
only models (Feng et al., 2020; Guo et al., 2021)
are often used to facilitate understanding tasks such
as text-to-code retrieval (Lu et al., 2021). For gen-
erative tasks such as code generation (Chen et al.,
2021; Hendrycks et al., 2021), decoder-only mod-
els (Chen et al., 2021; Nijkamp et al., 2023b) often
demonstrate stronger performance. However, these
decoder-only models are often not ideal for under-
standing tasks such as detection tasks compared to
encoder-only models (Nijkamp et al., 2023a).

Besides, several models have adopted more uni-
fied encoder-decoder architectures (Wang et al.,
2021b; Ahmad et al., 2021) to adapt to different
types of tasks. While these models can support both
understanding and generative tasks, they still suf-
fer from suboptimal performance on certain tasks.
Guo et al. (2022) found that encoder-decoder mod-
els fail to beat (state-of-the-art) SOTA encoder-only
or decoder-only baselines on retrieval and code
completion tasks respectively. This shortfall is due
to the limitation of the single-module architecture
generally adapted to all tasks. In summary, prior
approaches are not designed with compositionality
such that individual components can be activated
to better suit different types of downstream tasks.

From a learning objective perspective, current
models employ a limited set of pretraining tasks.
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Figure 1: An overview of our CodeT5+, a family of code LLMs for code understanding and generation.

These tasks can lead to performance degrade on
certain downstream tasks due to the discrepancy
between the pretraining and finetuning stage. For
instance, T5-based models such as (Wang et al.,
2021b) are often trained with a span denoising ob-
jective. However, in downstream tasks such as
code generation (Chen et al., 2021; Hendrycks
et al., 2021), most SoTA models are pretrained
with a next-token prediction objective which auto-
regressively predicts a program token by token.
Furthermore, many models are not trained to learn
contrastive code representations that are vital for
understanding tasks such as text-to-code retrieval.
Although recent attempts (Guo et al., 2022; Wang
et al., 2021a) introduce a contrastive learning task
to alleviate this issue, these approaches ignore the
fine-grained text-code cross-modal alignments.

To address the above limitations, we propose
“CodeT5+”, a new family of encoder-decoder code
foundation LLLMs for a wide range of code un-
derstanding and generation tasks (see Fig. 1 for
an overview). Despite being an encoder-decoder
based model, our CodeT5+ can flexibly operate in
encoder-only, decoder-only, and encoder-decoder
modes to suit different downstream applications.
Such flexibility is enabled by our proposed pretrain-
ing tasks, which include span denoising and causal
language modeling (CLM) tasks on code data and
text-code contrastive learning, matching, and CLM
tasks on text-code data. We found that such a wide
set of pretraining tasks can help learn rich repre-
sentations from both code and text data, and bridge
the pretrain-finetune gap in various downstream
applications. Besides, we show that the integration
of the matching task with contrastive learning is
crucial to capture the fine-grained text-code align-
ments and improve retrieval performance.

Furthermore, we scale up the model size of

CodeT5+ with a compute-efficient pretraining strat-
egy by leveraging off-the-shelf code LLMs to ini-
tialize the components of CodeT5+. Specifically,
we employ a “shallow encoder and deep decoder”
architecture (Li et al., 2022b), where both encoder
and decoder are initialized from pretrained check-
points and connected by cross-attention layers. We
freeze the deep decoder LLM and only train the
shallow encoder and cross-attention layers, largely
reducing the number of trainable parameters for
efficient tuning. Finally, recent work in the NLP do-
main (Taori et al., 2023; Wang et al., 2022; Ouyang
et al., 2022) inspired us to explore CodeT5+ with
instruction tuning to better align the models with
natural language instructions.

We extensively evaluate CodeT5+ on over 20
code-related benchmarks under various settings,
including zero-shot, finetuning, and instruction-
tuning. Results show that CodeT5+ yields sub-
stantial performance gains on many downstream
tasks compared to their SOTA baselines, e.g., 8
text-to-code retrieval tasks (43.2 avg. MRR), 2
line-level code completion tasks (42.1 avg. Exact
Match), and 2 retrieval-augmented code generation
tasks (45.8 avg. BLEU-4). In 2 math program-
ming tasks on MathQA and GSM8K benchmarks
(Austin et al., 2021; Cobbe et al., 2021), CodeT5+
models of below billion-parameter sizes signifi-
cantly outperform many LLMs of up to 137B pa-
rameters. Particularly, in the zero-shot text-to-code
generation task on HumanEval benchmark (Chen
et al., 2021), our instruction-tuned CodeT5+ 16B
sets new SO0TA results of 35.0% pass@1 and 54.5%
pass @10 against other open code LLMs, even sur-
passing the closed-source OpenAl code-cushman-
001 model. Finally, we showcase that CodeT5+
can be seamlessly adopted as a semi-parametric
retrieval-augmented generation system.
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Figure 2: Model architecture of CodeT5+. S1: first stage pretraining with unimodal code data, S2: second stage
pretraining with bimodal code-text data. The diagram on the right shows our proposed compute-efficient training
with frozen code LLMs to scale up the model. We employ a “shallow encoder and deep decoder’” architecture and
only keep the small encoder and the cross-attention layers trainable while freezing the deep decoder LLM.

2 Related Work

Following the success of LLMs such as BERT (De-
vlin et al., 2019) and GPT (Radford et al., 2019)
in natural language processing (NLP), recent years
witness a surge of research work of LLMs in the
code domain, leading to new SoTA results on vari-
ous code-related tasks. Typically, code LLMs can
be categorized into three architectures: encoder-
only models (Feng et al., 2020), decoder-only mod-
els (Chen et al., 2021; Nijkamp et al., 2023b),
and encoder-decoder models (Ahmad et al., 2021;
Wang et al., 2021b). For encoder-only and decoder-
only models, they are often ideal for either un-
derstanding tasks such as code retrieval (Husain
et al., 2019) or generation tasks such as code syn-
thesis (Chen et al., 2021) respectively. For encoder-
decoder models, they can be adapted to both code
understanding and generation but do not always
achieve better performance (Wang et al., 2021b).
In this work, we propose a new family of encoder-
decoder code LLMs “CodeT5+” that can flexibly
operate in various modes, including encoder-only,
decoder-only, and encoder-decoder models.

Prior code LLMs are also limited by their pre-
training tasks, which are not perfect to transfer the
models to some downstream tasks. For instance,
T5-based models such as (Wang et al., 2021b) pre-
trained with span denoising objective are not ideal
for auto-regressive generation tasks like next-line
code completion (Guo et al., 2022), as these models
are trained to recover short spans of limited lengths
rather than a whole program.! Inspired by recent

1Tabachnyk and Nikolov (2022); Fried et al. (2022) demon-
strated using encoder-decoder models for infilling-style code
completion, in which code context after the cursor is provided.

advances in NLP research (Tay et al., 2022; Soltan
et al., 2022), we explore to combine span denoising
with CLM tasks to improve the model with better
causal generation capability (Le et al., 2022). Addi-
tionally, most models do not have specific pretrain-
ing tasks (e.g. contrastive learning) to facilitate the
learning of contextual representations that can dis-
tinguish code samples of different semantics. This
can lead to suboptimal performance on code un-
derstanding tasks like code retrieval (Husain et al.,
2019). In light of this, we include a contrastive
learning task to learn better unimodal representa-
tions and a matching task to learn richer bimodal
representations, which has been shown helpful in
vision-language retrieval tasks (Li et al., 2021).

3 CodeT5+: Open Code LLLMs

We develop CodeT5+, a new family of open code
LLMs for code understanding and generation tasks
(see Fig. 1 for an overview and more architec-
ture/pretraining details in Fig. 2 and Fig. 3). Based
on the encoder-decoder architecture (Wang et al.,
2021b), CodeT5+ is enhanced with the flexibility to
operate in various modes for different downstream
tasks through our proposed mixture of pretraining
objectives, which are performed on two stages of
pretraining on unimodal (Sec. 3.1) and bimodal
data (Sec. 3.2). We found that this stage-wise train-
ing approach can efficiently expose our models to
more diverse data to learn rich contextual represen-
tations. Finally, we explore initializing CodeT5+
with off-the-shelf code LLMs to efficiently scale up
the model without training from scratch (Sec. 3.3).

