
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 9176–9186
December 6-10, 2023 ©2023 Association for Computational Linguistics

IBADR: an Iterative Bias-Aware Dataset Refinement Framework for
Debiasing NLU models

Xiaoyue Wanga,c,†, Xin Liua,c,†, Lijie Wangb, Yaoxiang Wanga,c, Jinsong Sua,c,∗ and Hua Wub

aSchool of Informatics, Xiamen University, Xiamen 361005, China,
bBaidu Inc., Beijing 100085, China,

cKey Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage
of Fujian and Taiwan (Xiamen University), Ministry of Culture and Tourism, China

{xiaoyuewang, liuxin}@stu.xmu.edu.cn, jssu@xmu.edu.cn

Abstract
As commonly-used methods for debiasing nat-
ural language understanding (NLU) models,
dataset refinement approaches heavily rely on
manual data analysis, and thus maybe unable
to cover all the potential biased features. In this
paper, we propose IBADR, an Iterative Bias-
Aware Dataset Refinement framework, which
debiases NLU models without predefining bi-
ased features. We maintain an iteratively ex-
panded sample pool. Specifically, at each itera-
tion, we first train a shallow model to quantify
the bias degree of samples in the pool. Then,
we pair each sample with a bias indicator repre-
senting its bias degree, and use these extended
samples to train a sample generator. In this way,
this generator can effectively learn the corre-
spondence relationship between bias indicators
and samples. Furthermore, we employ the gen-
erator to produce pseudo samples with fewer
biased features by feeding specific bias indi-
cators. Finally, we incorporate the generated
pseudo samples into the pool. Experimental re-
sults and in-depth analyses on two NLU tasks
show that IBADR not only significantly outper-
forms existing dataset refinement approaches,
achieving SOTA, but also is compatible with
model-centric methods. 1

1 Introduction

Although neural models have made significant
progress in many natural language understanding
(NLU) tasks (Bowman et al., 2015; Gururangan
et al., 2018), recent studies have demonstrated that
these models exhibit limited generalization to out-
of-distribution data and are vulnerable to various
types of adversarial attacks (Dasgupta et al., 2018;
McCoy et al., 2019). This is primarily due to their
tendency to rely excessively on biased features—
spurious surface patterns that are falsely associated

1We release our code at http://github.com/
DeepLearnXMU/IBADR.

†These authors contributed equally to this work.
*Corresponding author.

with target labels, rather than to capture the under-
lying semantics. Consequently, how to effectively
debias neural networks has become a prominent
research topic, attracting increasing attention re-
cently.

To alleviate this issue, researchers have pro-
posed many methods that can be generally divided
into two categories: model-centric mitigation ap-
proaches (Clark et al., 2019; Stacey et al., 2020;
Utama et al., 2020a; Karimi Mahabadi et al., 2020;
Du et al., 2021) and dataset refinement approaches
(Lee et al., 2021; Wu et al., 2022; Ross et al., 2022).
The former mainly focuses on designing model ar-
chitectures or training objectives to prevent models
from exploiting dataset biases, and the latter aims
to adjust dataset distributions to reduce correlations
between spurious features and labels. In these two
types of methods, dataset refinement approaches
possess the advantage of not requiring modifica-
tions to the model architecture and training objec-
tive, while are also compatible with model-centric
approaches. Therefore, in this work, we also con-
centrate on dataset refinement approaches, which
employ controllable generation techniques (Zhou
et al., 2020; Hu et al., 2022) to refine the data dis-
tribution. However, recent studies (Lee et al., 2021;
Wu et al., 2022; Ross et al., 2022) heavily rely on
manual data analysis for debiasing models. They
either define perturbation rules to generate adver-
sarial examples, or generate pseudo samples and
filter out samples with identified biased features.
Typically, the state-of-the-art (SOTA) method (Wu
et al., 2022) first generates a large amount of sam-
ples and then applies z-filtering involving a prede-
fined set of biased features to eliminate samples
with such features. However, these methods of
manually predefining biased features may overlook
some potential biased features, thus limiting their
generalizability.

