Prompting Scientific Names for Zero-Shot Species Recognition

Shubham Parashar!, Zhiqiu Lin?, Yanan Li**, Shu Kong*5*
!Texas A&M University, 2Carnegie Mellon University, Zhejiang Lab,
“Institute of Collaborative Innovation, 5University of Macau

{shubhamprshr, shu}@tamu.edu,

Abstract

Trained on web-scale image-text pairs, Vision-
Language Models (VLMs) such as CLIP (Rad-
ford et al., 2021) can recognize images of com-
mon objects in a zero-shot fashion. However,
it is underexplored how to use CLIP for zero-
shot recognition of highly specialized concepts,
e.g., species of birds, plants, and animals, for
which their scientific names are written in Latin
or Greek. Indeed, CLIP performs poorly for
zero-shot species recognition with prompts that
use scientific names, e.g., “a photo of Lepus
Timidus” (which is a scientific name in Latin).
This is because such names are usually not
included in CLIP’s training set. To improve
performance, prior works propose to use large-
language models (LLMs) to generate descrip-
tions (e.g., of species color and shape) and ad-
ditionally use them in prompts. We find that
they bring only marginal gains. Differently,
we are motivated to translate scientific names
(e.g., Lepus Timidus) to common English
names (e.g., mountain hare) and use such in
the prompts. We find that common names are
more likely to be included in CLIP’s training
set, and prompting them achieves 2~5 times
higher accuracy on benchmarking datasets of
fine-grained species recognition.

1 Introduction

Trained on large-scale image-text data, vision-
language models (VLMs) such as CLIP (Radford
et al., 2021; Ilharco et al., 2021) and ALIGN (Jia
et al., 2021) can recognize images of common ob-
jects in a zero-shot fashion, i.e., without further
finetuning. Such success is typically reported on
standard benchmarks such as ImageNet which con-
tains 1,000 common classes, e.g., CLIP achieves
76.2% zero-shot accuracy vs. 11.5% by Li et al.
(2017) prior to CLIP. We are motivated to use CLIP
for zero-shot recognition of highly specialized con-
cepts, e.g., species of plants, birds, and animals.
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Figure 1: We propose a rather simple method that boosts
performance for zero-shot species recognition. It translates
scientific names (written in Latin or Greek) to common En-
glish names, and use the latter in prompts. While using large
language models (LLMs) can translate scientific names, they
can fail for many species (Fig. 2). Instead, common names
can be found in other publicly available sources such as online
collections and museums. By replacing scientific names with
common names, simple prompt method achieves 2-5 times
better zero-shot species recognition accuracy on challenging
benchmarks (Table 1).

In other words, we study the problem of zero-shot
species recognition using VLMs.

Motivation. Zero-shot species recognition is
practically meaningful in various applications, e.g.,
for education and ecological and biodiversity re-
search, which desire automated recognition of
species (Stork et al., 2021; Rodr’iguez et al., 2022).
Building species recognition systems can hardly
rely on traditional supervised learning methods
which require a large set of labeled data, because
labeling images with species names demands do-
main expertise which is expensive to obtain. There-
fore, we propose to leverage pretrained VLMs (e.g.,
CLIP) for zero-shot species recognition.

Technical Insights. Species have scientific
names written in Latin or Greek. Directly us-
ing them in prompts (e.g., “a photo of Ponana
Citrina”) does not allow OpenCLIP (an open-
source CLIP) (Ilharco et al., 2021) to perform well
(Fig. 3). This is not quite surprising, because, for
the first time, we find that OpenCLIP’s training
set LAION400OM (Schuhmann et al., 2021) does
not contain scientific names of many species . Per-
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+! Model: GPT-4

Can you list the key visual attributes of Ponana Citrina in a photo?

I'm sorry, but as of my last training cut-off in September 2021, | don't have any specific
information about "Ponana Citrina". This could be due to a misspelling or it might be a new
term, species, or variant that has been described after my training data. If it's a plant, animal,
or any other object, you might be able to identify it by specific characteristics such as color,

shape, size, patterns, texture, etc. If you have more information or context, please provide it

and I'll do my best to assist you based on the general knowledge | have.

