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Abstract
Foundation language models learn from their
finetuning input context in different ways. In
this paper, we reformulate inputs during fine-
tuning for challenging translation tasks, lever-
aging model strengths from pretraining in novel
ways to improve downstream performance.
These reformulations are simple data level mod-
ifications, require no additional collection of
training data or modification of data at infer-
ence time. They can be applied either on sin-
gle language pair translation tasks or massively
multilingual translation tasks. Experiments
with these techniques demonstrate significant
performance improvements up to 3.5 chrF++
on the Flores200 translation benchmark. We
hope our research accessibly improves fine-
tuning data efficiency, enabling more effective
training to scalably improve state-of-the-art per-
formance. Our code is released here.

1 Introduction

Foundation language models (FLMs) are power-
ful and task-agnostic models. They are pretrained
on language understanding objectives, enabling
strong performance on downstream language tasks
(Brown et al., 2020; Shoeybi et al., 2020; Xue
et al., 2021; Hoffmann et al., 2022; Chowdhery
et al., 2022; Zhang et al., 2022a; Chung et al., 2022;
Workshop, 2023; Touvron et al., 2023). FLMs are
then either prompted or finetuned for downstream
use.

In this paper, we present three different data ef-
ficient techniques for improving translation per-
formance, applied to the multilingual FLM mT5
during finetuning (Xue et al., 2021). In our first
approach, we train mT5 on a Classical Tibetan
to English (tib2eng) translation task. mT5 strug-
gles heavily in the initial training steps. Thus, for
the first 20% of finetuning, we apply the "Partial
Output English Scaffold" or POSE reformulation,
shown in Figure 1. Tib2eng translation examples
consist of a Classical Tibetan source and English

target translation pair. POSE simply appends a
prefix of the target English output to the Classical
Tibetan input. We see qualitative improvements in
the variance of the training curves. When evaluated
on the same test set with no reformulations, POSE
significantly increases overall translation perfor-
mance compared to the direct finetuning baseline,
up to 10.3% / 2.8 BLEU.

The POSE setup had many adjustable hyperper-
ameters relating to task difficulty, task curriculum,
and substring selection for scaffolding. We find
that input reformulation setups should consist of
20% less informative examples, and 80% harder
and more informative examples. More ablation
details can be found below.

Second, we approach the massively multilingual
Flores200 translation benchmark (NLLB-Team
et al., 2022). mT5 does not struggle in the initial
steps of finetuning on Flores200 in the same way it
did on tib2eng. Even so, we begin by replicating
the tib2eng POSE setup on Flores200 by appending
a partial output of the target translation to the input
translation. As expected, this setup matched but
did not improve upon the baseline performance.

The Flores200 benchmark consists of paral-
lel examples of the same sentence in different
languages. In our second approach, we extend
the tib2eng POSE reformulation to create the
"Parallel Scaffold in English" or ParSE reformula-
tion, shown in Figure 1. ParSE appends the corre-
sponding full parallel English translation (provided
by Flores200) to the input. Following the tib2eng
setup, we use a data mix of 20% baseline (less
informative) and 80% ParSE (more informative)
examples. ParSE significantly improves translation
performance, up to 17.2% / 3.5 chrF++.

We postulate that POSE and ParSE improve
translation performance in part because they en-
able mT5 to attend to an in-distribution pretrain
language with strong monolingual performance. In
our third approach, we explore the efficacy of par-
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Baseline
German: Das ist gut.

English:

Partial Output English Scaffold (POSE)
German: Das ist gut.

English: That is

Parallel Scaffold in English (ParSE)
German: Das ist gut.
English: That is good.

Spanish:

Mixed-language Parallel Scaffold (MiPS)
German to Spanish: Das ist gut.

Chinese to English: 那很好。

Está bien.
That is good.

Está bien.
mT5 That is good.

That is good.

