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Abstract

In the age of artificial intelligence, the role of
large language models (LLMs) is becoming in-
creasingly central. Despite their growing preva-
lence, their capacity to consolidate knowledge
from different training documents—a crucial
ability in numerous applications—remains un-
explored. This paper presents the first study
examining the capability of LLMs to effec-
tively combine such information within their
parameter space. We introduce EpiK-Eval, a
novel question-answering benchmark tailored
to evaluate LLMSs’ proficiency in formulating
a coherent and consistent knowledge repre-
sentation from segmented narratives. Evalu-
ations across various LLMs reveal significant
weaknesses in this domain. We contend that
these shortcomings stem from the intrinsic na-
ture of prevailing training objectives. Conse-
quently, we advocate for refining the approach
towards knowledge consolidation, as it harbors
the potential to dramatically improve their over-
all effectiveness and performance. The find-
ings from this study offer insights for devel-
oping more robust and reliable LLMs. Our
code and benchmark are available at https:
//github.com/chandar-lab/EpiK-Eval

1 Introduction

Developing systems that can reason through lan-
guage understanding has been a cornerstone in
natural language processing research. Recent
progress (Devlin et al., 2019; Brown et al., 2020;
Touvron et al., 2023) has showcased notable ad-
vancements in a variety of reasoning tasks (Hwang
et al., 2021; Cobbe et al., 2021; Yang et al., 2022;
Han et al., 2022; Zelikman et al., 2022; Lampinen
et al., 2022). Arguably, the ability of LMs to
act as knowledge bases (Izacard et al., 2022) has
been a large factor in these successes. How-
ever, observed errors (Kim et al., 2021; Zhang
et al., 2023) on tasks which entail learning depen-
dencies among multiple facts can be potentially
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Figure 1: When training on samples (red), Type I sys-
tems process each sequence independently, unable to
discern their interrelations. Presented with a question
(gray), they are unable to consolidate their knowledge
and instead assign a probability to each fact when an-
swering (green). In contrast, Type II Systems can learn
these relationships and possess a unified knowledge
state, allowing them to answer accurately.

linked to this knowledge being diffused, a state
where the known information remains indepen-
dent (AlKhamissi et al., 2022).

Meanwhile, humans maintain a consistent in-
ternal representation of the world which they ac-
tively use for reasoning (Nader, 2009; Johnson-
Laird, 2010). This motivates language models
to be equipped and evaluated to be knowledge
consistent (Moghaddam and Honey, 2023; Hao
et al., 2023), as the lack of consistency and con-
solidation in parametric knowledge could result in
poor reasoning (Madsen et al., 2022; Valmeekam
et al., 2022; Zheng et al., 2023). Extrapolating
from AlKhamissi et al. (2022), we focus on the
behaviour of LMs as epistemic models (Rendsvig
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and Symons, 2019; Osband et al., 2023) with a
consolidated and consistent retention of multiple
learned facts in its parameters, a knowledge state.

When the facts are concatenated into a long con-
text, the knowledge state can be constructed solely
from this context. The success of in-context learn-
ing, where a LM infers over a specific prompt de-
scribing the task and a few examples (Brown et al.,
2020; Lu et al., 2021; Wu et al., 2022), primarily
relies on the information in the input to be cor-
rect (Liu et al., 2021). However, real-world sce-
narios rarely adhere to this setting. For instance, a
LM might have to recall information stored in its
parameter space, but the information can originate
from multiple sources encountered during training.
Consequently, to maintain a consolidated knowl-
edge state, LMs must serve as epistemic models,
effectively modeling knowledge dependencies. As
LMs continue to establish themselves as fundamen-
tal tools in machine learning research (Ahn et al.,
2022; Huang et al., 2022; Hao et al., 2023), un-
derstanding their knowledge structure becomes im-
perative. The central question emerging from this
exploration is whether the knowledge within these
models exists as dispersed, standalone elements,
or whether they possess the capacity to sustain an
interconnected and consistent knowledge state.

Thus far, assessing parametric knowledge rep-
resentations has garnered interest on two ends
of a spectrum. On one side, the paradigm of
LMs as knowledge bases hypothesizes that LMs
store and retrieve knowledge when prompted,
with improved efficiency possible by storing ever-
increasing amounts of knowledge (Petroni et al.,
2019; Wang et al., 2020; Heinzerling and Inui,
2020; Sung et al., 2021; Dhingra et al., 2022).
Others (Gu et al., 2023; Sap et al., 2022; Ruis
et al., 2022; Zhang et al., 2023; Moghaddam and
Honey, 2023) evaluate theory-of-mind (Premack
and Woodruff, 1978), the ability to impute mental
states to oneself and others, in LMs and show they
fall short of having a consistent world belief state.
Although theory-of-mind abilities for LMs enhance
their reasoning and applications, evaluating and
equipping the LMs with a first-order knowledge
state is a necessary next step from LMs merely
being knowledge bases.

To this end, we propose the novel Epistemic
Knowledge Evaluation (EpiK-Eval) benchmark,
to evaluate this ability to leverage such a consoli-
dated knowledge state. EpiK-Eval trains LMs on
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Figure 2: Performance on EpiK-Eval, measuring ac-
curacy as the percentage of correct answers. Models
struggle to answer questions that require consolidating
knowledge from multiple training documents (orange).
In comparison, they perform much better if the same in-
formation can be found within a single document (blue).

stories segmented throughout the training corpus,
analogous to news articles covering certain topics
through time in large web corpora. These LMs are
evaluated on their ability to consolidate the knowl-
edge of the segmented narratives. Specifically, we
test 7 different categories of reasoning involving
complex yet explicit relations over the presented
information. Although EpiK-Eval tasks require rea-
soning beyond explicit factual knowledge, they do
not need modeling of other agent’s belief states.
As such EpiK-Eval is positioned an order of com-
plexity above vanilla knowledge extraction tasks
and an order below complex theory-of-mind tasks.
We assess where LMs lie on the spectrum between
Type I and Type II systems, based on their inferred
knowledge state evaluated through aggregate per-
formance on EpiK-Eval. Type I systems maintain
information independently across different observa-
tions, whereas Type Il systems are characterized by
their ability to consolidate information from across
those observations (example in Figure 1).

Overall, our findings indicate that LMs exhibit
characteristics of Type I rather than Type II systems.
Indeed, we observe a significant performance gap
between LMs trained on these segmented narratives
versus unsegmented ones (Figure 2). Specifically,
these models struggle to recall and consolidate the
proper information and hallucinate facts and events
at a higher rate than those trained on unsegmented
stories. This pronounced disparity highlights an
intrinsic shortcoming in existing LMs. We posit
that this can be attributed to their training objective,
suggesting a need for the development of novel
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Story

Question

Answer

[Task 7] Alice’s Day
Morning, Alice goes for a walk. Noon, Alice
makes a phone call. Afternoon, Alice makes
tea. Evening, Alice reads a book.

[Task 7] Between
going for a walk and
making tea, does
Alice read a book?

Morning, Alice goes for a walk. Noon, Alice makes
a phone call. Afternoon, Alice makes tea. Evening,
Alice reads a book. The answer is no.

[Task 9] Bob at the Restaurant
Bob arrived at the restaurant at 6:00 PM. 2
minutes after arriving, Bob ordered a drink. 10
minutes after ordering a drink, Bob ordered a
hamburger. 5 minutes after ordering a
hamburger, Bob asked for the bill.

[Task 9] At what
time does Bob ask
for the bill?

Bob arrived at the restaurant at 6:00 PM. 2 minutes
after arriving, Bob ordered a drink. 10 minutes after
ordering a drink, Bob ordered a hamburger. 5
minutes after ordering a hamburger, Bob asked for
the bill. 2 + 10 + 5 = 17. The answer is 6:17 PM.

Table 1: Sample stories, questions and answers from our dataset. Additional examples can be found in Appendix B.

methods aimed towards improvements in knowl-
edge consolidation. By investigating how LMs
consolidate and reason from segmented knowledge,
we aim to catalyze further research in the pursuit
of more sophisticated, reliable, and knowledge-
consistent machine learning systems.

2 Epistemology & Language Models

Epistemic frameworks (Wang, 2015; Rendsvig and
Symons, 2019) are formal systems used to rep-
resent knowledge, belief and the uncertainty that
entails what a reasoning system knows and/or be-
lieves. This is enabled through organizing the
knowledge observed by the system. The rules to
combine the knowledge in the abstract framework
governs combining a new information to the cur-
rent set of information, or when to ignore the new
information, and using the current beliefs to antici-
pate related events. While LMs behave as KBs to
store known relations, epistemic logic provides us
with the inspiration to describe how these models
organize and update their knowledge.

Consider the example from Figure 1, where we
have the knowledge x1: “Tom ate an apple.”, x2:
“Tom ate a pear.” and z3: “Bob ate an orange.”.
Prompted with the question “What did Tom eat?”,
the model must recall knowledge from within its
parameter space. It has to connect x; and xo while
also ignoring z3. To answer the query, a system is
expected to consolidate the information and retain
a knowledge state over the information it had seen
until then. However, an inability to draw the con-
nections would leave the facts disconnected. We
describe the model that struggles to consolidate as
Type 1, and one that is better at it and infer over a
consolidated knowledge state as Type II.