Figure 2: Top-row: four images from the species Ponana
Citrina; bottom-row: GPT4 fails to answer questions related
to this species, demonstrating a limitation of LLMs w.r.t un-
derstanding scientific names.

haps surprisingly, the recent large-language model
(LLM) GPT4 can also fail to answer questions
related to species scientific names (Fig. 2), such
as “can you describe the appearance of Ponana
Citrina?”. Inspired by Menon and Vondrick
(2022), to improve zero-shot recognition perfor-
mance, we additionally use descriptions in prompts,
hoping they provide useful contextual information.
However, it only marginally improves performance.
On the other hand, although scientific names are
not frequently included in OpenCLIP’s training
set, their corresponding English common names
are. Therefore, we are motivated to translate sci-
entific names to common ones and use the latter
in prompts (Fig. 1). Our embarrassingly simple
method significantly boosts performance by 2~5
times! To note, while LLMs can fail to understand
scientific names' and so provide common names,
common names can be found in other sources such
as online collections and museums.

Contributions are two-fold.

1. We study the underexplored problem of zero-
shot species recognition using VLMs. We
confirm that current prompting methods yield
poor performance and find that the culprit is
the scientific names written in Latin or Greek,
most of which are not in VLM’s training set.

2. We propose an embarrassingly simple method
that translates scientific names to common
names, boosting zero-shot species recognition
accuracy by 2~5 times.

'Tt is common that GPT4 can fail to answer human’s ques-
tions, but its web browsing mode mitigates this by retrieving
information on the fly from existing (professional) websites.

45
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Figure 3: We compare methods (1) vanilla prompt (Radford
et al., 2021) using scientific names which are written in Latin
or Greek (S-name), (2) S-name plus descriptions (Menon and
Vondrick, 2022), and (3) our prompt method using common
names (C-name). Results are top-1 accuracy on two datasets
(iNat and Aves detailed in Sec. 4.1). Clearly, using scientific
names in prompts yields poor zero-shot species recognition
performance because pretrained VLMs do not necessarily see
scientific names. Additionally using descriptions improves
marginally. In contrast, simply translating them to common
English names significantly boost performance.

2 Related Work

Zero-shot recognition. Previous methods ex-
ploit auxiliary semantic information such as at-
tributes (Lampert et al., 2013) or distributed word
embedding (Elhoseiny et al., 2017) of class names
and learn a mapping between them for knowledge
transfer from base to novel classes (Xian et al.,
2018). Recently, zero-shot VLMs pre-trained on
large-scale image-text corpus such as CLIP (Rad-
ford et al., 2021) achieve state-of-the-art perfor-
mance on a wide range of image recognition bench-
marks. Specifically, these models do not require
fine-tuning on downstream datasets so long as the
class names are provided. In this work, we use
OpenCLIP (Ilharco et al., 2021) as the zero-shot
VLM for recognition but focus on more specialized
and underexplored tasks, i.e., species recognition.

Prompting approaches. To use VLMs for zero-
shot recognition, it is crucial to design prompts.
Initially, prompts are manually engineered (Rad-
ford et al., 2021) which requires trials and errors.
Some methods propose to learn prompt templates
(Zhou et al., 2022; Bulat and Tzimiropoulos, 2022),
which require labeled data and are hard to opti-
mize. Some recent work proposes to exploit LLMs
(Bubeck et al., 2023; Touvron et al., 2023) to gen-
erate prompts for given concepts (Menon and Von-
drick, 2022; Pratt et al., 2023). In this work, we
focus on zero-shot species recognition, for which
LLMs might fail to provide useful information to
help construct prompts (Fig. 2). Further, different
from existing prompting approaches, we propose
a rather simple method by using species common
names (translated from their scientific names). To
the best of our knowledge, ours is the first that
translates scientific names to common names in
prompts for zero-shot recognition.
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3 Methods

We start with the vanilla prompts that have been
used in the contemporary literature of zero-shot
recognition (Radford et al., 2021).

Vanilla Prompt uses the prompt template “a
photo of Lepus Timidus” to get a similarity mea-
sure for a given input image. Note that for this
method, we use species scientific names (written
in Latin or Greek) in the prompts, hence call this
method S-name. Concretely, it feeds prompts to
CLIP’s text encoder for the text features, uses them
to compute cosine similarities to the visual feature
computed by the visual encoder for the given image.
CLIP tends to produce a high similarity for the cor-
rect prompt (corresponding to ground-truth class
name), hence achieving zero-shot recognition.

Prompt with additional descriptions enriches
prompts with descriptions (e.g., shape, color, and
size). These descriptions provide contextual infor-
mation for the targeted concepts and help zero-shot
recognition (Menon and Vondrick, 2022). Recent
work proposes to generate such descriptions using
LLMs (Pratt et al., 2023). Although using LLMs
does not always work on specific species (Fig. 2),
we follow this practice to generate descriptions
using GPT4. When GPT4 fails to provide useful
descriptions for any species, we use the simple
prompts without any descriptions by default. Note
using additional descriptions apply to both vanilla
prompt and methods below.