Figure 1: Task reformulations. Baseline: a direct translation pair. POSE: append a prefix of the target translation to
the input translation. ParSE: append a parallel English translation to the input translation. MiPS: append a different
parallel translation to both the input and output.

allel scaffolding that does not require strong mono-
lingual performance using the "Mixed-language
Parallel Scaffold" or MiPS reformulation, shown
in Figure 1. MiPS appends a different parallel
translation to both the input and output for a total
of 4 distinct languages per input. Again, we use a
data mix of 20% baseline and 80% MiPS examples.
MiPS also improves translation performance, up to
9.1% / 1.6 chrF++. Scaffolding with the strongest
performing pretraining language (ParSE) outper-
forms scaffolding with a mix of other languages
(MiPS).

Finally, we perform analysis on the languages
in the translation set. Using a balanced dataset
like Flores200 allows mT5 to partially overcome
pretraining dataset size biases. Naturally, translat-
ing into lower resource languages is more difficult
than translating into higher resource languages, but
we find that the ParSE and MiPS reformulations
improve translation into all languages across the
board, rather than disproportionately improving
performance on high resource languages.

In summary, we propose input reformulations
on translation tasks. These reformulations require
no additional data, have few hyperparameters, and
are simple to implement. When finetuning on a sin-
gle language pair translation task, if the target out-
put language is in the model’s pretraining dataset
distribution, the POSE reformulation can be ap-
plied. When translating between multiple language
pairs, the ParSE reformulation can be applied to
the strongest performing pretraining language.

2 Related work

Our work can be viewed as a data efficiency tech-
nique for translation. Past works in translation
have explored data augmentation (Sennrich et al.,
2016; Fadaee et al., 2017), sample re-weighting
(Shu et al., 2019; Ren et al., 2019; Gu et al., 2018),
and curriculum learning (Kocmi and Bojar, 2017;
Zhang et al., 2018; Platanios et al., 2019; Zhang
et al., 2019; NLLB-Team et al., 2022). These ap-
proaches vary in effectiveness, are not generaliz-
able, and introduce complexity into the training
process. Curriculum learning approaches in par-
ticular are typically complicated and unsuccessful,
because they are designed using intuition on how
humans treat inputs, which may differ from how
models treat inputs. In contrast, our input reformu-
lations are simple and can be directly applied to
any sequence-to-sequence task.

Previous work has explored prompting a frozen
language model using manually curated prompts
(Brown et al., 2020; Touvron et al., 2023; Petroni
et al., 2019). Results are typically sensitive to the
exact prompt used. This technique cannot be ap-
plied to larger corpora because it is limited by the
number of examples that can feasibly fit into a
single input context. Other works have explored
finetuning with a fixed prompt without leveraging
the target output as a part of the input (Radford
et al., 2018, 2019; Dong et al., 2019; Devlin et al.,
2019; Lewis et al., 2019; Sun et al., 2019; Liu et al.,
2019; Clark et al., 2020; Yang et al., 2020; Raffel
et al., 2020; Gao et al., 2021; Schick and Schütze,
2021; au2 et al., 2021; Xue et al., 2021; He et al.,
2021; Taori et al., 2023).
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Baseline
ཟངས་མདོག་དཔལ་�ི་རི་བོར་�ེ་བར་ཤོག །

 

POSE
ཟངས་མདོག་དཔལ་�ི་རི་བོར་�ེ་བར་ཤོག །
May we be born on

Classical Tibetan to English input reformulations

Target output
May we be born on the Copper-Coloured

Mountain of Glory.

Figure 2: POSE reformulation applied to the tib2eng
translation task. Changes are highlighted in red.

Following the success of fixed prompt tech-
niques, other works proposed prompt tuning setups
(Shin et al., 2020; Schick et al., 2020; Li and Liang,
2021; Hambardzumyan et al., 2021; Lester et al.,
2021; Zhong et al., 2021b; Wallace et al., 2021;
Haviv et al., 2021; Jiang et al., 2020; Chen et al.,
2022; Qin and Eisner, 2021; Liu et al., 2021; Han
et al., 2021; Zhong et al., 2021a; Lu et al., 2022;
Ben-David et al., 2022; Wang et al., 2022a; Zhou
et al., 2023b). These prompt tuning setups were
typically used in the context of compute efficiency:
training a smaller number of prompt-related param-
eters to input into a larger frozen language model.
These setups are an orthogonal improvement to our
proposed input reformulations.