With LMs being used in real-world scenarios
where information is frequently presented as a pe-

riodic flow, it is necessary that they use such infor-
mation appropriately during inference. While tech-
niques like self-prompting and generation over self-
retrieval are gaining popularity, the performance re-
lies on the quality of the prompt, which adds to the
robustness concerns on the performance of LMs on
varying reasoning tasks. Inspired by epistemology,
we design EpiK-Eval to diagnose whether LMs
comply with a first-order knowledge state follow-
ing a sequence of facts which holds a consolidated
summary of information during inference.

3 EpiK-Eval

The EpiK-Eval benchmark presents a suite of novel,
narrative-based diagnostic tasks, meticulously de-
signed to evaluate a LM’s capacity to construct a
comprehensive, unified knowledge state.

Dataset: Our benchmark comprises 18 tasks,
which are questions about relations between facts
and events in stories, e.g., “Does x happen be-
fore/after y?”. Table 2 provides the full list of
tasks. For each task, we generate 100 stories fol-
lowing a per task template. Task 2 for instance uses
the following template:

[Task 2] {name}’s Vacation
{name} went {activity} on {day}.

where the first line is the story title, the {name} is
randomly sampled such that it is unique to each
story and the {activity} and {day} in a sentence are
randomly sampled from the list [ “fishing”, “hik-
ing”] and [ “Monday”, “Tuesday”, “Wednesday”,
“Thursday”, “Friday”, “Saturday”, “Sunday”] re-
spectively. The story can have a random number of
sentences, with the range pre-determined for each
task, ex. Task 2 stories can have between 3 and 5

sentences. An example story for Task 2 is
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Category Description Tasks
Counting Tests proficiency in quantifying occurrences and quantities. - How many times does x happen?
o . . . o . - List the diff .
L Tests ability to identify and enumerate items within a given set st the d,l erent x .
Listing or list - Is x the y’th on the list?
: - Among the list of , is there y?
. Tests understanding of relative amounts, frequency, and - Does x happen more/less often than y?
Ranking .
ranking. - Is x the same as y?
- Does x happen before/after y?
- When x happens, does y happen?
. 9
Tests if the model has learned temporal dependencies in the Between x al.ld . does 2 happen
Temporal - How much time has passed between x and y?
data, such as what events follow each other. .
- At what time does x happen based on y?
- After how many x does y happen?
- What is the state of x when y happens?
Causal Tests understanding of cause-effect. - If x had/hadn’t happened, would y have happened?
- Is x the only time that y happens?
. . .. . . - The x’th time that y h s, what i i il
Uniqueness Tests understanding of exclusivity or uniqueness in the data. e x'th time that y happens, what is a unique detail about y

compared to the other x times?
- Among the list of x, is there only y?

Consistency

Tests ability to recognize consistency in patterns or states.

- Every time x happens, is y always the same?

Table 2: The 18 tasks in the EpiK-Eval benchmark, categorized by type. Tasks aim to encompass a wide range of

fact and event relationships.

[Task 2] Tom’s Vacation

Tom went fishing on Monday.
Tom went hiking on Wednesday.
Tom went fishing on Saturday.

Thus, with a 100 stories generated for each 18
tasks, there is a total of 1800 stories, which re-
ferred to as our dataset of unsegmented stories
Dy = {x1,x2,...,x1800}. After generating these
stories, we also generate a second dataset, con-
sisting of the segmented version of these stories.
For each given story, we segment it into individual
sentences and add a part number to the title. For
example, given the previous story about Tom, we
would get the following three text sequences:

[Task 2] Tom’s Vacation, Part 1/3
Tom went fishing on Monday.

[Task 2] Tom’s Vacation, Part 2/3
Tom went hiking on Wednesday.

[Task 2] Tom’s Vacation, Part 3/3
Tom went fishing on Saturday.

We do this for all 1800 stories and get 6800 story
segments, which form our dataset of story segments
DS = {81, 82y uny 36800}-

For each story, we also generate one question-
answer pair. Questions are re-phrasings of the task.
For example, for Task 2 “How many times does x
happen?”, we have “How many times did {name}
go fishing?”. The question-answer pairs are also
generated following a template. The template al-
ways consists of a question followed by the answer

which itself has three parts: recall of the entire
story, an optional reasoning part depending on the
task and the final answer. For example, question-
answers pairs in Task 2 uses the following template

[Task 2] How many times did {name} go fishing?

{story}
The answer is {count}.

with an example of a generated question-answer
pair being

[Task 2] How many times did Tom go fishing?
Tom went fishing on Monday.

Tom went hiking on Wednesday.

Tom went fishing on Saturday.

The answer is 2.

A description of each task, its templates and
examples are provided in Appendix B. A few ex-
amples are also provided in Table 1.

Having generated one question per story, we
have a total of 1800 question-answer pairs split
randomly into two sets: the validation and the test
set. For the models to learn the answer format,
we add question-answer examples to the training
set. We thus generate an additional 1800 stories
and question-answer pairs. We discard the stories
and add these 1800 question-answer pairs to the
training set, such that there are no overlaps between
questions in the training, validation and test set.

Evaluation Process: To evaluate pre-trained LMs
for their ability to consolidate knowledge, given a
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pre-trained language model we make two copies of
it: My and Mg. We fine-tune My on the unseg-
mented stories and Mg on the segmented stories.
The prior setting ensures all necessary information
for answering a given question to be found in a
single text sequence without requiring the model to
learn dependencies across multiple text sequences.
The latter requires consolidating information from
the narrative segments. Having both allows to mea-
sure the effect of information being spread across
separate text sequences and the LMs’ ability to con-
solidate this knowledge at inference, by measuring
the gap in performance between both models.

My and Mg are fine-tuned on their respective
dataset, Dy and Dg, as well as the training set of
question-answer examples. Thus, one epoch for
My consists of 3600 samples (1800 stories + 1800
g/a examples) and one epoch for Mg of 8600 sam-
ples (6800 segments + 1800 g/a examples). Sam-
ples are shuffled such that a batch may contain a
mix of stories and question-answer examples in
the case of My or story segments and question-
answer examples in the case of Mg. Models are
fine-tuned with their respective pre-training objec-
tive. Specifically, in the case of encoder-decoder
style models, the story’s title (first line in the text
sequence) is fed to the encoder and the decoder is
expected to output the rest of the story in the case
of My or the story segment in the case of Mg. As
for question-answer pairs, the question is fed to
the encoder and the model is expected to output
the answer. For causal language models, they are
simply expected to predict the next token in the
given sequence, as is standard procedure. Precisely,
for My;, a text sequence is either an entire story or
a question concatenated with its answer, while for
Mg, a text sequence is either a story segment or a
question concatenated with its answer.

During fine-tuning, both models are also peri-
odically evaluated on the validation set. Models
are run in inference mode as described in the pa-
pers they were introduced in. We prompt models
with questions from the validation set and model
answers are compared to the target answers. For
an answer to be deemed as correct, it must match
the exact target answer. This is to capture poten-
tial recall and reasoning errors as well as verify
the final answer. This is important for evaluating
Mg’s ability to consolidate the separate story seg-
ments, which is why we require the model to recall
the entire story when answering a question. Here,

M7 serves as an upper-bound on the performance
and any potential gap in performance between it
and Mg showcases the added difficulty of consol-
idating knowledge from the story segments. The
number of correct responses over the total number
of questions is referred to as the accuracy. We also
measure an additional metric, which we refer to as
the hallucination rate. Given an answer, consider
only the recall part of the answer and disregard the
reasoning part and the final answer. The hallucina-
tion rate is the number of recalled sentences that
contain an error (does not match with the actual
sentence in the narrative) over the total number
of recalled sentences. This provides a more fine-
grained examination of the recall and knowledge
consolidation capabilities of the model. We want to
evaluate if the model is more likely to hallucinate
facts, events or segments when recalling these from
multiple training sequences (segmented setup) ver-
sus a single training sequence (unsegmented setup).
Once both models have been fine-tuned, we take
the best performing checkpoint of each model on
the validation set and evaluate these on the test set.
This is done in the same manner as the validation,
except that the questions are from the test set.

4 Experiments

We experiment with three different LLMs: T5 (Raf-
fel et al., 2020), its instruction-tuned variant Flan-
T5 (Chung et al., 2022), and OPT (Zhang et al.,
2022). For T5 and Flan-T5 models, we benchmark
sizes from Small to XL. For the OPT model, we
benchmark sizes 125M, 350M, 1.3B and 2.7B pa-
rameters. Unless otherwise stated, the reported
performance is on the test set. Performance scores
presented in this section are always averaged over
the 18 tasks of our benchmark. Individual task per-
formance can be found in Appendix B, and training
details are provided in Appendix A.