Prompt with common names translated from
scientific names (C-name). We investigate Open-
CLIP’s training set, i.e., LAION40OM (Schuhmann
et al., 2021), and find that it does not sufficiently
cover scientific names (e.g., 468 out of 810 species
in the semi-iNat dataset have their scientific names
in LAINON40OM). Instead, many species have
common names that are in LAION400OM. There-
fore, we turn to external resources (e.g., online
collections and Wikipedia) to translate scientific
names (written in Latin or Greek) to common En-
glish names and use the latter in prompts. For
the species that do not have any common English
names (only a few in the benchmarking datasets),
we use their original scientific names by default.

Prompt with more frequent names (F-name)
between common and scientific names. We hy-
pothesize that it is important to use the texts that
are more frequently encountered by OpenCLIP
during training. Therefore, we further analyze
LAION400M (Schuhmann et al., 2021) to obtain

Table 1: Benchmarking results of zero-shot species recog-
nition on the iNat and Aves datasets. We use two VLMs:
OpenCLIP ViT-B/32 and ViT-L/14 (which is a bigger model).
Clearly, using a bigger model produces higher accuracy across
methods. The Vanilla method that prompts scientific names
(S-name) yields quite low accuracy; additionally using de-
scriptions improves accuracy slightly. In contrast, simply
prompting common names (C-name) by translating scientific
names, we boost performance by 2X on iNat and 5X on Aves,
justifying our hypothesis that OpenCLIP might not be versed
in understanding scientific names (because its training texts do
not contain such). When using common names, additionally
exploiting descriptions does not necessarily improve perfor-
mance. We conjecture that the common names plus descrip-
tions are not frequently seen by OpenCLIP during training.
Furthermore, our final method F-name, which uses the more
frequent name between scientific and common names for each
species, is among the best methods across methods, datasets,
and OpenCLIP models.

iNat Aves
VLM Prompt Method (810-way)  (200-way)
S-name (vanilla) 6.84% 7.05%
+ descriptions 8.17% 7.75%
. C-name (ours) 13.51% 39.80%
VITB2 7 | descriptions  1442%  39.75%
F-name (ours) 13.88% 39.95%
+ descriptions 14.47 % 39.40%
S-name (vanilla) 9.21% 11.10%
+ descriptions 10.15% 12.50%
. C-name (ours) 20.17% 59.00%
VITL/I4 7 descripions  20.04%  59.90%
F-name (ours) 20.32% 58.45%
+ descriptions 20.03% 59.10%

frequency counts of both scientific and common
names for all the species of interest and use the
more frequent one in the prompt for the correspond-
ing species.

4 Experiments

We conduct extensive experiments to validate our
methods. We start with implementation details,
datasets and the evaluation metric, and then analyze
benchmarking results with in-depth analyses.

4.1 Setup

Implementations. We implement all the meth-
ods in PyTorch on a single NVIDIA A100 GPU.
We use the open-source OpenCLIP (i.e., the ViT-
B/32 and ViT-L/14 models) (Ilharco et al., 2021).

Datasets. We use four datasets that require
species-level recognition. While they were initially
curated for fine-grained classification via super-
vised learning, we repurpose them for zero-shot
species recognition, i.e., using their validation sets
for benchmarking.

* The semi-iNaturalist (iNat) (Su and Maji,
2021b) contains 810 species, covering a broad
spectrum of organisms including mammals,
plants, birds, insects, fungi, etc.
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Figure 4: Compared with using scientific names in prompts,
using common names achieves significantly higher zero-shot
accuracy on all organism types except plants. We hypoth-
esize that scientific names of plants are more likely to be
included in OpenCLIP’s training set (LAION400OM (Schuh-
mann et al., 2021)), such that OpenCLIP performs well when
directly prompting scientific names. We investigate this by
matching the scientific names and LAION400M texts, and find
LAION400M contains 65% plant species’ scientific names of
iNat. To confirm this further, we use the Flowers102 dataset
for plant species recognition (Table 2).

¢ The semi-Aves (Aves) (Su et al., 2021) is cu-
rated for 200 bird species recognition.

* The Flowers102 by Nilsback and Zisserman
(2008) is a popular fine-grained classification
dataset that contains 102 flower types.