Previous approaches also investigated dataset
improvements for better downstream task perfor-
mance. These approaches gathered additional data
for model training to augment the model’s input
context (Chung et al., 2022; Wei et al., 2023; Wang
et al., 2023a; Iyer et al., 2023; Min et al., 2022; Wei
et al., 2022; Wang et al., 2022b; Gu et al., 2023;
Wang et al., 2023b; Zhang et al., 2022b; Press et al.,
2023; Zhou et al., 2023a). They require large, spe-
cific, and high quality datasets to be collected. On
the other hand, our input reformulations require no
additional data.

Overall, our approach differs from previously ex-
plored approaches by avoiding prompts and lever-
aging the target output as a part of the input refor-
mulation. Our input reformulations are a data-level
change that can be easily applied to any training
setup.

3 Experiments on a difficult single
language pair translation task

3.1 Setup

We perform experiments on a Classical Tibetan
to English (tib2eng) dataset. Critically, Classical
Tibetan is not found in mT5’s pretraining dataset,
while English is. As a result, the tib2eng dataset

is challenging for mT5. Additionally, mT5’s tok-
enizer was not trained on Tibetan. We use mT5’s
current tokenizer and use the byte-level fallback
capabilities of the underlying SentencePiece tok-
enizer to encode unknown tokens (Xue et al., 2021).
We use the BLEU metric (Papineni et al., 2002) for
evaluation.

The dataset consists of 450k train, 5k validation,
and 5k test translation pairs. The tokenized Tibetan
inputs are mean 72 and median 51 tokens long; we
use a maximum sequence length of 256. We train
for 10k steps and a batch size of 512 translation
pairs (about 35k tokens per batch, about 350M to-
kens total), equivalent to 11 epochs. We use the
AdamW (Loshchilov and Hutter, 2019) optimizer
with parameters β1 = 0.9, β2 = 0.999, and weight
decay 0. We use a constant learning rate schedule
with no warmup. The models converge success-
fully under this data compute budget. We ablate
over learning rates in {1e-3, 2e-3, 3e-3} for 600M
and 1B parameter models (the default finetuning
learning rate for mT5 is 1e-3 (Xue et al., 2021)) and
{3e-4, 5e-4, 1e-3} for 3B parameter models, where
we found lower learning rates to be empirically
better.

We perform evaluation on the models and save
checkpoints every 200 steps, for a total of 50 evalua-
tions, and we use the highest scoring checkpoint for
all results. Models were trained on GPU nodes of
either 8 NVIDIA A5000 24GB GPUs or 8 NVIDIA
A6000 48GB GPUs. The typical train time varied
from 8 hours for the smallest models to 80 hours
for the largest. We leverage the Deepspeed library
https://www.deepspeed.ai/ for training in the
half precision bf16, as well as for effective multi-
GPU training.

In all the following results tables, we report the
highest test set BLEU scores and standard deviation
(std) values over learning rates.

3.2 Motivation

We begin by training baseline mT5 models on the
tib2eng dataset. The resulting training curves are
shown in Figure 3 with the blue colored curves.
Clearly, mT5 struggles in the first 2000 steps or
20% of the training steps. With the intuition of
reducing task difficulty, we design an easier task
reformulation to apply only in the first 20% of train-
ing. First, we select a prefix from the target English
translation. The length of this prefix is uniformly
randomly chosen over the full length of the English
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Table 1: Task difficulty experiment results on mT5
600M.

Difficulty ↓ % reform BLEU Std
Least difficult 100% 21.1 0.29

50% 23.9 0.05
20% 24.6 0.26

Most difficult 0% 23.5 1.64

Table 2: Curriculum experiment results on mT5 600M.