4.1 Are LMs Type I or Type II Systems?

Answering this question relies on 1) the model
performing well in the unsegmented setting and 2)
equal performance in the segmented setup.
Performance on our benchmark is shown in Fig-
ure 2. There is a noticeable decline in performance
for models trained on segmented stories compared
to unsegmented ones. This trend suggests that,
regardless of size or training methodology, LMs
struggle to consolidate knowledge from multiple
sources, behavior characteristic of Type I systems.
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Figure 3: Breakdown of model answers into three parts: story recall, reasoning and final answer. (Left) percentage
of correct recalls. (Center) percentage of correct reasonings when recall is correct. (Right) percentage of correct
final answers when recall and reasoning are correct or when recall is correct and task has no reasoning part. Recall
performance is worse when models need to recollect information from multiple training documents (orange) versus
from single documents (blue), but reasoning and final answer capabilities seem unaffected.

In the unsegmented setting, Flan-T5 surpasses
T5. OPT, on the other hand, starts behind both
but matches T5’s performance in its largest variant.
Interestingly, in the segmented scenario, all models
exhibit comparable performance.

When scaling the LMs, performance generally
improves as LMs are scaled in both segmented
and unsegmented setups. The only exception is T5
when trained on unsegmented stories.

4.2 In-Depth Answer Analysis

In order to better understand the models’ behaviour,
we take a closer look at the models’ answers. We
break these down into three parts: the recall of the
story, the reasoning and the final answer.

Recall: We initially examine the models’ recall
capabilities. The left plot of Figure 3 presents the
percentage of correct recalls. We observe:

* A consistent trend with Figure 2, models trained
on unsegmented stories greatly outperform
those trained on segmented ones.

e Within the unsegmented setting, OPT lags
slightly behind T5, while T5 and Flan-T5 show
comparable recall capabilities. Scaling effects
are more pronounced for OPT, while T5 and
Flan-T5 show marginal improvements.

* Models trained on segmented stories all demon-
strate similar performance, with notable im-
provements as they scale.

Analysis of model recall lengths compared to target
distribution revealed similar patterns, indicating
that segmentation doesn’t impact the recall span in
terms of sentence numbers. See Appendix D.

Reasoning: When narrowing down to answers
with correct recall, we analyze reasoning capabil-
ities, as depicted in the center plot of Figure 3.
Noteworthy observations include:

* Models trained on segmented stories perform
slightly better than their unsegmented counter-
parts, although this may be due to variance from
the much smaller subset size for segmented sto-
ries, rather than better reasoning capabilities.

* Among unsegmented models, TS trails both
Flan-T5 and OPT. While it’s expected for Flan-
TS5 to outperform T5 due to its instruction tuning,
OPT outperforming T5 is intriguing.

* For segmented models, performance is gener-
ally uniform across all models. However, in the
largest variants, both TS5 and Flan-T5 experience
a significant drop in performance.

* In both the segmented and unsegmented setting,
scaling doesn’t enhance reasoning skills.

Final Answers: Focusing on answers with both
correct recall and reasoning, or just correct recall
for tasks without a reasoning component, we assess
the correctness of the final answers (right plot of
Figure 3). We observe that:

* Segmented models show superior performance,
but the variance argument remains relevant.

* The performance of a given model seems to
follow a similar trend in both settings.

* As models scale, Flan-T5 and OPT both show
improved performance in each setting. How-
ever, T5’s performance declines with its largest
variant.
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Figure 4: Model hallucination rate on the training set (left) and the test set (right). Models which need to recall
information from multiple documents seen during training (orange) are more prone to hallucinations during testing
than models which only need to recall information from a single training document (blue).

Given these results, the drop in performance of
T5-XL in Figure 2 can be explained by its poor
reasoning and final answer performance rather than
issues with recall.

Overall, this reveals that while unsegmented-
trained models may falter in recall, reasoning,
or providing the correct final answer, segmented-
trained models predominantly grapple with recall
errors. This shows that their main challenge is con-
solidating knowledge effectively in order to solve
the problem.

4.3 Hallucinations

Our next analysis of model behaviour looks at the
tendency of these models to “hallucinate”. Exam-
ples of such hallucinations can be found in Ap-
pendix C. Figure 4 showcases the hallucination
rate, defined as the percentage of sentences in the
recall part of an answer that aren’t present in the
target. This rate is presented for both the training
and test sets.

For the training set, the hallucination rate re-
mains nearly 0% for both segmented and unseg-
mented stories, with the highest observed rate be-
ing 0.2%. However, a distinct difference emerges
in the test set. Models trained on segmented sto-
ries display a significant gap in hallucination rates
compared to those trained on unsegmented stories.
This suggests that models recalling and consolidat-
ing information from multiple training documents
are more susceptible to hallucinations, which high-
lights one of the potential reasons why hallucina-
tions happen in LLMs.

Upon examining the unsegmented-trained mod-

els, the hallucination rate of TS5, Flan-T5 and OPT
decreases as model size increases. Notably, these
models exhibit a slightly higher hallucination rate
on the test set than on the training set. This could
be attributed to the change in context, where the
model is prompted with a question instead of a
story title. Interestingly, OPT models in the unseg-
mented setting hallucinate more than TS5 and Flan-
TS5 models on the test set, but not on the training
set. This behavior might stem from OPT models
overfitting training samples with positional embed-
dings, affecting their performance when prompted
with questions, which differ in length from titles.

Conversely, for the segmented-trained models,
hallucination rates among different models are
more similar and also decrease with scale. How-
ever, whether this decline continues as models in-
crease in size is uncertain. To elucidate this, exper-
iments with larger models are essential.

4.4 Effect of Scale

Both key metrics we use to study knowledge con-
solidation: recall performance and hallucination
rate, seem to improve as model size increases.
However, given the improvement in performance in
both the unsegmented and segmented settings, this
is not conclusive evidence to knowledge consolida-
tion happening with scale. To support the emergent
behavior hypothesis (Wei et al., 2022b), the im-
provement rate in the segmented setting should
significantly outpace that in the unsegmented one.
Additionally, it remains uncertain if performance
in the segmented scenario will eventually plateau,
perhaps before reaching the performance levels of
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models trained on unsegmented stories. To truly
gauge the impact of scale on knowledge consoli-
dation, experiments with larger models are needed,
but we unfortunately lack the compute to run them.

5 Related Work

Knowledge Representation: Results from prob-
ing neural language models have shown models
not only encoding facts (Petroni et al., 2019) or
linguistic knowledge (Tenney et al., 2019) in their
parameters, but also using them in downstream
tasks (Peters et al., 2018; Goldberg, 2019; Kazem-
nejad et al., 2023). The amount of knowledge a
model retains in the parameters (Dhingra et al.,
2022; AlKhamissi et al., 2022; Roberts et al., 2020)
is perceived as a reflection of the models’ success in
downstream tasks (Moghaddam and Honey, 2023).
However, relying on parameters for knowledge has
shown that language models can hallucinate (Ji
et al., 2023) and struggle to model less frequent
data (Kandpal et al., 2022). Going further than
the existing work, with the proposed EpiK-Eval
framework we attempt to understand LMs’ behav-
ior towards knowledge representation of segmented
text chunks describing a set of relation-categories.

Multi-Hop QA: In multi-hop question answering
(QA) benchmarks (Welbl et al., 2017; Yang et al.,
2018; Ho et al., 2020; Mavi et al., 2022), models
are tasked with answering questions by navigating
through multiple documents and extracting relevant
information from them. This process is pure infer-
ence, with the model relying on external knowledge
sourced directly from the documents.

Conversely, we focus on investigating how well
these models can recall and consolidate the knowl-
edge already embedded within their parameter
space—knowledge acquired during training (re-
ferred to as "internal knowledge"). This contrasts
with merely assessing the model’s ability to con-
duct document-based searches.

Artifacts of Reasoning in LMs: To utilize the
stored knowledge, approaches such as prompting
and in-context learning (Wei et al., 2022a,b,c; Liu
et al., 2023) have gained popularity for tasks in-
volving reasoning over a given context. While
LMs have shown strong reasoning skills when in-
formation is fully available in the context (Han
et al., 2022; Zelikman et al., 2022), inconsistent
results appear when such is not the case (Gu et al.,
2023). While Li et al. (2021) demonstrate that LMs

maintain state information, the authors probe for
factual information that does not require consolida-
tion. Unlike existing works, using EpiK-Eval, we
focus on studying the effect of information spread
during a LM’s training on the model’s ability to
recall and consolidate the knowledge at inference.

6 Discussion

Consolidating Knowledge in Language Models:
Our study delineates the limitations of language
models in consolidating knowledge across different
text sequences, compared to a noticeably stronger
performance when working within a single text se-
quence. We attribute this disparity primarily to the
core objective of such models: to enhance word
prediction within given sequences, while also us-
ing knowledge from previously processed text se-
quences, encoded in the model’s parameters.

Current pre-training objectives such as masked
and causal language modeling (Devlin et al., 2019;
Brown et al., 2020) potentially prioritize learn-
ing dependencies within text sequences over those
spanning across multiple ones. For instance, a
cause-and-effect relationship could exist between
two sequences. However, if the content of the first
does not explicitly help in predicting the second’s
content, the model might not learn this relation.
Consequently, numerous inter-sequence dependen-
cies in the training corpus, which may hold sig-
nificant importance in downstream tasks, may be
ignored owing to their perceived irrelevance in the
next-word prediction task. In contrast, the model
can readily establish correlational dependencies
within individual sequences which can even lead to
the direct memorization of text, a frequent occur-
rence in LLMs (Carlini et al., 2020; McCoy et al.,
2021; Tirumala et al., 2022; Carlini et al., 2023).