Such code completion setting is not the focus of this work.
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def get [MASKO] (arr, n, sum):
[MASK1]
count = 0
for i in [MASK2], n):
for j in range(i + 1, n):
if arr[i] [MASK3]== sum:

count += 1

return count

[CIM] def getPairsCount (arr, n, sum):

count = 0
for i in range (0, n):

CodeT5+

[MASKO] PairsCount [MASK1] with sum
equal [MASK2] range (0 [MASK3] + arr[j]

def getPairsCount (arr, n, sum):

count = 0
for i in range (0, n):
for j in range(i + 1, n):
if arr[i] + arr[j] == sum:
count += 1
return count

if arr[i] + arr[j] == sum:

for j in range(i + 1, n):
count += 1

return count

Figure 3: Self-supervised pretraining on code data: we pretrain CodeT5+ on code data using a mixture of tasks:
(i) span denoising (Top); (ii) decoder-only causal LM (Middle); and (iii) Seq2Seq causal LM (Bottom). This mixture
of tasks lets the models learn meaningful representations of code contexts and recover missing information at
different levels: code spans, partial programs, and complete programs.

3.1 Unimodal Pretraining on Code Data

In the first stage, we pretrain CodeT5+ on large-
scale code unimodal data, which can be obtained
from open-source platforms like GitHub. Although
such data also contain texts such as user-written
code comments, we denote unimodal data to dis-
tinguish them with bimodal data of text-code pairs
in the second pretraining stage. In this stage, we
pretrain the model from scratch using a mixture of
span denoising and CLM tasks as shown in Fig. 3.
These tasks enable the model to learn to recover
code contexts at different scales: code spans, par-
tial programs, and complete programs.

Span Denoising. Similar to T5 (Raffel et al.,
2020), we randomly replace 15% of the tokens
with indexed sentinel tokens (like [MASK®@]) in the
encoder inputs, and require the decoder to recover
them via generating a combination of these spans.
We follow CodeT5 to employ whole-word masking
by sampling spans (span lengths determined by a
uniform distribution with a mean of 3) before sub-
word tokenization to avoid masking partial words.

Causal Language Modeling (CLM). Inspired
by Tay et al. (2022); Soltan et al. (2022), we intro-
duce two variants of CLM to optimize our model
for auto-regressive generation. In the first variant,
we randomly select a pivot location and regard the
context before it as the source sequence and the
sequence after it as the target output. We denote
this variant as a sequence-to-sequence (Seq2Seq)
causal LM objective. We restrict the pivot location
to be uniformly sampled between 10% and 90% of
the whole sequence and prepend a special token
[CLM] to the source sequence. The second CLM
variant is a decoder-only generation task, where
we always pass a [CLM] token to the encoder input
and require the decoder to generate the full code

sequence. This task aims to provide more dense
supervision signals to train the decoder as an inde-
pendent full-fledged code generation module.

3.2 Bimodal Pretraining on Text-code Data

In the second stage, we pretrain the model using
text-code bimodal data at function level (Husain
et al., 2019). In this setting, each text-code pair
contains a code function and its corresponding doc-
string describing its semantics. Such a bimodal
data format facilitates model training for cross-
modal understanding and generation. The bimodal
pretraining tasks consist of cross-modal contrastive
learning, matching, and causal LM tasks (Fig. 2).
See Appendix A for their detailed formulations.

Text-Code Contrastive Learning. This task
aims to align the feature space of text and code rep-
resentations by pulling together the representations
of positive text-code pairs and pulling apart the
negative pairs. Guo et al. (2022) demonstrated the
benefits of such learning task for code understand-
ing. This task only activates the encoder, which
encodes a text or code snippet into a representation
through bidirectional self-attention (Vaswani et al.,
2017). Similar to BERT (Devlin et al., 2019), we
prepend a special token [CLS] to the input and re-
gard its output embeddings at the final layer as the
representations of the corresponding input text or
code. We further add a linear layer and use L2 nor-
malization to map the output to 256-d embeddings.
To enrich the negative samples, we use a momen-
tum encoder to store embeddings of samples from
previous mini-batches, as similarly adopted by (He
et al., 2020; Li et al., 2022a). Specifically, the mo-
mentum encoder maintains a queuing system that
enqueues the samples in the current mini-batch and
dequeues the samples in the oldest mini-batch.
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Text-Code Matching. This task activates the de-
coder and aims to predict whether a text and code
snippet share the same semantics. Such task en-
ables model to learn better bimodal representations
that capture the fine-grained alignment between
text and code modalities. Given a code sample, the
decoder first passes it to an embedding layer and a
causal self-attention layer. The representations are
then passed to a cross-attention layer which queries
relevant signals from the text representations (re-
ceived from the encoder). A task-specific [Match]
token is prepended to the code input sequence to
inform the decoder of the text-code matching func-
tionality, and an [EOS] token is appended to the
end of the code input. Since the decoder employs
causal self-attention masks and only the last de-
coder token can attend to the whole context, we
treat the output embedding of [EOS] at the last
layer as the text-code alignment representation. Fi-
nally, we use a linear layer on top of the output
embedding of the decoder for a binary matching
task, predicting whether a text-code pair is positive
(matched) or negative (unmatched).

Text-Code Causal LM. This task activates both
encoder and decoder and focuses on a cross-modal
generative objective through a dual multimodal con-
version: text-to-code generation and code-to-text
generation. Specifically, when the input is a text
sample, we prepend a [CDec] token to the input
sequence to the decoder. In this case, the decoder
operates under code generation functionality. Al-
ternatively, when the input is a code sample, we
prepend a [TDec] token to the input sequence to
the decoder. The decoder operates under text gener-
ation functionality in this case. This type of Causal
LM has been shown to be an effective learning
objective to close the pretrain-finetune gap for gen-
erative downstream tasks (Wang et al., 2021b).

3.3 Compute-efficient Pretraining with
Frozen Off-the-shelf LLLMs

To efficiently scale up the model without the need
of pretraining from scratch, we propose a compute-
efficient pretraining strategy to initialize model
components (i.e. encoder and decoder) of CodeT5+
with off-the-shelf pretrained LLMs (Nijkamp et al.,
2023Db) (see the rightmost diagram of Fig. 2). For
this extension, inspired by (Li et al., 2022b), we
employ a “shallow encoder and deep decoder” ar-
chitecture instead of encoder and decoder of the
same size in conventional TS5 models (Raffel et al.,

2020; Wang et al., 2021b). As noted by Li et al.
(2022b), the decoder is often required to deal with
a higher level of complexity in generation tasks and
thus, should be enhanced with more parameters.

To connect the separately pretrained encoder
and decoder, we insert randomly initialized cross-
attention layers to decoder blocks after the self-
attention layers. For efficient tuning, we only insert
cross-attention layers to the top-L decoder layers
(L=1 in our experiments). We only keep the small
encoder and cross-attention layers trainable while
freezing the majority of the decoder parameters.
We also explored other advanced designs such as
adding a gating function to improve training sta-
bility or inserting multiple cross-attention layers at
a certain frequency (Alayrac et al., 2022). How-
ever, we did not observe significant performance
improvement and these design choices would intro-
duce too expensive computation overhead.

3.4 Adaptation to Downstream
Understanding and Generation Tasks

After the two stages of pretraining, CodeT5+ can
flexibly operate in various modes to support dif-
ferent tasks, including Seq2Seq generation tasks,
decoder-only tasks, and understanding-based tasks:

Seq2Seq Generation Tasks. As an encoder-
decoder model, CodeT5+ can be naturally adapted
to a variety of Seq2Seq generation tasks such
as code generation and summarization. We also
adapt CodeT5+ as a retrieval-augmented genera-
tion model, using the encoder to retrieve code snip-
pets, which are then used by both the encoder and
decoder for code generation.

Decoder-only Tasks. In this setting, we always
feed a [CLM] token to the encoder input and pass
the source sequence to the decoder as the prefix
context. We freeze the weights of the encoder
and the cross-attention layers in the decoder. This
strategy only activates parts of the decoder and re-
duces about half of the total model parameters. We
use next-line code completion tasks to evaluate the
decoder-only generation capability of CodeT5+.