Setup BLEU Std
Baseline 23.5 1.64
POSE 24.6 0.26
(Curriculum 1) 17.4 0.85
(Curriculum 2) 24.9 0.74
(Curriculum 3) 24.7 2.50

translation. Then, we append this English prefix to
the Classical Tibetan translation input. Intuitively,
we "scaffold" the Classical Tibetan input with a
partial English translation. We use a partial pre-
fix of the English translation so the model doesn’t
degenerate into simply outputting all the English
in the input. We name this reformulation "Partial
Output Scaffold English" or POSE. An example of
POSE is found in Figure 2. The next 4 subsections
cover ablations over the finetuning reformulation
setup. For direct results on the POSE task, which
ended up being the most successful, see section
3.7.

3.3 Modulating task difficulty

The POSE reformulation is easier than the baseline
task. In order to modulate task difficulty, we ablate
over different amounts of training examples that
use this reformulation: 0% (baseline), 20%, 50%,
and 100% (all reformulated).

Results are found in Table 1. The best condition
involves reformulating the first 20% of training ex-
amples, achieving 24.6 BLEU, 1.3 BLEU higher
than the baseline. We hypothesize that making
the task too easy e.g. 50% or 100% reformulated
makes the task less informative, which hurts down-
stream performance. All of the reformulated runs
have low variance across the learning rates, sug-
gesting that models are better conditioned while
training on easier tasks.

3.4 Optimizing the curriculum

We attempt to optimize the curriculum using hu-
man intuition in 3 setups. (Curriculum 1): Instead

Table 3: Prefix+suffix experiment results on mT5 600M.

Substring % reform BLEU Std
Baseline 0% 23.5 1.64
Prefix 20% 24.6 0.26
Prefix+suffix 12% 24.8 0.55

20% 24.5 0.90
40% 24.0 0.12

of reformulating only the first 20% of training ex-
amples (i.e. all examples in the first 2000 steps),
we rigidly add 100% of the output to the input at
the beginning of training, and linearly scale down
to 0% added at the end of training. (Curriculum
2): Instead of reformulating 100% of training ex-
amples in the first 2000 steps, we reformulate 80%
of the inputs for the first 2000 steps, linearly scale
down from 80% reformulated to 40% reformulated
for the next 4000 steps, and reformulate no ex-
amples for the last 4000 steps. (Curriculum 3):
Instead of using uniformly random length prefixes
for the first 20% of training examples, we rigidly
add 100% of the output to the input and linearly
scale down to 0% at the end of 2000 steps.

Results are found in Table 2. Even though these
setups have merit using human intuition, mT5 per-
forms markedly worse on all of them in either per-
formance, stability, or both. The best performing
runs perform better than POSE, but at the cost of
stability.

3.5 Modulating scaffold substring

Rather than using just a prefix of the target English
output, we experiment with setups that append both
a portion of the target English prefix and a portion
of the target English suffix ("prefix+suffix" refor-
mulation). The total selected length remains the
same for the prefix+suffix experiments. The pre-
fix+suffix input reformulation is still in natural lan-
guage, but using different pieces of the target out-
put. Additionally, we perform a more fine-grained
sweep over how many initial training examples are
reformulated.

Results are found in Table 3. The prefix+suffix
reformulation performs better and is less varied
than the baseline, but performs worse than the
prefix-only reformulation. We hypothesize that
the prefix-only reformulation performs the best be-
cause it is the simplest. Over different amounts
of initial training examples reformulated, 12% re-
formulated had the best raw performance, closely
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Table 4: Matching pretraining experiment results on
mT5 600M with masking.

Setup BLEU Std
Baseline 23.5 1.64
POSE 24.6 0.26
(Mask 1) 24.9 0.35
(Mask 2) 23.6 0.20
(Mask 3) 23.0 0.15
(Mask 4) 23.4 0.04

followed by 20%. We chose to stick with the 20%
experiment due to the lower variance.