In light of these arguments and results, we assert
the need to revisit the training objectives of lan-
guage models. To utilize these models effectively,
we should prioritize devising training methods that
capture and consolidate the numerous information
dependencies within the training corpus. A po-
tential avenue to explore could be to guide these
models in consolidating their knowledge via meth-
ods such as RL-HF (Bai et al., 2022) or self-taught
(Zelikman et al., 2022).

Exploiting Longer Context vs Knowledge Con-
solidation: In response to the knowledge consol-
idation challenge faced by LMs, it could be ar-
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gued that the inclusion of a comprehensive context
through prompts could be an effective alternative
to having the LM remember the necessary context
autonomously. This proposition is emboldened by
recent successes in extending the context window
size (Xiong et al., 2022; Ratner et al., 2023; An-
thropic, 2023) as well as the sequence length (Dai
et al., 2019; Gu et al., 2022; Poli et al., 2023;
Bertsch et al., 2023). Such additional information
can be supplied by either a user or an auxiliary sys-
tem (Nakano et al., 2022; Schick et al., 2023; Patil
et al., 2023; Paranjape et al., 2023).

Expecting humans to provide comprehensive
context may, however, be impractical. Given the
diverse range of specialist knowledge needed for
various tasks, it’s possible for a user to lack the
necessary expertise. On the other hand, integrating
auxiliary systems to provide these contexts presents
a challenge analogous to that faced by LMs. To be
useful, such an auxiliary system must understand
and retain all relevant interdependencies within the
training corpus related to problem-solving. Unfor-
tunately, current auxiliary systems, such as search
engines or retrieval tools (Karpukhin et al., 2020;
Guu et al., 2020; Lewis et al., 2020), fall short of
this holistic understanding and recall of context.

Another strategy leveraging longer context win-
dows can be to train LMs on concatenated text se-
quences with inherent relevance (Shi et al., 2023).
This approach, however, presents its own complex-
ities. The innumerable ways texts can interrelate
complicates the process of determining and train-
ing on all possible combinations. Hence current
solutions do not provide a comprehensive solution
to this issue.

Knowledge Consolidation at Scale: Our study un-
derscores a substantial discrepancy in performance
between models trained on segmented stories and
those trained on unsegmented stories. If we as-
sume that the recall performance for models in the
segmented setting continues to improve without
plateauing prematurely, our estimates (Caballero
et al., 2022) suggest that a model with 172B param-
eters, trained on our benchmark’s segmented sto-
ries, would be required to match the performance
of an 80M parameter model trained on the unseg-
mented stories.

Although consolidating knowledge from frag-
mented text sequences arguably poses a greater
challenge than from a singular cohesive text, the
margin for enhancement in this domain is possi-

bly significant. As we venture into the realm of
real-world applications (OpenAl, 2023; Anil et al.,
2023; Touvron et al., 2023), there exist a wide ar-
ray of settings that necessitate a LLM to recall and
integrate data from multiple text sequences. Ac-
cordingly, enhancing this ability can potentially
elevate the efficiency, robustness and performance
of such models, thereby redefining the landscape
of complex language tasks.

One challenge with studying this problem at
scale is distinguishing whether LLMs demonstrate
an improved ability to model dependencies within
their training corpus (emergent behavior) or if the
dataset diversity enables the extraction of most de-
pendencies of interest within single text sequences
in the corpus. To probe for knowledge consolida-
tion at scale, we propose the use of self-contained
narratives such as short stories or books. These
documents can be segmented and dispersed within
the training corpus of LLMs (Touvron et al., 2023;
Computer, 2023) and evaluation can be performed
in a similar fashion as EpiK-Eval, where questions
can assess the understanding of the overall narrative
and the various relations in the story. With complex
enough naratives, this methodology should provide
a robust framework for examining the knowledge
consolidation capabilities of LLMs.

7 Conclusion

In this paper, we presented the EpiK-Eval bench-
mark, a tool designed specifically to evaluate the
proficiency of LMs in consolidating their knowl-
edge for problem-solving tasks. Our findings un-
derscore the limitations of current LMs, which ap-
pear to mostly maintain a disjoint knowledge state
of training observations. Further, we note a sig-
nificant performance gap and an increased rate of
hallucinations for models trained on segmented nar-
ratives compared to those trained on unsegmented
ones. We attribute these discrepancies to the train-
ing objectives of the models, which underscores the
need to more effectively model the dependencies
within the training corpus. By highlighting current
limitations and opportunities for improving LMs,
these results delineate paths for future research,
hopefully enabling the growth of language models
beyond simple knowledge bases.

Limitations

Ensuring that EpiK-Eval’s data doesn’t leak into
the pre-training set of LLMs is a challenge. This

9531



inclusion could skew the benchmark’s results. One
straightforward solution is to check if the data ex-
ists within the pre-training set, though this method
is computationally intensive. Another practical ap-
proach is to generate and release a new version of
the dataset periodically, for instance, annually. To
further safeguard against potential leaks, we’ve en-
crypted the data in the public release of the bench-
mark. Users are required to decrypt it locally before
use.

Ethics Statement

This study employs machine learning algorithms,
specifically large language models, which are
trained on vast amounts of text data. While these
models have shown remarkable predictive capabil-
ities, it is important to underscore the ethical con-
cern that arises from their training process. These
models often learn from data that is intrinsically
embedded with human biases, which can subse-
quently be reflected in their outputs. Therefore,
it is paramount to approach any output produced
by these models with critical consideration of this
potential for embedded bias.
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A Training Details

TS5 & Flan-T5: All models are fine-tuned for
360,000 steps with a batch size of 50. We use
the Adam optimizer, setting a base learning rate
of 1 x 10~%. The learning rate undergoes a linear
warmup for the initial 1% of training steps, after

which it remains constant. No weight decay or
gradient clipping is applied.

OPT: Except for the learning rate, we use the same
hyperparameters as with TS5 and Flan-T5. The base
learning rates for different OPT model sizes are:

¢ 125M: 6 x 107°

e 350M: 3 x 107°

¢ 13B:2x107°

* 27B:1.6 x 107

B Per Task Description & Results

We provide a detailed description of each task in Ta-
bles 3-20, along with the per task results in Figures
5-22.

C Hallucination Examples

In Table 21 and Table 22, we present examples
of hallucinations observed in models trained on
segmented stories. Our analysis revealed no signif-
icant differences in the patterns of hallucinations
across various models. It’s also worth noting that
models trained on unsegmented stories exhibited
similar hallucination patterns, albeit at a reduced
frequency (as shown in Figure 4).

D Recall Length Distribution

We analyzed the length of story recalls in relation
to the target distribution to determine the impact
of training on segmented versus unsegmented sto-
ries. Figure 23 displays the distribution of the recall
length, measured in number of sentences, for both
the model and the target. For brevity, we present
results only for the largest variant of each model,
noting that similar patterns were observed across all
model sizes. Our analysis revealed no significant
differences between these distributions, leading us
to conclude that training on segmented stories does
not influence the recall length of the models’ out-
puts.
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Task 1: “List the different x.”

Category: Listing
Description: The objective of this task is to identify and list the days on which a person worked from
home.

Template Example
Story: Story:
[Task 1] {name}’s Work From Home Log [Task 1] Tom’s Work From Home Log
{name} worked from home on {day}. Tom worked from home on Monday.

Tom worked from home on Friday.
{name} worked from home on {day}.

Question: Question:
[Task 1] Which days did {name} work from home? [Task 1] Which days did Tom work from home?
Answer: Answer:
{story} Tom worked from home on Monday.
The answer is {answer}. Tom worked from home on Friday.
The answer is Monday and Friday.
Details

* {day}: Randomly sampled without replacement from [“Monday”, “Wednesday”, “Friday”].

* {answer}: Comprises the days listed.

* The story can span one to three sentences, excluding the title. Sentences are ordered chronologically
based on {day}.

Table 3: Templates for generating Task 1 stories, questions, and answers, with an example provided.
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Figure 5: Task 1 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and test
sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 2: “How many times does x happen?”’

Category: Counting

Description: The task aims to count the number of times the fishing activity occurred within the story.

Template

Example

Story:
[Task 2] {name}’s Vacation
{name} went {activity} on {day}.

{name} went {activity} on {day}.

Story:

[Task 2] Tom’s Vacation

Tom went fishing on Monday.
Tom went hiking on Wednesday.
Tom went fishing on Thursday.
Tom went hiking on Saturday.
Tom went hiking on Sunday.

Question:
[Task 2] How many times did {name} go fishing?

Question:
[Task 2] How many times did Tom go fishing?

Answer:

{story}
The answer is {answer}.