Understanding Tasks. CodeT5+ can support
these understanding tasks in two ways: first, it em-
ploys the encoder to obtain text/code embeddings,
which can be either passed to a binary classifier for
detection tasks; alternatively, the encoder can be
combined with the decoder to predict the text-code
matching scores for text-to-code retrieval tasks.
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4 Pretraining and Instruction Tuning

Additional pretraining and finetuning setups can be
found in Appendix B, C, and E.

Pretraining Dataset. We enlarge the pretrain-
ing dataset of CodeSearchNet (Husain et al., 2019)
with the recently released GitHub Code dataset?.
We select nine PLs (Python, Java, Ruby, JavaScript,
Go, PHP, C, C++, C#) and filter the dataset by
preserving only permissively licensed code® and
files with 50 to 2000 tokens. Besides, we filter
out the overlapped subset with CodeSearchNet and
other downstream tasks covered in our evaluation
by checking their GitHub repository names. Note
that although we employ the deduplicated data ver-
sion in which duplicates are filtered out based on
the exact match, there might be some potential re-
maining duplicates. However, we do not expect
any remaining duplication will impact our model
performance significantly. We use the CodeT5 tok-
enizer to tokenize the multilingual dataset, resulting
in 51.5B tokens, ~50x larger than CodeSearchNet.

Pretraining Setup. We pretrained two groups
of CodeT5+ models: 1) CodeT5+ 220M and 770M
that are trained from scratch following T5’s archi-
tecture (Raffel et al., 2020) (T5-base and large re-
spectively), 2) CodeT5+ 2B, 6B, 16B in which the
decoders are initialized from CodeGen-mono 2B,
6B, 16B models (Nijkamp et al., 2023b) and its en-
coders are initialized from CodeGen-mono 350M.
Note that following our model scaling strategy, the
latter group of CodeT5+ models introduce insignif-
icant trainable parameters (the 350M encoder plus
one cross-attention layer of 36M, 67M, 151M for
2B, 6B, 16B models respectively) compared to the
original CodeGen models. We employ the CodeT5
tokenizer and CodeGen tokenizer for these two
groups of models respectively. In pretraining, we
adopt a stage-wise strategy to pretrain CodeT5+
first on the large-scale unimodal dataset and then
on the smaller bimodal dataset on a cluster with 16
A100-40G GPUs on Google Cloud Platform.

Instruction Tuning. In the NLP domain, recent
work (Wang et al., 2022; Taori et al., 2023) stud-
ied the benefits of data augmentation techniques
on pretrained LMs with synthetic instruction data.
Models finetuned with this type of data can bet-
ter understand natural language instructions and

2https://huggingface.co/datasets/codeparrot/
github-code

SPermissive licenses: “mit”, “apache-27, “bsd-3-clause”,
“bsd-2-clause”, “cc0-1.0”, “unlicense”, “isc”

demonstrate improved alignment with the corre-
sponding tasks (Wang et al., 2022; Ouyang et al.,
2022). We are motivated to transfer this technique
to the code domain to improve our CodeT5+ mod-
els. Following Taori et al. (2023), we employ over
20k instruction data in the code domain curated
by Chaudhary (2023). The data is generated by
letting pretrained LLMs i.e. text-davinci-003, gen-
erate novel tasks, including task instructions, in-
puts (if any), and expected outputs. We trained
our models on this augmented dataset for up to 3
epochs and denote the instruction-tuned models as
“InstructCodeT5+”. Note that the instruction data
are generated fully independently from any down-
stream evaluation tasks and we still evaluate these
models in a zero-shot manner.

S Experiments

We extensively evaluate CodeT5+ on a wide range
of code understanding and generation tasks over
20+ code-related datasets across 9 different pro-
gramming languages (PLs). In addition, we con-
sider a variety of evaluation settings including zero-
shot, instruction tuning, task-specific finetuning.
Additional results can be found in Appendix D.
Baselines. We developed a family of CodeT5+
models, with model sizes ranging from 220M to
16B. We compare CodeT5+ with 3 types of models:
encoder-only, decoder-only, and encoder-decoder.

* For encoder-only models, we consider
RoBERTa (Liu et al., 2019), CodeBERT (Feng
et al.,, 2020), GraphCodeBERT (Guo et al.,
2021), SYNCOBERT (Wang et al., 2021a) and
UniXcoder (Guo et al., 2022) that incorporates
contrastive learning. Note that UniXcoder can be
also viewed as decoder-only model as it employs
UniLM-style masking (Dong et al., 2019).

e For decoder-only models, we consider GPT-
2 (Radford et al., 2019) and CodeGPT (Lu et al.,
2021), and also consider models of very large
scales (up to 540B) such as PaLM (Chowdh-
ery et al., 2022), GPT-4 (OpenAl, 2023), Codex
(Chenetal.,2021), LLaMA (Touvron et al., 2023),
CodeGen (Nijkamp et al., 2023b), Incoder (Fried
et al., 2022), GPT-J (Wang and Komatsuzaki,
2021), GPT-Neo and GPT-NeoX (Black et al.,
2022), MIM (Nguyen et al., 2023), CodeGeeX
(Zheng et al., 2023). We also compare with
Replit (replit, 2023) and StarCoder (Li et al.,
2023) which are concurrent work with ours.
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Table 1: Results of pass@k(%) on HumanEval.

Table 2: Results of pass@k(%) on math programming.

Model Model size pass@1 pass@10 pass@100
Closed-source models
LaMDA 137B 14.0 - 473
AlphaCode 1.1B 17.1 28.2 453
MIM 2.7B 30.7 482 69.6
PaLM 62B 15.9 - 46.3
PaLM 540B 26.2 - 76.2
code-cushman-001 - 335 543 774
code-davinci-002 - 47.0 74.9 92.1
GPT-3.5 - 48.1 - -
GPT-4 - 67.0
Open-source models
GPT-J 6B 11.6 15.7 27.7
InCoder 6B 15.2 27.8 47.0
GPT-NeoX 20B 15.4 25.6 41.2
CodeGeeX 13B 229 39.6 60.9
LLaMA 13B 15.8 - 52.5
LLaMA 65B 23.7 - 79.3
Replit 3B 21.9 -
StarCoder 15B 33.6 - -
CodeGen-mono 2B 23.7 36.6 57.0
CodeGen-mono 6B 26.1 423 65.8
CodeGen-mono 16B 29.3 49.9 75.0
“CodeT5+ 220M 120 207 316
CodeT5+ 770M 15.5 272 427
CodeT5+ 2B 242 38.2 57.8
CodeT5+ 6B 28.0 472 69.8
CodeT5+ 16B 30.9 51.6 76.7
InstructCodeT5+ 16B 35.0 54.5 779
Open-source models + generation strategies
StarCoder (prompted) 15B 40.8 -
CodeGen-mono w/ CodeT 16B 36.7 59.3
" CodeT5+ w/ CodeT 1 16B 385 636 771
InstructCodeT5+ w/ CodeT 16B 429 67.8 78.7

For encoder-decoder, we use PLBART (Ahmad
etal., 2021) and CodeT5 (Wang et al., 2021b).

Note that billion-parameter LLMs such as Codex
and CodeGen typically use most of the source code
from GitHub for model training and do not remove
any overlap with the downstream tasks covered
in this work as we did. Therefore, it is difficult
to ensure a fair comparison with these models in
those tasks, especially the code completion tasks.
Moreover, these models are very expensive to per-
form task-specific finetuning, and hence, they are
often employed only on the zero-shot evaluation.
In this work, we mainly compare CodeT5+ with
these LLMs in the zero-shot HumanEval code gen-
eration task (Sec. 5.1). In other experiments, we
focus on the finetuning setting and compare our
models with smaller-scale LMs.