3.6 Matching the pretraining task
We hypothesize that matching the pretraining task
smooths performance similar to the POSE reformu-
lation. We experiment on 4 masking setups: (Mask
1) mask in the first 20% of finetuning steps with
p=0.1; (Mask 2) mask in the last 20% of finetun-
ing steps with p=0.1; (Mask 3) mask in the last
50% of finetuning steps with p=0.25; and (Mask 4)
span-mask in the last 50% of finetuning steps with
p=0.25. Results are found in Table 4. Masking
setups have less variance compared to the baseline
or previous best setup, most likely because they are
closer to the pretraining task distribution. Setup
(Mask 1) performs better than the POSE reformu-
lation with slightly higher variance. However, we
retain the POSE reformulation as the best because
it is simpler than setup (Mask 1). The other mask-
ing setups (Mask 2), (Mask 3), and (Mask 4) result
in lower performance, most likely because the task
is less informative to the actual downstream trans-
lation task.

3.7 Final results and comparison to
state-of-the-art

We select the best setup based on stability, simplic-
ity, and performance. The best reformulation was
still the original POSE reformulation. We compare
performance of the baseline and POSE mT5 con-
ditions with the state-of-the-art translation model
NLLB (NLLB-Team et al., 2022). Because NLLB
is a translation-only model, our input reformula-
tions cannot be applied to it. NLLB’s encoded
input lengths are mean 26 / median 19 tokens. For
NLLB, We ablate over learning rates in {3e-4, 5e-4,
1e-3}. For the NLLB tib2eng baseline, we use a lin-
ear warmup of 1000 steps, 10% of the total number
of updates, with constant learning rate afterwards.
The final results comparing the finetuning of mT5

Table 5: Main results on the tib2eng translation task
for mT5. Values shown are test set BLEU scores. The
difference shown is the improvement gained by using
the input finetuning reformulations. The NLLB column
is the test set BLEU score for the corresponding sized
NLLB model.

Params NLLB Baseline POSE Diff
600M 29.3 23.5 24.6 +1.1

1B 32.3 27.2 28.3 +1.1
3B 34.4 27.3 30.1 +2.8

baseline, mT5 POSE, and NLLB on the tib2eng
task are shown in Table 5 and Figure 3.

The POSE reformulation stabilizes training and
improves performance, with the largest mT5 3B
model exceeding the performance of NLLB 600M.
Additionally, while the baseline runs have con-
verged, the mT5 POSE and NLLB models could
be trained further for higher performance. NLLB
has strong performance on this finetuning task de-
spite not being trained on Classical Tibetan. This
is because NLLB was trained on modern Tibetan,
similar to classical Tibetan, and because NLLB
is a translation-only model with a strong transla-
tion inductive prior. Our finetuning paradigm be-
gins to bridge the gap between FLMs such as mT5,
and task-specific translation-only models such as
NLLB.

4 Experiments on a massively
multilingual translation task

4.1 Setup

The Flores200 dataset consists of around 3,000 par-
allel sentences in 204 different languages, meaning
each sentence is translated into all 204 languages
with high fidelity (NLLB-Team et al., 2022; Goyal
et al., 2021; Guzmán et al., 2019). This dataset is
challenging for mT5 not only because of the sheer
number of languages, but also because mT5 was
not pretrained on over half of the languages present
in the dataset. The Flores200 dataset is purported
for evaluation with a separate, partially parallel
train set, but the fully parallel nature of the Flo-
res200 dataset enables interesting reformulations
for finetuning. We take translation pairs from the
Flores200 dev set as our training set, and transla-
tion pairs from the devtest set as our validation and
test sets.