Answer:

Tom went fishing on Monday.
Tom went hiking on Wednesday.
Tom went fishing on Thursday.
Tom went hiking on Saturday.
Tom went hiking on Sunday.
The answer is 2.

Details

* {activity}: Randomly sampled with replacement from ["fishing", "hiking"].

* {day}: Randomly sampled without replacement from the seven days of the week.

* {answer}: A numeric value representing the count.

» The story comprises 3 to 5 sentences, excluding the title. Sentences are ordered chronologically by

{day}.

Table 4: Templates for generating Task 2 stories, questions, and answers, with an example provided.
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Figure 6: Task 2 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and test
sets. Bottom: percentage of correct recalls (left) and final answers (right).

9538



Task 3: “Does x happen more/less often than y?”

Category: Ranking

Description: The objective of this task is to determine whether the person has more meetings with Person

A or Person B.

Template

Example

Story:
[Task 3] {name}’s Afternoon
{time} - {name} {activity}.

.{;ime} - {name} {activity}.

Story:

[Task 3] Tom’s Afternoon

1:00 PM - Tom has a meeting with co-worker A.
2:00 PM - Tom fills up some forms.

3:00 PM - Tom has a meeting with co-worker B.
4:00 PM - Tom fills up some forms.

5:00 PM - Tom has a meeting with co-worker A.

Question:
[Task 3] Does {name} have more meetings with
co-worker A or B?

Question:
[Task 3] Does Tom have more meetings with
co-worker A or B?

Answer:

{story}
The answer is {answer}.

Answer:

1:00 PM - Tom has a meeting with co-worker A.
2:00 PM - Tom fills up some forms.

3:00 PM - Tom has a meeting with co-worker B.
4:00 PM - Tom fills up some forms.

5:00 PM - Tom has a meeting with co-worker A.
The answer is A.

Details

* {time}: Randomly sampled without replacement from ["1:00 PM", "2:00 PM", "3:00 PM", "4:00 PM",

"5:00 PM"].

* {activity}: Randomly sampled with replacement from ["has a meeting with co-worker A", "has a
meeting with co-worker B", "fills up some forms"].

* {answer}: Either "A" or "B", based on the frequency of the meetings.

* The story consists of 3 to 5 sentences, excluding the title. Sentences are chronologically ordered by

{time}.

Table 5: Templates for generating Task 3 stories, questions, and answers, with an example provided.
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Figure 7: Task 3 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and test
sets. Bottom: percentage of correct recalls (left) and final answers (right).

9539



Task 4: “Does x happen before/after y?”

Category: Temporal

Description: The task is designed to ascertain whether a specific event happened before or after another
event. Additionally, a reasoning based on the order of months is provided to justify the answer.

Template

Example

Story:
[Task 4] {name}’s Year
{name} {event} in {month}.

.{”name} {event} in {month}.

Story:

[Task 4] Tom’s Year

Tom buys a house in March.
Tom goes on a vacation in June.
Tom gets married in October.

Question:
[Task 4] Does {name} {event_a} {before/after}
they {event_b}?

Question:
[Task 4] Does Tom buy a house after they get
married?

Answer:

Tom buys a house in March.
Tom goes on a vacation in June.
Tom gets married in October.
March is not after October.

The answer is no.

Answer:

{story}

{month_a} is {reasoning} {month_b}.
The answer is {answer}.

Details

non

* {event}: Randomly sampled without replacement from ["buys a house", "goes on a vacation
married"].

* {month}: Randomly sampled without replacement from ["January", "March", "June", "August",
"October"].

* {event_a} and {event_b} are randomly drawn among the sampled {event}.

* {month_a} and {month_b} are associated with the corresponding {event_a} and {event_b}.

* {before/after}: Randomly sampled between "before" and "after".

* {reasoning}: Explains the temporal relationship between {month_a} and {month_b}. Options include

non non

"before", "after", "not before", and "not after".

* {answer}: A simple "yes" or "no".

* The story consists of 2 to 3 sentences, excluding the title. Sentences are chronologically ordered by
{month}.

, "gets

Table 6: Templates for generating Task 4 stories, questions, and answers, with an example provided.
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Figure 8: Task 4 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and test
sets. Bottom: percentage of correct recalls (left), reasoning (center), and final answers (right).
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Task 5: “When x happens, does y happen?”

Category: Temporal

Description: This task aims to determine whether, on days when person A is in one specific location,

person B is in another specific location.

Template

Example

Story:
[Task 5] {name_a} and {name_b}’s Travel Log
{name_a} was in {location} on {day}.

{name_a} was in {location} on {day}.
{name_b} was in {location} on {day}.

{name_b} was in {location} on {day}.

Story:

[Task 5] Tom and Alice’s Travel Log
Tom was in Paris on Monday.

Tom was in New York on Tuesday.
Alice was in Los Angeles on Monday.
Alice was in Rome on Tuesday.

Question:
[Task 5] When {name_a} is in {location_a}, is
{name_b} in {location_b}?

Question:

[Task 5] When Tom is in Paris, is Alice in Rome?

Answer:

{story}

Those are {reasoning} days.
The answer is {answer}.

Answer:

Tom was in Paris on Monday.

Tom was in New York on Tuesday.
Alice was in Los Angeles on Monday.
Alice was in Rome on Tuesday.
Those are different days.

The answer is no.

Details

* {location} for person A is chosen without replacement from ["Paris", "New York", "Vancouver"], and
for person B from ["Los Angeles", "Rome", "Tokyo"].

* {day} is picked without replacement from ["Monday", "Tuesday", "Wednesday"].

* {location_a} and {location_b} are randomly drawn from the sampled {/ocation} for person A and B
respectively.

* {reasoning}: Specifies whether the days of the events in question are "the same" or "different".

* {answer}: A simple "yes" or "no".

» Each person’s events are ordered by {day}—person A’s events are listed first, followed by person B’s
events. There can be between 2 and 3 sentences per person.

Table 7: Templates for generating Task 5 stories, questions, and answers, with an example provided.
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Figure 9: Task 5 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and test
sets. Bottom: percentage of correct recalls (left), reasoning (center), and final answers (right).
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Task 6: “Is x the only time that y happens?”’

Category: Uniqueness

Description: Determine whether a person engaged in a specific activity only once during the week.

Template

Example

Story:
[Task 6] {name}’s Holiday
{name} {activity} on {day}.

.{;zame} {activity} on {day}.

Story:

[Task 6] Tom’s Holiday

Tom goes hiking on Monday.

Tom goes fishing on Tuesday.

Tom goes to the park on Wednesday.
Tom plays golf on Thursday.

Tom visits a friend on Friday.

Question:
[Task 6] {name} {activity_a} on {day_a}. Is it the
only time that week that {name} {activity_a}?

Question:
[Task 6] Tom goes fishing on Tuesday. Is it the
only time that week that Tom goes fishing?

Answer:

{story}
The anwer is {answer}.

Answer:

Tom goes hiking on Monday.

Tom goes fishing on Tuesday.

Tom goes to the park on Wednesday.
Tom plays golf on Thursday.

Tom visits a friend on Friday.

The answer is yes.

Details

* {activity} is chosen with replacement from ["goes hiking", "goes fishing", "goes to the park", "plays

golf", "visits a friend"].

* {day} is picked without replacement from ["Monday", "Tuesday", "Wednesday", "Thursday", "Fri-

day"].

* {activity_a} is arandomly selected {activity}, and {day_a} is its corresponding day.

* {answer} can be "yes" or "no".

* The story contains 4 to 5 sentences, excluding the title. Sentences are ordered by {day}.

Table 8: Templates for generating Task 6 stories, questions, and answers, with an example provided.
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Figure 10: Task 6 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 7: “Between x and y, does z happen?”’

Category: Temporal

Description: Determine if a person performs a specific activity between two other distinct activities
during the day.

Template Example

Story:
[Task 7] {name}’s Day
{time}, {name} {activity}.

Story:

[Task 7] Tom’s Day

Morning, Tom goes for a walk.
Noon, Tom makes a phone call.
Afternoon, Tom makes tea.
Evening, Tom reads a book.

.{;ime}, {name} {activity}.

Question:

[Task 7] Between {activity_a} and {activity_b},
does {name} {activity_c}?

Answer:

{story}
The answer is {answer}.

Question:

[Task 7] Between going for a walk and making tea,
does Tom read a book?

Answer:

Morning, Tom goes for a walk.

Noon, Tom makes a phone call.

Afternoon, Tom makes tea.

Evening, Tom reads a book.

The answer is no.

Details

* {activity} is chosen without replacement from ["goes for a walk", "makes a phone call", "makes tea",
"reads a book"].

* {time} is chosen without replacement from the sequential list ["Morning", "Noon", "Afternoon",
"Evening"].

* {activity_a} and {activity_b} are randomly selected among the sampled {activity}.

* {activity_c} is sampled from the list of activities but cannot be the same as {activity_a} or {activity_b}.

* {answer} is either "yes" or "no".

* The story contains 3 to 4 sentences, excluding the title, with sentences ordered chronologically by
{time}.

Table 9: Templates for generating Task 7 stories, questions, and answers, with an example provided.
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Figure 11: Task 7 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 8: “How much time has passed between x and y?”’