In this paper, we propose IBADR, an Iterative
Bias-Aware Dataset Refinement framework, which
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iteratively generates samples to debias NLU mod-
els without predefining biased features. Under this
framework, we create a sample pool initialized by
the original training samples, and gradually expand
it through multiple iterations. As shown in Figure
1, in each iteration, we first sort and group samples
in the pool according to their bias degree, deter-
mined by a shallow model trained on a limited set
of training samples. Next, we concatenate samples
in each group with a bias indicator that represents
its bias degree. These concatenated samples are
then utilized to train a sample generator, which
effectively learns the correspondence relationship
between bias indicators and samples. Afterwards,
as implemented in the training phase, we feed a
low-degree bias indicator to the sample generator,
allowing it to generate pseudo samples with fewer
biased features. Finally, we add these pseudo sam-
ples back into the sample pool and repeat the above
process until the maximum number of iterations is
reached.

Apparently, the above iterative process guides
the sample generator towards samples with fewer
biased features. However, we observe the gener-
ated pseudo samples display less diversity when
we feed the lowest-degree bias indicator to the sam-
ple generator. The underlying reason is that the
shallow model consistently assigns a relatively low
bias degree to samples with specific patterns, such
as the premise directly negating the hypothesis by
inserting a word “not”. Consequently, the sample
generator learns these patterns and tends to pro-
duce samples containing similar patterns, thereby
limiting their diversity.

To address this issue, we further explore two
strategies to diversify generations. First, instead
of always using the lowest-degree bias indicator,
we randomly select a low-degree bias indicator.
In this way, the sample generator is discouraged
from continually creating pseudo samples contain-
ing similar patterns, while still ensuring fewer bi-
ased features in the pseudo samples. Secondly, we
dynamically update the shallow model by integrat-
ing the newly generated pseudo samples during
the iterative generation process. By doing this, we
effectively decrease the assignment of the lowest-
degree bias indicator to pattern-specific samples,
ultimately promoting greater diversity of the gener-
ated samples.

To summarize, the main contributions of this
paper are three-fold:

• We propose a dataset refinement framework
designed to iteratively generate pseudo sam-
ples without prior analysis of biased features.

• We present two strategies to enhance the di-
versity of the pseudo samples, which further
boost the performance of NLU models.

• To verify the effectiveness and generality of
IBADR, we conduct experiments on two
NLU tasks. The experimental results show
that IBADR achieves SOTA performance.

2 The IBADR Framework

In this section, we give a detailed description of
IBADR. Under this framework, we first use a lim-
ited set of training samples to train a shallow model,
which serves to measure the bias degree of sam-
ples. Then, we iteratively generate pseudo samples
with fewer biased features, as illustrated in Figure
1. Finally, these pseudo samples are used to debias
the NLU models via retraining.

2.1 Training a Shallow Model to Measure the
Bias Degree of Samples

As investigated in (Utama et al., 2020b), a shallow
model trained on a small portion of training data
tends to overfit on biased features, thus is highly
confident on the samples that contain biased fea-
tures. Motivated by this, we randomly select some
training samples to train a shallow model, denoted
as θs, for measuring the bias degree of samples.

Let (x(i), y(i)) denote a training sample for
NLU tasks, where y(i) is the golden label of
the input x(i), we directly use the model confi-
dence p(y(i)|x(i); θs) to quantify the bias degree
of (x(i), y(i)). Apparently, if p(y(i)|x(i); θs) −→ 1,
(x(i), y(i)) is more likely to be a biased one.

Back to our framework, our primary objective is
to generate samples with a low bias degree, which
can be used to reduce spurious correlations via
adjusting dataset distributions.

2.2 Iterative Pseudo Sample Generation

The overview of the iterative sample generation
process is shown in Figure 1. During this process,
we introduce a sample generator θg to iteratively
generate pseudo samples, which are added into a
sample pool S. Specifically, we initialize the sam-
ple pool S with the original training samples, the
sample generator θg with a generative pretrained
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Figure 1: Overview of the iterative sample generation process, which consists of four key stages: ① Setting bias
indicator; ② Finetuning sample generator; ③ Generating pseudo samples; and ④ Expanding sample pool. Through
Niter iterations of the above steps, we continuously augmented the sample pool with pseudo samples, which can be
effectively employed to debias the NLU models.

language model. Then, we iteratively expand S via
the following four stage:

Step 1: Setting Bias Indicators. First, we use
the above-mentioned shallow model to measure the
bias degree of each sample in S, as described in
Section 2.1, and sort these samples according to
their bias degree and divide them into Nbi groups
with equal size. Each group is assigned with a bias
indicator bn, where 1≤n≤Nbi, b1 represents the
lowest-degree bias indicator and bNbi

denotes the
highest-degree bias indicator.