5.1 Zero-shot Code Generation Evaluation

We first evaluate the zero-shot code generation
capabilities of our model on the HumanEval bench-
mark (Chen et al., 2021), where we activate both
encoder and decoder modules from CodeT5+. In
this experiment, we follow Nijkamp et al. (2023b)
to continue to pretrain our CodeT5+ models on
the Python subset for another epoch using causal
LM objective to adapt them for Python code gen-
eration. We evaluate the model performance by

Model Model size MathQA-Python GSMS8K-Python
pass@80 pass@100
Few-shot learning results
code-davinci - 42.0 71.0
LLaMA 33B - 53.1
LLaMA 65B - 69.7
Minerva 62B - 68.5
Minerva 540B - 78.5
Finetuning results

LaMDA 137B 81.2 -

GPT-Neo 125M 84.7 -

GPT-Neo 2.7B - 414
CodeGen-mono 350M 83.1 38.7
CodeGen-mono 2B 85.6 47.8
CodeT5 220M 71.5 58.4

" CodeT5+ 1 20M 856 705

CodeT5+ 770M 87.4 73.8

testing generated codes against unit tests and report
the passing rate pass@k (k = {1, 10, 100}).

As shown in Table 1, our instruction-tuned
CodeT5+ ("InstructCodeT5+") 16B can improve
the performance against other open code LLMs,
achieving new SoTA of 35.0% pass@1 and 54.5%
pass@10. Particularly, as an open model, it even
outperforms the OpenAl code-cushman-001 model
across all metrics. We also observed that our small-
sized models of 220M and 770M already match or
outperform much larger code LLMs, e.g., CodeT5+
770M’s 15.5% pass@1 compared to Incoder 6B’s
15.2%, GPT-NeoX 20B’s 15.4%, and PaLM 62B’s
15.9%. Besides, we observed that compared to
the CodeGen models of similar sizes (Nijkamp
et al., 2023b), CodeT5+ obtains consistent perfor-
mance gains from 2B to 16B models. These supe-
rior results against decoder-only baselines demon-
strate the advantage of the encoder-decoder archi-
tecture of CodeT5+ and validate the effectiveness
of our proposed compute-efficient pretraining strat-
egy. We also evaluated the models with enhance-
ment strategies following CodeT Chen et al. (2023).
We find that this strategy can select better code can-
didates and bring the performance gains, achieving
up to 42.9% pass@1 and 67.8% pass@10.

5.2 Evaluation on Math Programming

We consider two math programming bench-
marks MathQA-Python (Austin et al., 2021) and
GSMSK (Cobbe et al., 2021). The task is to gener-
ate Python programs to solve mathematical prob-
lems described in texts, where code correctness is
measured based on the execution outputs of the
generated programs (pass@k). We compare our
models with very large decoder-only LMs such
as Minerva (Lewkowycz et al., 2022) that is ini-
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Figure 4: Results of MathQA-Python by problem com-
plexity (i.e. the number of reasoning steps required).

tialized with pretrained PaLM (Chowdhery et al.,
2022) and further finetuned with large-scale scien-
tific corpora. Note that some of the baselines are
enhanced with generation strategies, such as GPT-
Neo using self-sampling optimization (Ni et al.,
2022), and LLaMA and Minerva using majority
voting (Lewkowycz et al., 2022).

Table 2 shows that CodeT5+ achieves signifi-
cant performance gains, outperforming many code
LLMs of much larger sizes. Specifically, our
CodeT5+ 770M achieves new SoTA results of 87.4
pass@80 on MathQA-Python and very competi-
tive results of 73.8 pass@100 on GSM8K-Python.
On GSMB8K-Python, CodeT5+ 770M achieves the
best finetuning results against other larger mod-
els (e.g., LaMDA 137B and GPT-Neo 2.7B), and
outperforms LLaMA 65B and Minerva 62B in the
few-shot evaluation setting. In Fig. 4, we further
analyze the model performance of CodeT5+ by
the problem complexity on MathQA-Python com-
pared to CodeT5. For each problem, we extract
the number of reasoning steps required to solve the
problem. We observe that CodeT5+ is more robust
against the complexity of the problems compared to
CodeT5, where CodeT5 model performance tends
to deteriorate drastically as the number of reasoning
steps increases. In CodeT5+, the downward trend
is a lot less severe and the model still achieves good
results in very complex tasks (more than 10 steps).

5.3 Evaluation on Code Completion

We evaluate the decoder-only generation capability
of CodeT5+ through a line-level code completion
task, which aims to complete the next code line
based on the previous code contexts. We employ
PY 150 (Raychev et al., 2016) and JavaCorpus (Al-
lamanis and Sutton, 2013) from CodeXGLUE, and
use exact match (EM) accuracy and Levenshtein
edit similarity (Svyatkovskiy et al., 2020) as the

Table 3: Results on line-level code completion.

PY150 JavaCorpus
Model EM EditSim | EM  Edit Sim
CodeGPT 124M 4237 7159 | 3060  63.45
UniXcoder 125M 4312 7200 | 3290 6578
CodeGen-multi 350M | 4247  70.67 | 3547  69.22
PLBART 140M 3801 6846 | 2697 61.59
CodeT5 220M 3697 6712 | 2480 5831
CodeT5+ 220M 4342 7369 | 3517 6948
CodeT5+ 770M 4486 7422 | 3790 7225

Table 4: Results of MRR on Text-to-Code Retrieval.

CodeSearchNet
Model Ruby JS  Go Python Java PHP | Overall | COQA | AdvTest
CodeBERT 125M 679 620 882 672 616 628 | 693 | 657 | 272
GraphCodeBERT 125M | 703 644 897 692 69.1 649 | 713 | 684 | 352
SYNCOBERT 125M | 722 677 913 724 723 678 | 740 - 383
UniXcoder 125M 740 684 915 720 726 676 | 744 | 70 413
CodeGen-multi 350M | 660 622 900 686 701 639 | 701 | 648 | 348
PLBART 140M 675 616 887 663 663 61| 686 | 650 | 347
CodeT5 220M 719 655 888 698 686 645| 715 | 678 | 393
CodeT5+ 220M 777 708 924 756 761 698 | 7.1 | 727 | 433
CodeT5+ 770M 780 713 927 758 762 70| 774 | 740 | 447

metrics. In this task, we employ a decoder-only
model from CodeT5+ so that only about half of the
total model parameters are activated.

Table 3 shows that both CodeT5+ (in decoder-
only mode) and decoder-only models (the top
block) significantly outperform encoder-decoder
models (the middle block), validating that decoder-
only models can better suit the code completion
task in nature. Specifically, CodeT5+ 220M al-
ready surpasses UniXcoder and is comparable to
CodeGen-multi 350M, while the 770M one further
sets new SoTA results in both metrics. In partic-
ular, CodeT5+ 220M yields substantial improve-
ments over CodeT5 220M by +6.5 EM and +10.4
EM scores on PY 150 and JavaCorpus respectively.
This is mainly due to our causal LM objectives that
allows the decoder to see longer sequences and thus
have a better causal generation capability.

5.4 Evaluation on Text-to-Code Retrieval

We evaluate the code understanding capabilities
of CodeT5+ through text-to-code retrieval tasks
across multiple PLs. This task aims to find the most
semantically related code snippet at the function
level from a collection of candidate codes based
on a natural language query. We consider three
datasets for evaluation: CodeSearchNet (Husain
et al., 2019), CosQA (Huang et al., 2021), and Ad-
vTest (Lu et al., 2021), which are curated from the
original CodeSearchNet by filtering data with low-
quality queries, adopting real-world queries from a
modern search engine, and obfuscating identifiers
to normalize the code. In this task, we activate both
encoder and decoder of CodeT5+ and use Mean
Reciprocal Rank (MRR) as the evaluation metric.
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Table 5: Ablation results of CodeT5+: a) no causal LM
objective during stage-1 pretraining, b) no matching or
causal LM objective during stage-2 pretraining.

Table 6: Results of retrieval-augmented code generation.
EM: Exact Match, B4: BLEU-4, CB: CodeBLEU.