Category: Temporal

Description: Determine the duration in hours between two activities a person engaged in.

Template

Example

Story:
[Task 8] {name}’s Contact Log
At {time}, {name} {event}.

;&t {time}, {name} {event}.

Story:

[Task 8] Tom’s Contact Log

At 2pm, Tom wrote a letter.

At 4pm, Tom sent an email.

At 7pm, Tom made a phone call.

Question:
[Task 8] How much time passed between {name}
{event_a} and {event_b}?

Question:
[Task 8] How much time passed between Tom
wrote a letter and sent an email?

Answer: Answer:
{story} At 2pm, Tom wrote a letter.
{reasoning} At 4pm, Tom sent an email.

The answer is {answer}.

At 7pm, Tom made a phone call.
4-2=2.
The answer is 2.

Details

* {time} is selected without replacement from ["1pm", "2pm", "3pm", "4pm", "Spm"].
* {event} is selected without replacement from ["wrote a letter", "sent an email”, "made a phone call",

"started a video chat"].

* {event_a} and {event_b} are randomly chosen among the sampled {event}, with {event_b} always

occurring after {event_a}.

* {reasoning} describes the subtraction of the times corresponding to {event_a} from {event_b}, repre-

senting the duration in hours.
* {answer} indicates the number of hours.

» The story contains 3 to 4 sentences, excluding the title, arranged chronologically by {time}.

Table 10: Templates for generating Task 8 stories, questions, and answers, with an example provided.
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Figure 12: Task 8 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and

test sets. Bottom: percentage of correct recalls (left), reasoning (center), and final answers (right).
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Task 9: “At what time does y happen based on x?”

Category: Temporal
Description: Determine the time the person asks for the bill based on prior events at the restaurant.

Template Example
Story: Story:
[Task 9] {name} at the Restaurant [Task 9] Tom at the Restaurant
{name} arrived at the restaurant at {time}. Tom arrived at the restaurant at 6:00 PM.
{minute} minutes after arriving, {name} ordered a {item_1}. 2 minutes after arriving, Tom ordered a drink.

{minute} after ordering a {item_1}, {name} ordered a {item_2}. 1 minutes after ordering a drink, Tom ordered a hamburger.
{minute} minutes ordering a {item_2}, {name} asked for the bill. =3 minutes after ordering a hamburger, Tom asked for the bill.

Question: Question:

[Task 9] At what time does {name} ask for the bill? [Task 9] At what time does Tom ask for the bill?

Answer: Answer:

{story} Tom arrived at the restaurant at 6:00 PM.

{reasoning} 2 minutes after arriving, Tom ordered a drink.

The answer is {answer}. 1 minutes after ordering a drink, Tom ordered a hamburger.
3 minutes after ordering a hamburger, Tom asked for the bill.
{reasoning}

The answer is {answer}.

Details

o {time} is selected between "6:00 PM" and "6:30 PM," rounded to the nearest minute.

* {minute} is chosen with replacement from ["1", "2", "3"].

e {item_1} can be either "drink" or "coffee".

e {item_2} can be "hamburger" or "sandwich".

* There’s a 50% chance {name} won’t order {item_2}. If so, the penultimate sentence is omitted, and
the last sentence references {item_1}.

* {reasoning} provides the total time elapsed from the arrival to the request for the bill.

¢ {answer} indicates the exact time.

» The story contains 3 or 4 sentences, not counting the title, depending on whether or not {item_2} was
ordered.

Table 11: Templates for generating Task 9 stories, questions, and answers, with an example provided.
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Figure 13: Task 9 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left), reasoning (center), and final answers (right).
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Task 10: “The x’th time that y happens, what is a unique detail about y compared to the other x times?”

Category: Uniqueness
Description: Determine who accompanied the person the x’th time they engaged in a specific activity.

Template Example
Story: Story:
[Task 10] {name} Hunting and Canoeing Week [Task 10] Tom’s Hunting and Canoeing Week
{day}, {name} went {activity} with {friend}. Monday, Tom went hunting with Alice.
. Tuesday, Tom went canoeing with Bob.
{day}, {name} went {activity} with {friend}. Wednesday, Tom went hunting with Carl.

Thursday, Tom went canoeing with James.
Friday, Tom went canoeing with Steve.

Question: Question:

[Task 10] The {x} time that {name} went [Task 10] The second time that Tom went hunting,
{g_activity}, who else was there? who else was there?

Answer: Answer:

{story} Monday, Tom went hunting with Alice.

The answer is {answer}. Tuesday, Tom went canoeing with Bob.

Wednesday, Tom went hunting with Carl.
Thursday, Tom went canoeing with James.
Friday, Tom went canoeing with Steve.
The answer is Carl.

Details

* {day} can be any day of the week.
* {activity} in each statement can be either "canoeing" or "hiking". However, "hunting" must be picked

at least twice but no more than three times.
* {friend} is randomly sampled from a list of names.

* {g_activity} can be either "canoeing" or "hiking".
* {x} is a number between 1 and the number of times {g_activity} occurs.
 {answer} is the name of the person who was with {name} during the {x}’th occurrence of the

{qg_activity}.
» The story comprises 4 or 5 sentences, not including the title. Sentences are arranged by {day}.

Table 12: Templates for generating Task 10 stories, questions, and answers, with an example provided.
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Figure 14: Task 10 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 11: “Every time x happens, is y always the same?”’

Category: Consistency
Description: Determine if, every time a person travels to a specific location, they consistently use the
same type of vehicle.

Template Example
Story: Story:
[Task 11] {name}’s Car Choice [Task 11] Tom’s Car Choice
{day}, {name} drives to {place} in a {vehicle}. Monday, Tom drives to the grocery store in a minivan.
e Tuesday, Tom drives to the pharmacy in a minivan.
{day}, {name} drives to {place} in a {vehicle}. Wednesday, Tom drives to the grocery store in a SUV.

Thursday, Tom drives to the grocery store in a SUV.

Question: Question:
[Task 11] Every time {name} drives to {g_place}, [Task 11] Every time Tom drives to the grocery
is it always in a {g_vehicle}? store, is it always in a minivan?
Answer: Answer:
{story} Monday, Tom drives to the grocery store in a minivan.
The answer is {answer}. Tuesday, Tom drives to the pharmacy in a minivan.

Wednesday, Tom drives to the grocery store in a SUV.
Thursday, Tom drives to the grocery store in a SUV.
The answer is no.

Details

* {day} is selected without replacement from ["Monday", "Tuesday", "Wednesday", "Thursday"].
* {place} in each statement can be either "the pharmacy" or "the grocery store".

* {g_place} is randomly chosen from the sampled {place}.

e {vehicle} in each statement can be either "minivan" or "SUV".

* {g_vehicle} can be either "minivan" or "SUV".

* {answer} is either "yes" or "no".

* The story consists of 3 to 4 sentences, excluding the title, and sentences are ordered by {day}.

Table 13: Templates for generating Task 11 stories, questions, and answers, with an example provided.
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Figure 15: Task 11 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 12: “After how many x does y happen?”’

Category: Temporal
Description: The goal of the task is to determine after how many days person B joins person A.

Template Example

Story:
[Task 12] {name}’s Company
{day}, {name} is alone.

Story:

[Task 12] Tom’s Company
Monday, Tom is alone.
Tuesday, Tom is alone.
Wednesday, Alice arrives.
Thursday, Tom is with Alice.

{day}, {company} arrives.
{day}, {name} is with {company}.

{day}, {name} is with {company}.

Question: Question:

[Task 12] After how many days does {company}  [Task 12] After how many days does Alice join
join {name}? Tom?

Answer: Answer:

{story} Monday, Tom is alone.

The answer is {answer}. Tuesday, Tom is alone.
Wednesday, Alice arrives.
Thursday, Tom is with Alice.

The answer is 2.

Details

* {day} is sampled without replacement from ["Monday", "Tuesday", "Wednesday", "Thursday"].

* {company} is a randomly sampled name that is the same between statements.

* {answer} is a numeral indicating the number of days {name} was alone before being joined by
{company}.

* The story comprises 3 to 4 sentences, excluding the title, and sentences are ordered chronologically by
{day}.

Table 14: Templates for generating Task 12 stories, questions, and answers, with an example provided.
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Figure 16: Task 12 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 13: “Is x the y’th in the list?”

Category: Listing

Description: The goal of the task is to determine if person B is the x’th person that person A meets.

Template

Example

Story:

[Task 13] {name}’s Friends

{name} meets {friend} in the morning.
{name} meets {friend} at noon.

{name} meets {friend} in the afternoon.
{name} meets {friend} in the evening.

Story:

[Task 13] Tom’s Friends

Tom meets Eve in the morning.
Tom meets Alice at noon.

Tom meets Bob in the afternoon.

Question:

[Task 13] Is {g_friend} the {x} person that {name}
meets?

Question:
[Task 13] Is Bob the second person that Tom
meets?

Answer:

{story}

{q_friend} is the {reasoning}.
The answer is {answer}.

Answer:

Tom meets Eve in the morning.
Tom meets Alice at noon.