Step 2: Finetuning Sample Generator. Then,
we use the samples in S to finetune the sample
generator θg via the following loss function:

Lg = −
|S|∑

i

log p(x(i)|b(i), y(i); θg), (1)

where b(i) represents the bias indicator assigned for
the training sample (x(i), y(i)). Through training
with this objective, the generator can effectively
learn the correspondence relationship between bias
indicators and samples. Furthermore, in the subse-
quent stages, we can specify both the bias indicator
and the label to control the generations of pseudo
samples.

Step 3: Generating Pseudo Samples. Next,
we designate a bias indicator b̄ representing a low
degree of bias, and then feed it with a randomly-
selected NLI label ȳ into the generator θg. This
process allows us to form a pseudo sample (x̄, ȳ) by
sampling x̄ from the generator output distribution

pg(·|b̄, ȳ; θg). By repeating this sampling process,
we can obtain a set of generated pseudo samples
with fewer biased features.

Step 4: Expanding Sample Pool. Subse-
quently, to ensure the quality of generated pseudo
samples, we follow Wu et al. (2022) to filter the
above generated pseudo samples with model confi-
dence lower than a threshold ϵ, and incorporate the
remaining pseudo samples back into S.

After Niter iterations of the above steps, our
sample pool contains not only the original training
samples, but also abundant pseudo samples with
fewer biased features. Finally, we debias the NLU
model via the retraining on these samples.

2.3 Diversifying Pseudo Samples

Intuitively, the most direct way is to set the above
specified bias indicator b̄ to b1, which denotes the
lowest bias degree. However, we observe that such
generated pseudo samples lack diversity and fail to
cover diverse biased features. The reason behind
this is that the generated pseudo samples designated
with b1 always follow certain patterns, exhibiting
less diversity compared to those assigned with other
bias indicators. For example, the premise directly
negates the hypothesis using the word “not”. Con-
sequently, this results in spurious correlations be-
tween b1 and these certain patterns. Hence, the gen-
erator tends to generate samples following these
patterns and fails to generate samples that compass
a broader range of biased features.

To address this issue, we employ the follow-
ing two strategies: (i) Instead of using the lowest-
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degree bias indicator b1, we use a randomly-
selected low-degree bias indicator: b̄=br, where
1≤r≤Nbi

2 , and feed it into the generator during the
iterative generation process. Upon human inspec-
tion, we observe that the generated pseudo sam-
ples not only become diverse but also still contain
relatively few biased features. (ii) During the gen-
eration process, we update the shallow model θs
using a randomly-extracted portion of S at each
iteration. This strategy prevents the shallow model
from consistently predicting a low bias degree to
pseudo samples following previously-appeared pat-
terns, thereby enhancing the diversity of the pseudo
samples.

3 Experiments

3.1 Setup

Tasks and Datasets. We conduct experiments
on two NLU tasks: natural language inference and
fact verification.

• Natural Language Inference (NLI). This
task aims to predict the entailment relation-
ship between the pair of premise and hypothe-
sis. We conduct experiments using the MNLI
(Williams et al., 2018) and SNLI (Bowman
et al., 2015) datasets. As conducted in pre-
vious studies (Stacey et al., 2020; Wu et al.,
2022; Lyu et al., 2023), in addition to the de-
velopment sets, we evaluate IBADR on the
corresponding challenge sets for MNLI and
SNLI, namely HANS (McCoy et al., 2019)
and the Scramble Test (Dasgupta et al., 2018),
respectively. These two challenge sets are
specifically designed to assess whether the
model relies on syntactic and word-overlap
biases to make predictions.

• Fact Verification. This task is designed to de-
termine whether a textual claim is supported
or refuted by the provided evidence text. We
select FEVER (Thorne et al., 2018) as our
original dataset and evaluate the model per-
formance on the development set and two
challenge sets: FeverSymmetric V1 and V2
(Symm.v1 and Symm.v2) (Schuster et al.,
2019a), both of which are developed to miti-
gate biases stemming from claim-only data.