* The CUB-200-2011 Bird (CUB200) by Wah
etal. (2011) is a popular fine-grained classifi-
cation dataset that contains 200 bird species.’

Metric. We use the top-1 accuracy averaged

over K per-class accuracy as the metric, where K
is the total number of classes.

4.2 Results

Table 1 lists benchmarking results. Please refer
to the caption for detailed conclusions. We reiter-
ate three salient conclusions. First, using common
names in prompts performs significantly better than
scientific names. It is worth noting that, on Aves,
simply using common names in prompts achieves
59.0% zero-shot recognition accuracy (59.9%),
which is even higher than the fully-supervised
method (56.6%) that pretrains on ImageNet Su et al.
(2021)! Second, additionally using descriptions, al-
though paired with common/scientific names, are
not always beneficial, as shown by results on Aves;
it can even decrease results (e.g., from 20.32% to
19.93% with the F-name method and ViT-L/14).
We conjecture the reason is that OpenCLIP was
not trained on texts (similar to prompts) contain-
ing species names plus descriptions. Third, F-
name, the method that uses the more frequent
name between scientific and common names in

2CUB200 and Flowers102 provide common names. We

translate them to scientific names for the vanilla method in
experiments.

Table 2: Further analysis on Flowers102 (for plant recog-
nition) and CUB200 (for bird species recognition) datasets.
Breakdown results in Fig. 4 show that using common names
in prompts improves significantly on organism types such as
birds but induces a decrease on plants. Therefore, we use
the two more datasets to confirm our hypothesis: OpenCLIP
has already seen most of plant species names (different from
birds) and hence perform well by prompting scientific names.
Indeed, all the prompt methods perform well on Flowers102,
although our F-name method performs the best with the bigger
model ViT-L/14. Differently, on CUB200, S-name that uses
scientific names does not perform well (6.08% with ViT-B/32),
but C-name (which uses common names in prompts) boosts
accuracy to 59.42% (with ViT-B/32).

Flowers102 CUB200

VLM Prompt Method (102-way)  (200-way)
S-name (vanilla) 66.43% 6.08%

+ descriptions 68.67% 7.61%

. C-name (ours) 61.89% 56.01%
VITB/32 ™ escriptions 6333%  58.44%
F-name (ours) 68.35% 58.35%

+ descriptions 66.91% 59.42%

S-name (vanilla) 77.28% 6.92%

+ descriptions 78.53% 10.44%

. C-name (ours) 73.49% 76.27%
VIT-L/14 + descriptions 74.67% 76.30%
F-name (ours) 78.95% 76.70%
+ descriptions 78.95% 76.87%

LAION400M, generally performs the best across
datasets and VLM models.

4.3 Analysis

Focusing on iNat which contains multiple organ-
ism types, we show performance gain of using com-
mon names vs. scientific names for each type in
Fig. 3. Using common names performs much bet-
ter on all organisms (e.g., birds) except plants.
This motivates us to investigate the reason using
the Flower102 (for plant species recognition) and
CUB200 (for bird recognition) datasets. Table 2
lists the results and the caption details conclusions.

5 Conclusions

We study the problem of zero-shot species recog-
nition using pretrained vision-language models
(VLMs). For this problem, the typical prompt
method that uses the species scientific names “by
default” performs poorly, and additionally using
descriptions in prompts improves only marginally.
We find that scientific names written in Latin or
Greek are not frequently seen in VLMSs’ training
set, explaining why they do not work well. Yet,
species English common names are more likely to
be seen in VLMs’ training set. Hence, we propose
a rather simple method that translates scientific
names to common English names, and use the latter
in prompts. This method significantly boosts accu-
racy by 2-5 times on three benchmarking datasets.
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Figure 5: Visual illustrations showcasing various class ex-
amples from the benchmarking datasets. Under each image,
we provide the corresponding species scientific name (top
row) and English common name (bottom row). (a) iNat en-
compasses a broad spectrum of species, including mammals,
plants, and fungi. (b) Aves comprises 200 bird species ex-
tracted from the iNaturalist2018 dataset. (c¢) Flowers102 is a
collection of 102 distinct flower species. (d) CUB200 is a bird
species recognition dataset that includes 200 bird species.