Our reformulated Flores200 dataset for training
consists of 20M train, 5k validation, and 10k test
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mT5 vs NLLB 1B
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mT5 1B POSE
NLLB 1B
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mT5 vs NLLB 3B

mT5 3B baseline
mT5 3B POSE
NLLB 3B

Comparing mT5 baseline, mT5 POSE, and NLLB on Classical Tibetan to English

Figure 3: Tib2eng translation task reformulation experiment results. These results compare the mT5 baseline
(blue), mT5 POSE (orange), and the NLLB (green) experimental configurations. The solid lines and shaded areas
are the mean and variance over learning rates, respectively. Left: 600M. Center: 1B. Right: 3B.

El lunes, los cientí�cos ... dólar por cada uno.

German: Am Montag haben die ... hergestellt werden kann.
English: On Monday, scientists ... one U.S. cent each.

Spanish:

German: Am Montag haben die ... hergestellt werden kann.
Spanish:

El lunes, los cientí�cos ... dólar por cada uno.
On Monday, scientists ... one U.S. cent each.

German to Spanish: Am Montag haben die ...  werden kann.
Chinese to English: 周一，斯坦 ... 一美分左右。

Parallel Scaffold in English (ParSE)

Baseline

Mixed-language Parallel Scaffold (MiPS)

Flores200 translation task input reformulations

El lunes, los cientí�cos ... dólar por cada uno.

Figure 4: Examples of the ParSE and MiPS input refor-
mulations applied to the Flores200 translation task. The
changes to the original input are highlighted in red.

translation pairs. Following the tokenization setup
for the tib2eng task, mT5’s tokenizer yields inputs
of mean 52 / median 46 tokens and we use a max
sequence length of 256. We follow the NLLB team
and perform evaluation on the Flores200 task using
the chrF++ metric (Popović, 2015) with the xx-yy
condition to present the final average score across
languages (NLLB-Team et al., 2022). We ablate
over the learning rates {1e-4, 2e-4, 3e-4}, where
we found lower learning rates to be empirically
better. We train for 10k steps with a batch size of
2048 examples (approximately 105,000 tokens).

4.2 Designing task reformulations

For the tib2eng task, we designed POSE to mitigate
mT5’s struggles early in finetuning. mT5 does not

struggle in the same manner on Flores200. Even
so, we begin by replicating the tib2eng POSE setup
on Flores200 by appending a partial output of the
target translation to the input translation. We exper-
iment on mT5 300M. The baseline model achieves
16.8 validation set chrF++ and the reformulated
model achieves 16.7 validation set chrF++. As
expected, this setup matched but did not improve
upon the baseline performance.

mT5 has strong English performance because it
was pretrained on orders of magnitude more En-
glish data than other languages. So, we look to
leverage this strong capability in an input refor-
mulation. The Flores200 benchmark consists of
parallel examples of the same sentence in different
languages. We extend the tib2eng POSE reformula-
tion to the "Parallel Scaffold in English" or ParSE
reformulation. ParSE appends a full parallel En-
glish translation to the input translation. For the
ParSE setup, we provide the intuition that English
is used as a pivot language between the two other
languages.

We explore the efficacy of parallel scaffolding
without using English using the "Mixed-language
Parallel Scaffold" or MiPS reformulation. MiPS
appends a different parallel translation to both the
input and output for a total of 4 distinct language
translations per input. For simplicity, we use any
combination of languages in Flores200, regardless
if they’re in or out of mT5’s pretraining distribution.
Examples of the ParSE and MiPS reformulations
are shown in Figures 1 and 4.

For both the ParSE and MiPS reformulations,
we follow the tib2eng setup and a data mix of 20%
baseline (less informative) and 80% reformulated
(more informative) examples. We use a data mix
rather than reformulating the last 80% of training
examples to further simplify setup and expose the
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Figure 5: Flores200 translation task reformulation experiment results. These results compare the mT5 baseline
(blue), mT5 ParSE (orange), and mT5 MiPS (green) experimental configurations. The solid lines and shaded
areas are the mean and variance over learning rates, respectively. Left: 600M. Center: 1B. Right: 3B.

Table 6: Results on the Flores200 translation task for
mT5. Values shown are test set chrF++ scores. The
NLLB column is the task performance of a correspond-
ing size NLLB model. For the NLLB score, we use the
200 xx-yy chrF++ scores listed here.