Baselines. We compare IBADR with the fol-
lowing baselines:

Dataset Original Augmented
MNLI 393K 1.0M
SNLI 549K 1.1M
FEVER 243K 607K

Table 1: Sample numbers of the constructed augmented
datasets for MNLI, SNLI, and FEVER.

Nbi
MNLI (Acc.)

dev-m dev-mm

3 85.03 85.63
5 85.31 85.88
7 84.64 84.35
9 84.47 84.19

Table 2: Results on the development sets of MNLI with
different numbers of bias indicators.

• CrossAug (Lee et al., 2021). This method
tackles negation bias in the fact verification
task through a contrastive data augmentation
method.

• z-filter (Wu et al., 2022). It first defines a
set of task-relevant biased features, and then
trains a generator on existing datasets to gen-
erate pseudo samples, where pseudo samples
with these biased features are filtered. Finally,
the remaining samples are used to retrain the
model.

• Products-of-Experts (PoE) (He et al., 2019;
Karimi Mahabadi et al., 2020). In an ensemble
manner, it trains a debiased model with a bias-
only one, the predictions of which heavily
rely on biased features. By doing so, the debi-
ased model is encouraged to focus on samples
with fewer biased features where the bias-only
model performs poorly.

• Confidence Regularization (Conf-reg)
(Utama et al., 2020a). This method trains a
debiased model by increasing the uncertainty
of samples with biased features. It first trains
a bias-only model to quantify the bias degree
of each sample, and then scales the output
distribution of a teacher model based on the
bias degree, where the re-scaled distribution
can be used to enhance the debiased model.

• Example Reweighting (Reweight) (Schuster
et al., 2019b). This method aims to reduce the
contribution of samples with biased features
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Method
MNLI (Acc.) SNLI (Acc.) FEVER (Acc.)

dev-m dev-mm HANS dev Scramble dev Symm.v1 Symm.v2

BERT-base 83.87 84.11 61.22 90.61 72.74 87.06 56.53 63.84

Reweight (Schuster et al., 2019b)* 82.56 – 66.18 86.44 80.30 83.45 61.56 67.33
Conf-reg (Utama et al., 2020a)* 84.60 85.00 69.10 90.56 83.21 85.31 59.69 64.75
DCT (Lyu et al., 2023)* 84.19 – 68.30 90.64 86.40 87.12 63.27 68.45

CrossAug (Lee et al., 2021)* – – – – – 85.34 68.90 –
z-filter (Wu et al., 2022)* 82.55 82.70 67.69 88.08 87.87 – – –

IBADR 85.17† 85.05† 71.67† 90.32 92.31† 89.61† 70.01† 72.61†

Table 3: Results on the development and challenge sets (HANS, Scramble, Symm.v1, Symm.v2) of MNLI, SNLI
and FEVER. * means the results are directly cited from previous studies. Note that IBADR outperforms all
baselines on the challenge sets, while maintaining comparable or better performance on the development sets. †
indicates the results are significantly better than the best comparison method (p < 0.001).

on the training loss by assigning them with
relatively small weights.

• Debiasing Contrastive Learning (DCT)
(Lyu et al., 2023). It applies contrastive learn-
ing to mitigate biased latent features by utiliz-
ing a specifically designed sampling strategy.

Please note that in exception to CrossAug and
z-filter, which are dataset refinement approaches,
all other approaches are model-centric.

Implementation Details. In our experiments,
we use GPT2-large (Radford et al., 2019) to con-
struct the sample generator and the shallow model,
respectively. To train the shallow models for dif-
ferent NLU tasks, we randomly select 2K, 2K, and
0.5K samples from the original training sets of
MNLI, SNLI, and FEVER, individually. These
shallow models are trained for 3 epochs with a
learning rate of 5e-5. When training the sample
generator, we set the learning rate to 5e-5, the num-
ber of pseudo sample generated per iteration to
200K, and the iteration number Niter to 5. Partic-
ularly, we train the sample generator for 3 epochs
in the first iteration and for only 1 epoch in the
subsequent iterations. When updating the shallow
model, we randomly select 2K samples from the
sample pool to finetune it.