Java Python

Model EM B4 CB | EM B4 CB

Code Completion Math Programming Retrioval-based
Model PY150 JavaCorpus | MathQA-PY GSMSK-PY BMGS 000 490 1600 000 663 1349
EM EM pass@80 pass@100 SCODE-R 125M 000 2534 2668 | 0.00 2275 2392
CodeT5+ 770M 44.9 37.9 87.4 73.8 CodeT5+ 220M 000 2874 31.00| 000 2730 2651

a) nocausal LM | 36.2 24.8 723 61.4 Generative

CodeBERT 125M 000 838 1452] 000 4.06 1042
Textio-code Retrieval GraphCodeBERT 125M 000 7.86 1453|000 397 1055
Model Rub S G Pvh TP T Gveraii PLBART 140M 000 10.10 1496 | 0.00 489 1201
uby J o Python Java verd CodeT5+ 220M 000 1033 20.54 | 000 440 13.88

CodeT5+ 770M | 78.0
no matching 76.2
no causal LM 71.3

713 927 758 762 701 | 774
685 912 728 736 663 | 748
706 924 757 756 689 | 768

b)

Retrieval-Augmented Generative
REDCODER-EXT 125M+140M | 10.21 2898 33.18 | 9.61 2443 30.21
CodeT5+ 220M 11.66 33.83 40.60 | 11.83 31.14 36.39

From Table 4, our CodeT5+ 220M significantly
outperforms all existing encoder-only/decoder-only
(the top block) and encoder-decoder models (the
middle block). Our CodeT5+ 770M further sets
new SoTA results, surpassing the previous SoTA
UniXcoder by more than 3 MRR points on all 3
tasks across 8 datasets. This implies CodeT5+ is a
robust code retriever to handle queries with diverse
formats and PLs. Besides, CodeT5+ 220M yields
substantial performance gains over CodeT5 220M,
which can be attributed to the text-code contrastive
learning and matching objectives that facilitate bet-
ter unimodal and bimodal representation learning.

5.5 Ablation Study

We conduct an ablation study to analyze the im-
pacts of our proposed pretraining objectives: a)
casual LM objectives at stage-1 unimodal pretrain-
ing on two generative tasks including code comple-
tion and math programming, b) text-code matching
and causal LM objectives at stage-2 bimodal pre-
training on an understanding task of text-to-code
retrieval. We employ CodeT5+ 770M and report
the results of three representative tasks over 10
datasets in Table 5. In CodeT5+, we found that
causal LM objective plays a crucial role in code
completion and math programming tasks, observed
by a significant performance drop after removing it.
This indicates causal LM can complement the span
denoising objective and improve the generation ca-
pability of our models. Additionally, we found that
the text-code matching objective is critical to the
retrieval performance (a drop of 2.6 avg. MRR
over 6 datasets without it), implying this objective
can learn a better bimodal representation that cap-
tures the fine-grained alignment between text and
code. Besides, we found that retrieval tasks can
also benefit from the joint training with causal LM
objective despite their task differences.

5.6 Unified Retrieval-Augmented Generation

As our model is capable of both code retrieval and
generation, it can be naturally exploited as a uni-
fied retrieval-augmented generator. To explore this
adaptation, we follow Parvez et al. (2021) to evalu-
ate two code generation tasks on Java and Python.
We evaluate our models in 3 settings: retrieval-
based, generative, and retrieval-augmented (RA)
generative. For the retrieval-based setting, we ac-
tivate our encoder to retrieve the top-1 code sam-
ple as the prediction given a text query, while for
the RA generative setting, we append the com-
bination of top-k retrieved samples (k=1 in our
work) to the encoder input and activate the de-
coder. As shown in Table 6, we found that our
CodeT5+ achieves better results in all categories,
especially in the retrieval-based and RA gener-
ative setting. While the previous SoTA model
REDCODER-EXT (Parvez et al., 2021) separately
employs GraphCodeBERT as the retriever and
PLBART as the generator, our model can be seam-
lessly deployed as a unified end-to-end system with
both retrieval and generation capabilities.

6 Conclusion

We propose CodeT5+, a new family of open code
LLMs with a dynamic architecture that can flexibly
operate in different modes (encoder-only, decoder-
only, and encoder-decoder) to support a wide range
of code understanding and generation tasks. To
train CodeT5+, we introduce a mixture of pretrain-
ing tasks to learn rich representations from both
unimodal code data and bimodal code-text data.
Additionally, it achieves efficient model scaling and
better task generalization through integration with
frozen LLMs and instruction tuning. Extensive ex-
periments on over 20 code intelligence benchmarks
have verified the superiority of our models.
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Limitations

As a family of Transformer LLMs, CodeT5+ re-
quires sufficient pretraining/finetuning data to be
able to learn meaningful contextual representations
from code. While we could curate these data from
public domains such as GitHub, thorough data fil-
tering and preprocessing steps are needed to obtain
a good level of data quality for pretraining. During
instruction finetuning, a well designed pipeline is
needed to obtain high quality instruction-following
data, either through manual annotation effort or
synthetic data augmentation from other LLMs (e.g.
OpenAl GPT models). Moreover, the level of the
diversity and quality of data needed to train these
types of models is still an open question. Recent at-
tempts such as (Zhou et al., 2023) have highlighted
the importance of data quality vs. data scale to
efficiently train LLMs while keeping the cost of
handling data affordable.

Another limitation of CodeT5+ is the require-
ment of large GPU resources. With model sizes
up to billion parameters, to handle these models
efficiently requires access to GPUs during either
training and inference time. Specifically, we found
that fitting a 16B model into a single A100 GPU re-
quires additional model serving/loading techniques
to keep the system memory consumption accept-
able. While GPU resources have become more
and more accessible to the wider community of
practitioners, the cost of training/testing LLMs on
large-scale data can accumulate and become too
expensive to many individuals.

Ethics Statement

Advancements in code understanding and genera-
tion systems hold immense potential to create pos-
itive societal impacts by improving programming
accessibility and enhancing developer productiv-
ity through natural language interfaces. However,
deploying such systems at scale requires careful
consideration of various ethical aspects, as exten-
sively discussed by Chen et al. (2021).

One critical concern is the potential risk of gen-
erated code summaries or comments incorporating
toxic or insensitive language, which can have detri-
mental effects. Several studies have explored tech-
niques to address this issue, such as reinforcement
learning (Ouyang et al., 2022), weighted decoding
(Krause et al., 2021) , and safety-specific control
tokens (Xu et al., 2020). These approaches aim
to ensure non-toxic natural language generation,

promoting responsible and ethical use of large lan-
guage models for code.

Additionally, it is essential to recognize the
broader intellectual property implications of code
generation and retrieval systems before deploy-
ment. Deep learning models generating code may
inadvertently introduce security vulnerabilities. To
mitigate this risk, it is crucial to conduct expert
reviews and rigorous security assessments before
adopting such code. This review process ensures
that the generated code meets necessary security
standards, safeguarding against potential exploits
and vulnerabilities. In code retrieval scenarios, pro-
viding appropriate attribution to the source along
with the retrieved results is paramount. This attri-
bution not only respects the rights of code authors
but also enhances transparency, traceability, and
collaboration within the programming community.
By acknowledging the original authors and pro-
moting a collaborative, ethical, and legally compli-
ant environment, code retrieval systems can foster
knowledge sharing and contribute to a reputable
programming ecosystem.

By considering these ethical considerations, we
can promote the responsible deployment of large
language models for code, maximizing their po-
tential benefits while mitigating potential harms to
individuals, communities, and the overall software
ecosystem. It is imperative to prioritize safety, non-
toxicity, intellectual property rights, security, and
collaboration in the development and deployment
of these systems, ensuring they align with ethical
principles and societal needs.
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A Bimodal Pretraining Details

To expose the model on more diverse set of pre-
training data, we employ a stage-wise pretraining
process to first train CodeT5+ on large-scale code-
only data with span denoising and causal language
modeling (CLM) tasks, then train on smaller set of
text-code bimodel data using text-code contrastive
learning, matching, and causal LM tasks. Below,
we provide detailed formulas for text-code con-
trastive learning and matching tasks at the second-
stage pretraining on text-code pairs.

Text-Code Contrastive Learning activates the
encoder to learn better unimodal (text/code) repre-
sentations by computing a similarity score such that
parallel text-code pairs have higher scores. Given
a text T and a code C, we first learn representa-
tions h' for text 7' and h¢ for code C' by map-
ping the [CLS] embeddings to normalized lower-
dimensional (256-d) representations from the en-
coder. Given a batch of N text-code pairs, we ob-
tain text vectors {h’} | and code vectors {h¢}

to compute text-to-code and code-to-text and simi-
larities:

t20 tTy.c 02t cTt
— bS5 = hTh, ()
e exp(sE/T)
[ (T>_ N t2c (2)
Zj:l exp (s; /7'

Table 7: Data statistics of both unimodal and bimodal
(CodeSearchNet) pretraining data.