Tom meets Bob in the afternoon.
Bob is the third.

The answer is no.

Details

* {friend} is a randomly sampled name.

* {q_friend} is randomly selected from one of the friends that {name} meets.
* {x} is randomly sampled from ["first", "second", "third", "fourth"].
* {reasoning} indicates the actual position of {g_friend} with respect to ["first", "second", "third",

"fourth"].
* {answer} is either "yes" or "no".

* The story can have between 3 and 4 sentences, excluding the title. If there are only 3 sentences, the
last one "{name} meets {friend} in the evening." is omitted.

Table 15: Templates for generating Task 13 stories, questions, and answers, with an example provided.
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Figure 17: Task 13 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left), reasoning (center), and final answers (right).
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Task 14: “Among the list of x, is there y?”’

Category: Listing

Description: The goal is to determine if a person ate a given fruit or not, among the list of fruits they ate.

Template

Example

Story:
[Task 14] {name}’s Snacks
{name} ate {fruit} at {time}.

{ﬁame} ate {fruit} at {time}.

Story:

[Task 14] Tom’s Snacks
Tom ate an apple at 8am.
Tom ate a pear at 10am.
Tom ate an orange at 2pm.

Question:
[Task 14] Among the snacks that {name} ate, is

Question:

[Task 14] Among the snacks that Tom ate, is there

there a {q_fruit}? a banana?
Answer: Answer:
{story} Tom ate an apple at 8am.

The answer is {answer}.

Tom ate a pear at 10am.
Tom ate an orange at 2pm.
The answer is no.

Details

* {time} is sampled without replacement from ["8am", "10am", "12pm", "2pm"].

* {fruit} is a randomly sampled from ["an apple", "a pear", "an orange", "a banana", "a cherry"] for each
statement.
* {q_fruit} is a randomly sampled from ["an apple", "a pear”, "an orange", "a banana", "a cherry"].

* {answer} is a "yes" or "no".

* The story can have between 2 and 4 sentences, excluding the title. Sentences are ordered by {time}.

Table 16: Templates for generating Task 14 stories, questions, and answers, with an example provided.
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Figure 18: Task 14 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 15: “Among the list of x, is there only y?”’

Category: Uniqueness

Description: The goal of the task is to determine if the person only received a given grade in either their

science or language courses.

Template Example
Story: Story:
[Task 15] {name}’s Grades [Task 15] Tom’s Grades
{name} got {grade} in {language_course}. Tom got an A in English.

{name} got {grade} in {language_course}.

Tom got an A in Spanish.
Tom got an B in Biology.

{name} got {grade} in {science_course}. Tom got an A in Physics.
{name} got {grade} in {science_course}.
Question: Question:

[Task 15] Did {name} only get {g_grade} in
{course_type} courses?

[Task 15] Did Tom only get A in science courses?

Answer:

{story}
The answer is {answer}.

Answer:
Tom got an A in English.
Tom got an A in Spanish.

Tom got an B in Biology.
Tom got an A in Physics.
The answer is no.

Details

* {language_course} is randomly sampled without replacement from ["English", "Spanish", "French"].

* {science_course} is randomly sampled without replacement from ["Biology", "Physics", "Chemistry"].

* {grade} is randomly chosen to be "A" or "B" for each statement.

* {g_grade} is randomly chosen to be "A" or "B" for each statement.

* {course_type} is randomly chosen to be "science" or "language".

* {answer} is either "yes" or "no".

* The story can contain 2 to 3 sentences about language courses and 2 to 3 sentences about science
courses.

Table 17: Templates for generating Task 15 stories, questions, and answers, with an example provided.
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Figure 19: Task 15 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 16: ¢“Is x the same as y?”

Category: Ranking

Description: The goal is to determine if the person went as many times to the beach as to the cinema.

Template

Example

Story:
[Task 16] {name}’s Activities
{day}, {name} went to {place}

{day}, {name} went to {place}

Story:

[Task 16] Tom’s Activities

Monday, Tom went to the beach.
Tuesday, Tom went to the beach.
Wednesday, Tom went to the cinema.
Thursday, Tom went to the park.
Friday, Tom went to the cinema.

Question:
[Task 16] Did {name} go to the beach as many
days as to the cinema?

Question:
[Task 16] Did Tom go to the beach as many days
as to the cinema?

Answer:

{story}
The answer is {answer}.

Answer:

Monday, Tom went to the beach.
Tuesday, Tom went to the beach.
Wednesday, Tom went to the cinema.
Thursday, Tom went to the park.
Friday, Tom went to the cinema.

The answer is yes.

Details

* {day} can be any day of the week.

* {place} is randomly sampled with replacement from ["cinema", "park", "beach"], but "cinema" and
"beach" must each be sampled at least once and no more than three times.

* {answer} is either "yes" or "no".

* The story can contain 4 to 5 sentences, excluding the title. Sentences are ordered by {day}.

Table 18: Templates for generating Task 16 stories, questions, and answers, with an example provided.
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Figure 20: Task 16 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 17: “What is the state of x when y happens?”’

Category: Temporal

Description: The objective of this task is to identify what the individual was wearing at the moment the

storm began.

Template

Example

Story:
[Task 17] {name}’s Outfits
{time}, {name} is wearing {clothing}.

{time}, the storm starts.

{time}, {name} is wearing {clothing}.

Story:

[Task 17] Tom’s Outfits

8am, Tom is wearing a pyjama.

10am, Tom is wearing workout clothes.
12pm, Tom is wearing a bathrobe.
2pm, the storm starts.

4pm, Tom is wearing a raincoat.

Question:
[Task 17] What was {name} wearing when the
storm started?

Question:
[Task 17] What was Tom wearing when the storm
started?

Answer:

{story}
The answer is {answer}.

Answer:

8am, Tom is wearing a pyjama.

10am, Tom is wearing workout clothes.
12pm, Tom is wearing a bathrobe.
2pm, the storm starts.

4pm, Tom is wearing a raincoat.

The answer is a bathrobe.

Details

* {time} is randomly sampled without replacement from ["8am", "9am", "10am", "11lam", "12pm",

Hlpmll’ ”2pm”, "3pm”, ”4pm”, "Spm”].

* {clothing} is a randomly sampled without replacement from ["a pyjama", "workout clothes", "a

bathrobe", "a raincoat"].

* The statement "{time}, the storm starts." is randomly positioned within the story but can appear
anywhere from the first to the penultimate sentence.

* {answer} is the {clothing} mentioned in the sentence immediately preceding "{time}, the storm starts".

 The story will consist of 4 to 5 sentences, excluding the title, and sentences are sequenced according

to {time}.

Table 19: Templates for generating Task 17 stories, questions, and answers, with an example provided.
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Figure 21: Task 17 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left) and final answers (right).
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Task 18: “If x had/hadn’t happened, would y have happened?”’

Category: Causal
Description: This task requires determining whether, on a specific day, a person would have had a certain
amount of money had they not sold a particular item.

Template

Example

Story:

[Task 18] {name}’s Money
{day}, {name} sold {item} for {price}$.

.{.d.ay}, {name} sold {item} for {price}$.

Story:

[Task 18] Tom’s Money

Monday, Tom sold a pencil for 2$.
Tuesday, Tom sold an eraser for 18$.
Wednesday, Tom sold a marker for 3$.
Thursday, Tom sold a staple for 1$.

Question:

[Task 18] If {name} hadn’t sold {q_item}, would

they have {g_money}$ on {q_day}?

Question:
[Task 18] If Tom hadn’t sold a staple, would they
have 6$ on Wednesday?

Answer: Answer:
{story} Monday, Tom sold a pencil for 23.
{reasoning} Tuesday, Tom sold an eraser for 1$.

The answer is {answer}. Wednesday, Tom sold a marker for 3$.
Thursday, Tom sold a staple for 1$.
2+1+3=6.

The answer is yes.

Details

* {day} is randomly sampled without replacement from ["Monday", "Tuesday", "Wednesday", "Thurs-
day"].

* {item} is randomly sampled without replacement from ["a pencil"”, "an eraser”, "a marker", "a staple"].
* {price} is arandomly sampled integer value between 1 and 3.
* {g_item} is randomly sampled from ["a pencil", "an eraser", "a marker", "a staple"].

* {g_money} is some integer value between 3 and 8.

* {g_day} is randomly selected among the sampled {day}.

* {reasoning} is the summation of the {price} up to (and including) {g_day}, but excludes the {price}
corresponding to {g_item}.

* {answer} is either "yes" or "no".

* The story consists of 3 to 4 sentences, not counting the title, and sentences are listed chronologically
by {day}.

Table 20: Templates for generating Task 18 stories, questions, and answers, with an example provided.
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Figure 22: Task 18 results. Top left: percentage of correct answers. Top right: hallucination rate for both train and
test sets. Bottom: percentage of correct recalls (left), reasoning (center), and final answers (right).
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Question

Target Answer

Model Answer

[Task 1] Which days did
Hailey work from home?

Hailey worked from home on
Wednesday. The answer is Wednesday.

Hailey worked from home on
Wednesday. Hailey worked from home
on Friday. The answer is Wednesday
and Friday.