Params NLLB Baseline ParSE MiPS
600M 39.5 17.6 20.7 19.2

1B 41.5 20.3 23.8 21.6
3B 41.8 23.2 25.1 23.6

model to the input reformulations early in train-
ing. The input reformulations use up to twice the
number of examples per input so we reduce the
per-step batch size by a factor of two from 2048 to
1024 in order to hold the data and compute budgets
constant across experiments.

4.3 Results

Our results are presented in Figure 5 and Table 6.
We observe positive effects on performance similar
to the tib2eng results. For the ParSE reformulation,
the model learns slightly slower initially, but learns
much more over the course of training. For the
MiPS reformulation, the model learns faster and
better than the baseline. Clearly, our input refor-
mulation scheme improves performance, beyond
just relying on strong English performance. We
hypothesize that both tasks successfully improve
performance, in part because they allow for direct
attention between the input context in different lan-
guages, aligning representations across languages.

Interestingly, the ParSE reformulation performs
the best, but also has the highest variance over the
learning rates. The need for lower learning rates
typically indicates poor conditioning, so the input
task is likely more ill-conditioned than the baseline.
One possible explanation is that mT5 is learning

the languages in Flores200 that were not present in
its training set.

4.4 Analysis on mT5’s pretraining dataset and
Flores200

Flores200 contains 204 languages, while mT5 was
only pretrained on 95 of them. We perform addi-
tional analysis on how being pretrained on a lan-
guage affects the post-finetuning performance on
Flores200, as well as how the pretraining data size
for a specific language affects performance, shown
in Figure 6. Translating from a language in the
pretraining set into other languages is more diffi-
cult than translating from other languages into a
language in the pretraining set. This is most likely
because decoding into lower-resource languages is
more difficult than encoding them.

When translating from a language in the pretrain-
ing set into other languages, pretraining data size is
slightly correlated with better performance. How-
ever, this correlation is small considering the large
range of dataset sizes. The ParSE and MiPS refor-
mulations improve performance across the board,
not depending on pretraining data size. Using a
balanced finetuning dataset like Flores200 helps
mitigate some of the language frequency related
pretraining biases of mT5.

The performance improvement using ParSE
when translating from English into other languages
is much more pronounced. This can be seen visu-
ally in Figure 6 for the rightmost datapoint in each
plot in the top row. The corresponding numbers
in Table 7 for 3B models shows the increase for
from-English is 6.3 chrF++. This makes intuitive
sense since the model has seen significantly more
English in the input during finetuning.

We break down the performance of different
model sizes and reformulation setups in Table 7.
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Figure 6: Pretraining dataset sizes and Flores200 finetuning performance. The first row represents translation from
a language in the pretraining set into other languages, including those not in the pretraining set. The second row
represents translation from other languages into a language present in the pretraining set. Each dot represents one
language and the value in the graph represents the corresponding chrF++ test set score for that language and model.
Points shown only cover languages present in the mT5 pretraining set. The point corresponding to English is the
rightmost point on all the graphs. Dataset sizes are calculated using the number of examples of each language
present in the mC4 dataset. Dataset sizes range from 100k to 1B examples.

Interestingly, the ParSE and MiPS reformulations
improve performance involving lower-resource lan-
guages, sometimes at a slight cost to performance
on higher resource languages. For example, the
3B baseline and ParSE conditions perform about
the same when translating from languages in the
pretrain dataset to other languages in the pretrain
dataset. The ParSE condition performs 1.3 chrF++
worse than the baseline when translating from out-
pretrain to in-pretrain languages. However, the
ParSE condition performs significantly better than
the baseline condition on the in-out and out-out
language pairs, with chrF++ improvements of 5.3
and 3.6 respectively. Explanations for this requires
further targeted experimental investigations.