Dataset Language # Sample Total size
Ruby 2,119,741
JavaScript 5,856,984
Go 1,501,673
Python 3,418,376
Ours Java 10,851,759 37,274,876 files
PHP 4,386,876
C 4,187,467
C++ 2,951,945
C# 4,119,796
Ruby 49,009
JavaScript 125,166 1.929.817 text-code
CSN Go 319,132 pairs at function
Python 453,772 level
Java 457,381
PHP 525,357
o exp(s52/7)
PO) = o 3)
Zj:l exp (s / 7)
where sth represents text-to-code similarity of text

of i-th pair and code of j-th pair, and sczt is the
code-to-text similarity, 7 is learned temperature
parameter. p!2¢(T') and p$*t(C') are the softmax-
normalized text-to-code and code-to-text similari-
ties for the ¢-th text and code.

Let y'2¢(T) and y“*(C) denote the ground-
truth one-hot similarity, where negative pairs have
a probability of 0 and the positive pair has a prob-
ability of 1. The text-code contrastive loss from a
corpus D of text-code pairs is defined as the cross-
entropy H between p and y:

1
Lice = iE(T,C)ND[H(yQC(T)a pt2C(T))+
H(y™(C),p™(C))] 4

Text-Code Matching activates the decoder with
the bimodal matching functionality to predict
whether a pair of text and code is positive (matched)
or negative (unmatched). We employ the output
embedding of the [EOS] token as the fused bimodal
representation for a text-code pair (7, C), as this
token attends to all the previous context for the
text-code pair input. Followed by a linear layer
and softmax, we compute a two-class probability
p'™(T, C) and define the matching loss:

Liem = Eq.o)upH (Y™ (T, C),p"™ (T, C))]
®)
where y'“™(T, C') is a 2-dimensional one-hot vec-
tor representing the ground-truth label.
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Instruction: Create a SQL query to get the list of employee

names and ids with a monthly income greater than 4,000.

Input: n/a

Output:

SELECT id, name FROM Employees WHERE
monthly income > 4000;

Instruction: Write a code to add two numbers without using

the \"+\" operator.
Input:
numl
num?2
Output:

numl = 2

num2 = 7

# Without using \"+\" operator
sum = numl - (-num2)

2
7

Instruction: Optimize the given Python
program to improve the speed of execution.

Input:
def calc( numl, num2):
result = 0
for i in range (numl, num2) :

result += ((i+1) *
return result

(i+2))

Output:
def calc(numl, num2) :
result = (numl + num2) * (num?2

- numl + 1) // 2
return result

Figure 5: Example generated instruction data: we demonstrate some examples of instruction data used to finetune
CodeT5+ to better align our models to natural language instructions. The instruction corpus contains novel tasks,
such as text-to-SQL generation and Python code optimization.

Text-Code Causal LM. This task focuses on a
cross-modal causal LM objective between text and
code through a dual multimodal conversion: text-
to-code generation and code-to-text generation (i.e.
code summarization). Let L. and L.9; denote
the losses for text-to-code and code-to-text genera-
tion. The full second-stage pretraining loss of our
CodeT5+ is:

L= ‘thc + Etcm + £t2c + EcQt (6)

B Pretraining

B.1 Pretraining Dataset

We report the data statistics of both unimodal code
and bimodal text-code pretraining datasets in Ta-
ble 7. From the table, we can see that our cu-
rated dataset from GitHub code has a much larger
data size at the file level than the CodeSearchNet
bimodal data at the function level, allowing our
model to learn rich representations in the first stage
of pretraining. Different from CodeT5 (Wang et al.,
2021b) which employs both unimodal and bimodal
data in CodeSearchNet (Husain et al., 2019), we
only employ its bimodal subset for the second stage
pretraining of our CodeT5+. We use this stage to
mainly adapt our model to text-code related tasks
like text-to-code retrieval and generation.

B.2 Pretraining Setup

In pretraining, we adopt a stage-wise strategy to
pretrain CodeT5+ first on the large-scale unimodal
dataset and then on the smaller bimodal dataset. In
the first stage, we warm up the model with the span
denoising task for 10k training steps, and then joint

training with the two CLM tasks with equal weights
for 100k steps. We employ a linear decay learning
rate (LR) scheduler with a peak learning rate of 2e-
4 and set the batch size to 2048 for denoising and
512 for CLM. To prepare the input and output data,
we set the maximum length to 512 for the denois-
ing task, and set the maximum lengths to 768 and
600 for source and target sequences for the code
completion CLM, 1 and 1024 for the decoder-only
generation CLM. In the second stage, we jointly
optimize four losses of contrastive learning, match-
ing, and two CLM losses with equal weights for
10 epochs with a batch size of 256. We employ a
peak learning rate of le-4 and set the maximum
sequence lengths to 420 and 128 for code and text.

In all experiments, we employ an AdamW op-
timizer (Loshchilov and Hutter, 2019) with a 0.1
weight decay. We also employ the DeepSpeed’s
ZeRO Stage 2 (Rasley et al., 2020) with mixed pre-
cision training of FP16 for training acceleration.
For the training of CodeT5+ 2B, 6B, and 16B, we
use FP16 frozen decoder weights and keep other
trainable weights in FP32. We use DeepSpeed
ZeRO Stage 3’s parameter partition for CodeT5+
6B and 16B models.

C Instruction Tuning

Fig. 5 illustrates some examples of the generated
instruction data. Note that as we rely on LM-
generated data, including the annotations of ex-
pected outputs, not all of the data is perfectly cor-
rect. For instance, the example of the code opti-
mization task in Fig. 5 contains a wrong output.
Wang et al. (2022) treated these examples as data
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Table 8: Results of BLEU-4 on code summarization.

Model Ruby IS Go  Python Java PHP | Overall
RoBERTa 125M 11.17 1190 17.72 18.14 1647 24.02 | 16.57
CodeBERT 125M 12.16 1490 18.07 19.06 17.65 25.16 | 17.83
UniXcoder 125M 1487 1585 19.07 19.13 2031 26.54 | 19.30
CodeGen-multi 350M | 13.48 16.54 18.09 1831 1941 2441 | 1837
PLBART 140M 1411 1556 1891 1930 1845 23.58 | 1832
CodeT5 220M 1524 16.16 1956 20.01 2031 26.03 | 19.55
CodeT5+ 220M 1551 1627 19.60 20.16 20.53 26.78 | 19.81
CodeT5+ 770M 1563 17.93 19.64 2047 20.83 2639 | 20.15

noise and the tuned models still benefit from the
majority of the synthetic instruction dataset.

D Additional Experimental Results

In this section, we provide additional experimen-
tal results including code summarization (Ap-
pendix D.1), two understanding tasks of code
defect detection and clone detection from the
CodeXGLUE (Lu et al., 2021) (Appendix D.2),
more analysis on retrieval-augmented code genera-
tion (Appendix D.3), and more qualitative results
in math programming tasks (Appendix D.4).

D.1 Code Summarization from CodeXGLUE

The code summarization task aims to summarize
a code snippet into natural language docstrings.
We employ the clean version of CodeSearchNet
dataset (Husain et al., 2019) in six programming
languages to evaluate our models for this task. We
employ BLEU-4 (Lin and Och, 2004) as the per-
formance metric which measures the token-based
similarity between predicted and ground-truth sum-
maries. From pretrained CodeT5+, we activate
both encoder and decoder for this task.

From Table 8, we found that encoder-decoder
models (CodeT5 and CodeT5+) generally outper-
form both encoder-only models (Feng et al., 2020)
and decoder-only models (Nijkamp et al., 2023b),
as well as the UniLM-style model UniXcoder (Guo
et al., 2022). This observation demonstrates the
benefit of using the encoder-decoder architecture
in CodeT5+ to better encode code contexts and
generate more accurate code summaries. Finally,
we also observed some performance gains against
CodeT5 (Wang et al., 2021b), indicating the advan-
tage of our proposed mixture of diverse pretraining
learning objectives in addition to the span denois-
ing objective in CodeTS5.

D.2 Code Defect Detection and Clone
Detection from CodeXGLUE

Defect detection is to predict whether a code is
vulnerable to software systems or not, while clone

Table 9: Results on two understanding tasks: code de-
fect detection and code clone detection.