[Task 2] How many times
did Kozma go fishing?

Kozma went fishing on Monday. Kozma
went hiking on Tuesday. Kozma went
fishing on Wednesday. Kozma went
fishing on Friday. Kozma went hiking
on Saturday. The answer is 3.

Kozma went fishing on Monday. Kozma
went hiking on Tuesday. Kozma went
fishing on Wednesday. Kozma went
hiking on Thursday. Kozma went
fishing on Friday. The answer is 2.

[Task 3] Does Artemia
have more meetings with
co-worker A or B?

1:00 PM - Artemia fills up some forms.
2:00 PM - Artemia has a meeting with
co-worker A. 3:00 PM - Artemia has a
meeting with co-worker A. 4:00 PM -
Artemia has a meeting with co-worker
B. 5:00 PM - Artemia fills up some
forms. The answer is A.

1:00 PM - Artemia fills up some forms.
2:00 PM - Artemia has a meeting with
co-worker A. 3:00 PM - Artemia fills
up some forms. 4:00 PM - Artemia has
a meeting with co-worker B. The
answer is neither.

[Task 4] Does Wahoo buy
a house after they go on a
vacation?

Wahoo goes on a vacation in January.
Wahoo buys a house in March. March is
after January. The answer is yes.

Wahoo goes on a vacation in January.
Wahoo buys a house in March. Wahoo
gets married in October. March is
after January. The answer is yes.

[Task 5] When Mayr is in
Vancouver, is Grant in
Rome?

Mayr was in New York on Monday.
Mayr was in Vancouver on Tuesday.
Mayr was in Paris on Wednesday. Grant
was in Rome on Monday. Grant was in
Tokyo on Tuesday. Grant was in Los
Angeles on Wednesday. Those are
different days. The answer is no.

Mayr was in Vancouver on Monday.
Mayr was in New York on Tuesday.
Mayr was in Paris on Wednesday. Grant
was in Rome on Monday. Grant was in
Los Angeles on Tuesday. Those are the
same days. The answer is yes.

[Task 6] Adlar visits a
friend on Friday. Is it the
only time that Adlar visits
a friend?

Adlar goes to the park on Monday.
Adlar visits a friend on Tuesday. Adlar
plays golf on Wednesday. Adlar goes to
the park on Thursday. Adlar visits a
friend on Friday. The answer is no.

Adlar goes to the park on Monday.
Adlar visits a friend on Tuesday. Adlar
visits a friend on Wednesday. Adlar
plays golf on Thursday. Adlar goes to
the park on Friday. The answer is no.

[Task 7] Between going
for a walk and making tea,
does Braili read a book?

Morning, Braili goes for a walk.
Afternoon, Braili reads a book. Evening,
Braili makes tea. The answer is yes.

Morning, Braili goes for a walk. Noon,
Braili makes a phone call. Afternoon,
Braili makes tea. Evening, Braili reads
a book. The answer is yes.

[Task 8] How much time
passes between Damiyon
made a phone call and sent
an email?

At 1pm, Damiyon sent an email. At
3pm, Damiyon started a video chat. At
4pm, Damiyon wrote a letter. At Spm,
Damiyon made a phone call. 5 -1 =4.
The answer is 4.

At 1pm, Damiyon sent an email. At
2pm, Damiyon made a phone call. At
4pm, Damiyon wrote a letter. At Spm,
Damiyon started a video chat. 2 - 1 =
1. The answer is 1.

[Task 9] At what time does
Tia ask for the bill?

Tia arrived at the restaurant at 6:08 PM.
3 minutes after arriving, Tia ordered a
drink. 2 minutes after ordering a drink,
Tia ordered a sandwich. 3 minutes after
ordering a sandwich, Tia asked for the
bill. 3 + 2 + 3 = 8. The answer is 6:16
PM.

Tia arrived at the restaurant at 6:08 PM.
2 minutes after arriving, Tia ordered a
drink. 3 minutes after ordering a drink,
Tia asked for the bill. 2 + 3 =5. The
answer is 6:13 PM.

Table 21: Hallucination examples from models trained on segmented stories for Tasks 1 to 9. The Target Answer
is provided for comparison, with hallucinations highlighted in bold. For hallucination examples corresponding to
Tasks 10 to 18, see Table 22.
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Question

Target Answer

Model Answer

[Task 10] The second time
that Demontre went
canoeing, who else was
there?

Monday, Demontre went canoeing with
Emelita. Tuesday, Demontre went
hunting with Taifa. Thursday, Demontre
went canoeing with Maibelle. Friday,
Demontre went hunting with Ebere.
Sunday, Demontre went hunting with
Amyty. The answer is Maibelle.

Tuesday, Demontre went canoeing with
Maibelle. Thursday, Demontre went
canoeing with Xian. Friday, Demontre
went hunting with Neria. Sunday,
Demontre went hunting with Sidoney.
The answer is Xian.

[Task 11] Every time
Lamya drives to pharmacy,
is it always in a minivan?

Tuesday, Lamya drives to pharmacy in a
minivan. Wednesday, Lamya drives to
pharmacy in a SUV. Thursday, Lamya
drives to pharmacy in a minivan. The
answer is no.

Monday, Lamya drives to pharmacy
in a SUV. Tuesday, Lamya drives to
pharmacy in a minivan. Wednesday,
Lamya drives to grocery store in a SUV.
Thursday, Lamya drives to pharmacy in
a SUV. The answer is no.

[Task 12] After how many
days does Rooster join
Osmar?

Monday, Osmar is alone. Tuesday,
Osmar is alone. Wednesday, Osmar is
alone. The answer is never.

Monday, Osmar is alone. Tuesday,
Osmar is alone. Wednesday, Osmar is
alone. Thursday, Rooster arrives. The
answer is 4.

[Task 13] Is Person D the
third person Marayna
meets?

Marayna meets Person B in the morning.

Marayna meets Person C at noon.
Marayna meets Person D in the
afternoon. Person D is the third. The
answer is yes.

Marayna meets Person B in the morning.
Marayna meets Person A at noon.
Marayna meets Person C in the
afternoon. Person D is the first. The
answer is no.

[Task 14] Among the
snacks that Kornelis ate, is
there an orange?

Kornelis ate a banana at 8am. Kornelis
ate an apple at 2pm. The answer is no.

Kornelis ate a banana at 8am. Kornelis
ate an apple at 10am. Kornelis ate a
cherry at 12pm. The answer is no.

[Task 15] Did Corrine only
get B in language courses?

Corrine got an A in English. Corrine got
a B in Spanish. Corrine got an A in
French. Corrine got an A in Biology.
Corrine got an A in Physics. Corrine got
an A in Chemistry. The answer is no.

Corrine got an A in English. Corrine got
a B in Spanish. Corrine got an A in
French. Corrine got an A in Biology.
Corrine got a B in Physics. The answer
is no.

[Task 16] Did Trella go to
the beach as many days as
to the cinema?

Monday, Trella went to the beach.
Tuesday, Trella went to the cinema.
Wednesday, Trella went to the beach.
Thursday, Trella went to the park.
Friday, Trella went to the cinema. The
answer is yes.

Monday, Trella went to the beach.
Tuesday, Trella went to the cinema.
Wednesday, Trella went to the park.
Thursday, Trella went to the park.
Friday, Trella went to the park. The
answer is no.

[Task 17] What was Kyra
wearing when the storm
started?

9am, Kyra is wearing a raincoat. 12pm,
the storm starts. 2pm, Kyra is wearing
workout clothes. 3pm, Kyra is wearing
a bathrobe. The answer is a raincoat.

9am, Kyra is wearing a raincoat. 10am,
Kyra is wearing a pyjama. 12pm, the
storm starts. 2pm, Kyra is wearing
workout clothes. The answer is a

pyjama.

[Task 18] If Rheanna
hadn’t sold a a staple,
would they have 8% on
Wednesday?

Monday, Rheanna sold an eraser for 3$.
Tuesday, Rheanna sold a marker for 3$.
Wednesday, Rheanna sold a staple for
2$. 3 + 3 = 6. The answer is no.

Monday, Rheanna sold an eraser for 3$.
Tuesday, Rheanna sold a marker for 28$.
Wednesday, Rheanna sold a staple for
1$. 3 + 2 = 5. The answer is no.

Table 22: Hallucination examples from models trained on segmented stories for Tasks 10 to 18. The Target Answer
is provided for comparison, with hallucinations highlighted in bold. For hallucination examples corresponding to

Tasks 1 to 9, see Table 21.
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T5-XL Flan-T5-XL OPT-2.7B

Unsegmented
Segmented
Target

2 3 4 5 6 7 2 3 4 5 6 7
Number of Sentences Number of Sentences Number of Sentences

2 3 4 5 6 7

Figure 23: Comparison of the number of sentences in the recall part of answers from three models: T5-XL
(left), Flan-T5-XL (center), and OPT-2.7B (right). This compares the target distribution with models trained on
unsegmented and segmented stories. Similar patterns were observed for other model sizes. There is no significant
difference between these distributions, suggesting that training on segmented stories does not affect recall length.
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