5 Conclusion

We have explored how FLMs learn from their in-
put contexts. We provide two separate techniques
that can be applied to any translation use case.
For the case of a single language pair transla-
tion task, we recommend POSE. For the case of
a multi-language pair translation task, we recom-
mend ParSE and MiPS. For challenging translation
tasks, our scaffolding reformulations produce bet-

ter conditioned training curves and significantly
better performance. These input reformulations
are simple to understand and implement, robust
over hyperparameters, general to translation tasks,
and effective. We hope our technique is used to
accessibly improve data efficiency on translation
tasks.

Limitations

Our proposed technique has only been applied to
two challenging translation tasks, where the input
and output are both information rich and sequential
in nature. Mechanically, these ideas can be applied
to other tasks such as sequence classification. Intu-
itively, doing so would enable the model to attend
to multiple inputs in its input context in order to
better denoise the inputs. This allows the model
to learn more effectively. Similar techniques can
be applied to other tasks, even explored further in
pretraining (Lample and Conneau, 2019).

The baseline model used here was mT5, a rel-
atively old FLM. As a result, our baseline results
are low compared to state-of-the-art NLLB results.
Unfortunately, there are no better FLMs in the pa-
rameter ranges from 600M to 3B. We believe there
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is still much to explore here with better FLMs,
larger parameter counts, and other creative reformu-
lations. We believe that FLMs will eventually out-
perform translation-only models like NLLB, due to
the flexibility given by the capability to understand
inputs. The input reformulations presented in this
paper, which begin to bridge the performance gap
between NLLB and mT5, are one example of how
FLMs are more flexible in various input contexts.

Ethics Statement

As with all work today in deep learning and large
models, there are many biases introduced during
large data pretraining and finetuning. We did our
best to choose datasets and models which acknowl-
edge and attempt to mitigate these biases as much
as they can, and encourage the development of
even better datasets and models in the future. Be-
cause the techniques introduced in this paper are
input reformulations that don’t introduce new data,
we believe they are at least not introducing many
additional risks, and are generally safe to intro-
duce to other models and techniques. Addition-
ally, one surprising outcome of our work is that
heavy language-oriented pretraining biases were
mitigated by finetuning on a language-balanced
dataset. This is critical for equity with regards to
multilingual applications of language models.

We believe the priority of ethics in this line of
research is to ensure that the future integration of
these technologies into society as safe, ethical, and
trustworthy. High quality training is critical. Un-
derstanding how different inputs affect downstream
performance is an important stepping stone. We
encourage further research in this direction to im-
prove model understanding and control.

Furthermore, we aim to increase accessibility of
high quality, task-specific, and compute friendly
large language models by improving data effi-
ciency.
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Table 7: Breakdown of model and setup performance over different splits of the Flores200 dataset. "In" refers to
a language that was found in the mT5 pretraining dataset and "out" refers to a language that was not. "To Eng"
and "From Eng" is refererd to as xx-eng and eng-xx in some other papers, respectively. Notably, the proposed
techniques improve "To Eng" performance up to 4.2 chrF++ and "From Eng" performance up to 9.4 chrF++, in the
600M case. We hypothesize this difference in improvement is due to the finetuning task including more English
examples in the input, helping with downstream English translations as well as other language translations.

Params Setup In-in Out-in In-out Out-out To Eng From Eng Avg
600M Baseline 20.5 19.2 17.2 16.4 21.2 20.2 17.6

ParSE 24.5 21.1 21.2 18.7 25.4 29.6 20.7
MiPS 22.6 20.5 19.1 17.7 23.9 22.8 19.2

1B Baseline 28.3 23.6 17.1 15.2 33.8 24.6 20.3
ParSE 30.9 25.2 22.7 19.3 34.6 32.9 23.8
MiPS 27.8 23.6 19.9 17.7 31.3 25.8 21.6

3B Baseline 33.2 27.3 19.3 16.9 41.0 29.0 23.2
ParSE 33.0 26.0 24.6 20.5 37.9 35.3 25.1
MiPS 30.5 25.5 22.3 19.5 34.8 28.8 23.6
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