Model Defect | Clone Detection
Acc Rec Prec Fl
CodeBERT 125M 62.1 | 947 934 94.1
GraphCodeBERT 125M - 948 952 95.0
UniXcoder 125M - 929 97.6 95.2
CodeGen-multi 350M 63.1 | 94.1 932 93.6
PLBART 140M 63.2 | 948 925 93.6
CodeT5 220M 65.8 [ 951 949 950
CodeT5+ 220M 66.1 | 964 94.1 95.2
CodeT5+ 770M 66.7 | 96.7 93.5 95.1

detection aims to measure the similarity between
two code snippets and predict whether they have a
common functionality. We use benchmarks from
CodeXGLUE (Lu et al., 2021) and use accuracy
and F1 score as the metrics. In Table 9, we can see
CodeT5+ models achieve new SoTA accuracy of
66.7% on the defect detection task. For the clone
detection task, our model achieves comparable re-
sults to SoTA models, where the performance in-
crease tends to be saturated, observed by the close
performance gaps between multiple baselines.

D.3 More Analysis on Retrieval-augmented
Code Generation

We conduct an ablation study to analyze the effects
of top-k retrievals in retrieval-augmented code gen-
eration tasks and report the results in Table 10 . We
found that increasing the number of retrievals can
boost model performance which becomes saturated
when k=5. This saturation is due to the maximum
sequence length of 600, which might not be able
to accommodate a large number of retrieved code
samples. Overall, our CodeT5+ significantly out-
performs the prior SOTA baseline which uses top-
10 retrievals in all cases, even with only a top-1
retrieved code.

We further include a qualitative case in Fig. 6,
where we found that the retrieved code provides
crucial contexts (e.g., use “urllib3” for an HTTP
request) to guide the generative process for more
correct prediction. In contrast, the generative-only
model gives an incorrect prediction that only cap-
tures the concepts of “download” and “compress”.

D.4 Qualitative Results in Math
Programming tasks

For math programming tasks, we provide qualita-
tive examples predicted by our models in Fig. 7
and Fig. 8. Overall, we found CodeT5+ is able to
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def download and compress(url, dest):

Downloads a HTTP resource from url Generate with open(dest, 'wb') as f:
and save to dest. Capable of dealing for chunk in iter(lambda:
with Gzip compressed content urlopen (url) .read(1024), b''):
P P : f.write (chunk)
f.flush ()
. Retrieve-then-generate
Retrieve () 9 l
def download file (url, dest): \
Ve ) - R request = urllib2.Request (url)
def dl file (url, dest, chunk size= 6553): request.add_header ( 'Accept-encoding' , 'gzip')
import urll}b3 opener = urllib2.build opener()
http = urllib3.PoolManager () response = opener.open (request)
r = http.request( 'GET', url, data = response.read()
preload_content =False) if response.headers.get( 'content-encoding' ,
with dest.open('wb') as out: "1y == 'gzip':
while True: ) stream = StringIO.StringIO (data)
data = r.read(chunk_size) gzipper = gzip.GzipFile( fileobj=stream)
if data is None or len(data) == 0: data = gzipper.read()
break f = open(dest, 'wb')
out.write (data) f.write(data)
r.release_conn() f.close()
J N J

Figure 6: Example code generation output: Our CodeT5+ retrieval-augmented generation model could retrieve
relevant code context and use it to facilitate better code generation.

Table 10: Effects of varying top-k retrievals in
retrieval-augmented code generation tasks with our
CodeT5+ 220M compared to the prior SOTA model
of REDCODER-EXT that employs top-10 retrievals.
EM: Exact Match, B4: BLEU-4, CB: CodeBLEU.

Java Python

Model EM B4 CB | EM B4 CB
SOTA (top-10) | 10.21 2898 33.18 | 9.61 24.43 30.21
Ours

top-1 11.66 33.83 40.60 | 11.83 31.14 36.39
top-2 11.57 3326 40.74 | 11.78 31.21 36.58
top-3 12.29 33.10 41.71 | 12.48 30.92 37.31
top-4 1242 3208 4194 | 12.73 3040 37.60
top-5 13.02 3242 4228 | 1293 30.52 37.87
top-10 12.86 3138 42.24 | 12.84 29.79 37.79

generate decent programs that can solve the math
problems in various levels of difficulties, i.e. from
simple math operations to more complex problems
with multiple reasoning steps. From the rightmost
example of Fig. 8, we found that CodeT5+ is able
to leverage some external libraries such as math
when synthesizing the solutions.

E Finetuning on Downstream Tasks

E.1 Text-to-Code Retrieval

Text-to-code retrieval (or code search), is the task
of finding the best code sample that is most rele-
vant to a natural language query, from a collection
of code candidates. We experiment CodeT5+ with
three major benchmarks: CodeSearchNet (CSN)
(Husain et al., 2019), CosQA (Huang et al., 2021),
and AdvTest (Lu et al., 2021). CSN consists of six
programming languages in total, and the dataset
is curated by filtering low-quality queries through
handcrafted rules, following (Guo et al., 2021). For

instance, an example handcraft rule is to filter ex-
amples in which the number of tokens in query is
shorter than 3 or more than 256.

CosQA and AdvTest are two related benchmarks
that are both derived from the CSN data. Specifi-
cally, instead of natural language queries, CosQA
uses logs from Microsoft Bing search engine as
queries, each of which is annotated by 3 human
annotators (Huang et al., 2021). AdvTest is created
from the Python split of the CSN data but the code
samples are normalized with obfuscated variable
names to better evaluate the understanding abili-
ties of current models. For training, we set the
maximum sequence to 350 and 64 for code and
text. We set the learning rate as 2e-5 and finetune
the model for 10 epochs. We employ distributed
training on 8 A100s and the total batch size is 64.
For momentum encoders, we maintain a separate
text/code queue with a size of 57600, and allow
the matching decoder to retrieve 64 hard negatives
from the queues for hard negative mining.

E.2 Code Summarization

Code summarization is the task of generating a
natural language summary of a code snippet. We
use the task dataset from CodeXGLUE (Lu et al.,
2021) which curated a code summarization bench-
mark from CSN data (Husain et al., 2019). The
benchmark consists of six PLs: Ruby, JavaScript,
Go, Python, Java, and PHP. It is the same clean
version of CSN data that we use for text-to-code
retrieval tasks. For training, we set the maximum
sequence length of the source and target as 256 and
128, respectively. We use a learning rate of 2e-5,
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Problem

Problem

Problem

Toulouse has twice as many sheep
as Charleston. Charleston has 4
times as many sheep as Seattle.
How many sheep do Toulouse,
Charleston, and Seattle have
together if Seattle has 20 sheep?

Janet’s ducks lay 16 eggs per day. She
eats three for breakfast every morning and
bakes muffins for her friends every day
with four. She sells the remainder at the
farmers' market daily for $2 per fresh duck
egg. How much in dollars does she make
every day at the farmers' market?

Eliza's rate per hour for the first 40
hours she works each week is $10.
She also receives an overtime pay
of 1.2 times her regular hourly rate.
If Eliza worked for 45 hours this
week, how much are her earnings
for this week?

Generated Program

Generated Program

Generated Program

n0=4

n1=20

n2=2

t0=n0*n1
t1=n2*t0

answer =t1 +t0 + n1

n0 =3 n0 =10
n1=4 n1=40
n2=16 n2=1.2
n3=2 n3 =45
t0=n0 + n1 t0 =n0 * n1
t1=n2-10 t1=n0*n2
answer = t1 * n3 t2=n3-n1

t3=t2*t1
answer =10 + t3

Figure 7: Predictions of our model on GSM8K-Python

the batch size as 64 for 10 epochs of finetuning.
We set the beam size as 5 in inference.

E.3 Code Defect Detection

Defect detection is the task of classifying whether
a code sample contains vulnerability points or not.
We adopt the defect detection benchmark from
CodeXGLUE (Lu et al., 2021) which curated data
from the Devign dataset (Zhou et al., 2019). The
dataset contains in total more than 27,000 anno-
tated functions in C programming language. All
samples are collected from popular open-source
projects such as QEMU and FFmpeg. We fol-
low (Lu et al., 2021) and adopt 80%/10%/10% of
the dataset as the training/validation/test split. For
training, we set the learning rate as 2e-5, the batch
size as 32, and the max sequence length as 512 to
finetune the model for 10 epochs.