Table 3: We show the the counts of species scientific and com-
mon names which have occurance in LAION400m (Schuh-
mann et al., 2021), which is the training set of the VLM model
OpenCLIP used in our work. We find that a substantial portion
of species scientific names (especially from iNat) are not in
LAION400M. This helps explain why using scientific names
in prompts does not work well for zero-shot species recogni-
tion. Moreover, when also counting common names altogether
with scientific names, we find that almost all species have then
names in LAION400M. This explains why our F-name (using
more frequent names of each species in prompts) generally
performs the best. It is worth noting that in Flowers102, nearly
all scientific names are in LAION400M, explaining why the
vanilla prompt method using species scientific names performs
exceptionally well on this dataset (Table 2).

Names Found iNat Aves Flowers102 CUB200
(810) (200) (102) (200)
S-names 468 173 98 190
+ C-names 781 200 101 200

Appendix

A Visual Examples

We conducted experiments on four distinct datasets,
each primarily focusing on a unique set of species.
Aves (Su and Maji, 2021a) and CUB200 (Wah et al.,
2011) encompass 200 bird species each. iNat (Su
and Maji, 2021b) consists of a diverse range of
species, including plants, animals, and fungi, total-
ing 810 species. Flowers102 (Nilsback and Zisser-
man, 2008) is a relatively smaller dataset specifi-
cally dedicated to 102 flower types. Fig. 5 displays
some random images from these datasets.

B Names Covered by Pretraining Data

We use the VLM model of OpenCLIP (Ilharco
et al., 2021) in our work, and the training set is

Table 4: We show top-1 accuracies (in %) by S-name (using
scientific names in prompts) and C-name (using common
names in prompts) methods on different species types of the
iNat datasets. This table supplements Fig. 4. Using scientific
names improves accuracy on all species types except plants,
on which it achieved decreased accuracy 9.4%, compared to
using common names (10.83%).

Species Type S-name C-name
mammals (14) 20.00 61.43
birds (59) 6.10 37.62
fish (13) 6.15 32.30
reptiles (19) 4.21 24.21
snails (8) 0.00 12.5
shellfish (12) 16.67 28.34
amphibians (9) 4.45 15.56
arachnids (28) 2.14 9.29
insects (264) 2.88 9.84
sea urchin (3) 6.67 13.3
fungi (45) 4.45 10.67
plants (336) 10.83 9.40

Table 5: We show our examples using Pica pica, a species
in the Aves dataset, known as the common magpie. We use
the scientific name, Pica Pica, as part of the prompt for
the first method (s-name), and the common name, Common
Magpie, for the second method (c-name). The frequency of
Common Magpie and Pica Picain LAION400M (Schuhmann
et al., 2021) is then examined. Notably, the scientific name,
Pica Pica, has a higher frequency and is employed for the
third method (f-name). Finally, descriptions for this class are
obtained by prompting GPT4, forming our description-based
methods as in (Menon and Vondrick, 2022), and use it with
scientific, common, and high-frequency names.

Prompt Method Prompt Example
S-name Here is a photo of the Pica pica.
+ descriptions + Pica pica has a blue tail.
C-name Here is a photo of the common magpie.
+ descriptions + Common magpie has a blue tail.
F-name Here is a photo of the common magpie.
+ descriptions + Pica pica has a blue tail.

LAION400M (Schuhmann et al., 2021). Table 3
demonstrates that scientific names alone have lim-
ited occurrence in LAION400M, particularly in
more specialized datasets like iNat and Aves. For a
comprehensive analysis, please refer to the caption.

C Breakdown Accuracy for Different
Species Types

Table 4 lists the accuracy of each species type on

the iNat dataset by prompting s-name and c-name,

respectively. It augments Fig. 4.

D Examples of Prompts

Table 5 shows some prompt examples. Vanilla
prompts employs the prompt template “Here is a
photo of the species-scientific-name”. When
additionally using descriptions, we adopt the
same template as in (Menon and Vondrick, 2022),
which is “species-scientific/common-name
has blah-blah”, where blah-blah can be shape
(e.g., “along tail”), color (e.g., “a blue tail”), etc.
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Limitations

Vision-language models (VLMs) and large-
language models (LLMs) could learn bias and un-
fairness from their pretraining set. As our work
exploits publicly available VLMs and LLMs, we
do not address these issues and do not study how
zero-shot species recognition suffers from them.
Moreover, our work focuses on zero-shot setup
for species recognition. In practice, even though
species-level annotations demand expertise knowl-
edge and are expensive to obtain, there are some
annotated data in online libraries, online collections
and museums. Leveraging such available data to
improve species recognition is future work.

Ethics Statement

We focus on recognizing species of organisms (e.g.,
animals, birds, fungi, plants, etc.), we do not envi-
sion ethic issues in our work.
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