E.4 Code Clone Detection

The task of clone detection aims to detect whether
any two code samples have the same functional-
ity or semantics. We conduct experiments using
the clone detection benchmark from CodeXGLUE
(Lu et al.,, 2021). The benchmark is curated
from the BigClone dataset (Svajlenko et al.,
2014) and the resulting curated data consists
of 901,724/416,328/416,328 examples for train-
ing/validation/test splits respectively. All samples
are categorized into 10 different functionalities. For
finetuning, we set the learning rate as 2e-5 and fine-
tune the model for 2 epochs. We set the batch size
as 10, and the max sequence length as 400.

E.5 Code Completion

In code completion, given a source sequence con-
taining a partial code sample, a model is required
to generate the remaining part of the code sam-
ple. We conduct experiments on line-level code
completion using two major benchmarks: PY150
(Raychev et al., 2016) and JavaCorpus (Allamanis
and Sutton, 2013). PY150 (Raycheyv et al., 2016)
consists of 150,000 Python source files collected
from Github. Among these samples, (Lu et al.,
2021) selected 10,000 samples from different files
from the test set of PY150 and then randomly sam-
pled lines to be predicted for the code completion
task. The average numbers of tokens in the source
sequence and target sequence are 489.1 and 6.6
respectively. JavaCorpus (Allamanis and Sutton,
2013) contains over 14,000 Java projects collected
from GitHub. Similarly to PY150, Lu et al. (2021)
selected 3,000 samples from different files from the
test set of the dataset and randomly sampled lines
to be predicted for the code completion task. The
average numbers of tokens in the source and target
sequence are 350.6 and 10.5 respectively. For both
tasks, we set the learning rate as 2e-5 and batch
size as 32, and set the maximum sequence length
of 1024 for the decoder. We finetune the model
for 30 epochs. During inference, we employ beam
search with a beam size of 5.

E.6 Math Programming

Math Programming is the task of solving maths-
based problems with programming. Compared to
conventional code generation tasks, this task fo-
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Problem

Problem

Problem

A shopkeeper sold an article
offering a discount of 5% and
earned a profit of 31.1%. What
would have been the percentage
of profit earned if no discount had
been offered?

n0=5.0n1=231.1

What will be the difference
between simple and compound
interest at 14% per annum on a
sum of rs. 1000 after 4 years?
n0 =14.0 n1=1000.0n2=4.0

A full stationary oil tank that is a right circular
cylinder has a radius of 100 feet and a height of
25 feet. Oil is pumped from the stationary tank to
an oil truck that has a tank that is a right circular
cylinder until the truck 's tank is completely filled.
If the truck 's tank has a radius of 6 feet and a
height of 10 feet, how far (in feet) did the oil level
drop in the stationary tank?

n0 =100.0 n1 =25.0n2=6.0 n3=10.0

Generated Program

Generated Program

Generated Program

import math

n0 = 100.0

n1=250

n2=6.0

n3=10.0

t0 = math.pi * n0**2

t1 = math.pi * n2**2 * n3

n0=5.0 n0 =14.0
n1=31.1 n1=1000.0
t0=n1+100.0 n2=4.0
t1=100.0 - n0 t0 =n0/100.0
t2=t0*100.0 t1=t0+1.0
t3=t2/t1 t2=n1*t0
answer = t3 - 100.0 t3=n2*t2

t4 = t1**min(n2, 5)

t5=n1*t4

t6 =15-n1

answer = t6 - t3

answer =t1/t0

Figure 8: Predictions of our model on MathQA-Python

Question: Natalia sold clips to 48 of her friends in April, and then she sold half as
many clips in May. How many clips did Natalia sell altogether in April and May?

Answer:
Natalia sold 48/2 = <<48/2=24>>24 clips in May.

Natalia sold 48+24 = <<48+24=72>>72 clips altogether in April and May.

Python Solution:

n0 =48
nlt=2
t0=n0/n1

answer = n0 + t0

Figure 9: One example of how to convert natural language solution into a Python program on GSMS8K dataset.

cuses more on computational reasoning skills. The
problem descriptions in this type of task are also
more complex than conventional code generation
tasks. We employ two major benchmarks for this
task: MathQA-Python (Austin et al., 2021) and
GradeSchool-Math (Cobbe et al., 2021).

MathQA-Python (Austin et al., 2021) is de-
veloped from the MathQA dataset (Amini et al.,
2019) where given a mathematical problem de-
scription in natural language, a system is re-
quired to solve this problem via generating a pro-
gram that returns the final answer. (Austin et al.,
2021) translated these programs into Python pro-
grams and filtered for cleaner problems. In to-
tal, MathQA-Python contains ~24,000 problems,
including 19,209/2,822/1,883 samples for train-
ing/validation/test splits.

GradeSchool-Math (Cobbe et al., 2021) (also
known as GSM8K) has similar nature as MathQA.
The benchmark focuses on problems with mod-
erate difficulty that an average grade school stu-
dent should be able to solve. In total, GSM data
contains 8,500 problems, divided into 7,500 train-
ing and 1,000 testing problems. We translated the

solution described in natural language to Python
programs by following the construction process of
MathQA-Python by Austin et al. (2021). Finally,
we successfully converted 5,861 out of 7,500 train-
ing samples. One case can be found in Fig. 9.

For training, we set the maximum sequence
length of the source and target as 256 and 256 for
MathQA-Python, and 246, 138 for GSM8k-Python.
We use a learning rate of 2e-5 and a batch size of
32 for 30 epochs of finetuning. During inference,
we employ the beam size as 5 to get pass@1 re-
sults. For pass@80 and pass@100, we found they
are quite sensitive to the diversity of the generation.
We employ nucleus sampling with a temperature
of 1.2 and top-p=0.95.

E.7 Retrieval-augmented Code Generation

Developers often search for relevant code snippets
from sources on the web such as GitHub or Stack-
Overflow as references to aid their software de-
velopment process. Motivated by this behaviour,
we explore a retrieval-augmented code generation
setting, where given a natural language descrip-
tion, a retriever first retrieves similar candidates
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in a search codebase and then augments the in-
put for the generator to produce the target code.
Such retrieval-augmented generation (or retrieve-
then-generate) paradigm has been widely used in
open-domain question answering (Karpukhin et al.,
2020) in NLP and recently extended to some code-
related tasks such as code generation and summa-
rization (Parvez et al., 2021), and program repair
tasks (Wang et al., 2023). As our CodeT5+ is capa-
ble of both retrieval and generation, it can be seam-
lessly adapted as a unified retrieval-augmented gen-
erator. This can bring unique benefits such as less
computational cost compared to prior work that em-
ploys a different retriever and generator. We eval-
uate CodeT5+ on two Java and Python code gen-
eration datasets from the CodeXGLUE (Lu et al.,
2021) benchmark following Parvez et al. (2021).

Specifically, we leverage the encoder to encode
the code snippet in the retrieval base and build a
search index with the faiss library (Johnson et al.,
2019). The search index is a set of representations
(of 256 dimensions) for all the code snippets in the
retrieval codebase. Let (x;, y;) denote one training
instance where x; is the input text description and
y; is the corresponding target code snippet. we
employ the same encoder to obtain the embedding
of x; and retrieve top-k similar code samples from
the search base using the L-2 similarity metric,
with k being a hyperparameter. We ensure that the
training example’s target string (y;) is not present
in any of these k retrieved samples.

After retrieving these top-k relevant code sam-
ples, we combine them with a special token [SEP]
and concatenate it to the end of the source input z;.
Unlike (Parvez et al., 2021), we do not augment
docstrings or text descriptions and only augment
the code snippet for simplicity. We then finetune
CodeT5+ on this augmented dataset. During infer-
ence, we retrieve similar code samples from the
search base and augment these to input x;. For
training, we set the maximum sequence length of
the source and target as 600 and 320. We use a
learning rate of 2e-5, the batch size as 32 to fine-
tune the model for 10 epochs. We set the beam size
as 5 during inference with beam search.
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