For the NLU models, we train them on the aug-
mented datasets of different tasks for 8 epochs us-
ing a learning rate of 1e-5. We employ an early
stop strategy during the training process. We con-
duct all experiments three times, each time with
different random seeds, and report the average re-
sults. Sample numbers of the augmented datasets
are listed in Table 1.

3.2 Effect of Bias Indicator Number Nbi

The bias indicator number Nbi on our framework
is an important hyper-parameter, which determines
the partition granularity of the sample pool. Thus,
we gradually vary Nbi from 3 to 9 with an incre-
ment of 2 in each step, and compare the model
performance on the development sets of MNLI.

As shown in Table 2, when Nbi is set to a smaller
value, such as 3, there is a significant decrease in
model performance. This is because in this case,
the bias indicator can only be set to b1, which re-
duces the diversity of generated pseudo samples,
as discussed in Section 2.3. Conversely, when Nbi

is set to larger values, e.g., 7 or 9, the model per-
formance on both development sets also decreases.
We hypothesize that this decline occurs because a
larger value of Nbi results in a fine-grained partition
of the sample pool, reducing the number of sam-
ples corresponding to each specific bias indicator.
Consequently, this weakens the correspondence
relationship between bias indicators and samples,
and thus harms the performance of the sample gen-
erator. According to these results, we set Nbi to 5
for all subsequent experiments.

3.3 Main Results

Table 3 presents the experimental results. Overall,
compared with all baselines, IBADR is able to
achieve the most significant improvements on the
challenge sets (i.e. HANS, Scramble, Symm.v1,
and Symm.v2). Specifically, IBADR achieves im-
provements of 2.57, 4.44, 1.11 and 4.16 points than
the previously-reported best results, respectively.
Note that IBADR is effective on both the devel-
opment and challenge sets of MNLI and FEVER,
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Method
MNLI (Acc.) SNLI (Acc.) FEVER (Acc.)

dev-m dev-mm HANS dev Scramble dev Symm.v1 Symm.v2

PoE (Karimi Mahabadi et al., 2020)* 84.58 84.85 66.31 83.69 79.51 82.23 62.19 67.36

z-filter+PoE (Wu et al., 2022)* 85.22 85.72 68.75 – – – – –

IBADR 85.31 85.88 71.67 90.32 92.31 89.61 70.01 72.61

IBADR+PoE 85.11 85.07 73.80 90.79 94.76 89.23 70.99 73.10

Table 4: Results on the development and challenge sets of MNLI, SNLI, and FEVER. The combination of IBADR
with PoE can significantly enhance the model performance on the challenge sets, surpassing all baselines.

Method
MNLI (Acc.)

dev-m dev-mm HANS

IBADR 85.31 85.88 71.68
w/o USM 84.08 83.94 68.90
br⇒b1 84.52 84.53 69.45
w/o USM & br⇒b1 83.76 83.61 67.79
w/o bias indicator 85.21 84.89 63.07
w/o iterative generation 84.54 84.79 66.97

Table 5: Ablation study on MNLI.

while other baselines, for example, Reweight and
z-filter, decline on the development sets.

3.4 Compatibility of IBADR with PoE

To assess the compatibility of IBADR with model-
centric debiasing methods, we report the model
performance when simultaneously using IBADR
and PoE (He et al., 2019), following the setting of
Wu et al. (2022).

As shown in Table 4, on the challenge sets, the
combination of IBADR and PoE not only yields
better results than using PoE or IBADR individ-
ually, but also outperforms the combination of z-
filter and PoE. Thus, we believe that IBADR has
the potential to further enhance the performance of
existing model-centric methods.

3.5 Ablation Study

To assess the effects of special designs on IBADR,
we also report the performance of several IBADR
variants on MNLI:

• w/o USM. In this variant, we do not Update the
Shallow Model during the process of iterative
sample generation.

• br⇒b1. The sample generator uses the low-
est bias indicator b1 rather than the randomly-

selected low-degree bias indicator br, where
1≤r≤Nbi

2 , to generate pseudo samples.

• w/o USM & br⇒b1. In this variant, the sample
generator uses the bias indicator b1 to gener-
ate pseudo samples, and the shallow model
remains fixed during the generation process.

• w/o bias indicator. This variant directly uses
the samples without the bias indicator to train
the sample generator.

• w/o iterative generation. Instead of generating
pseudo samples iteratively, we only utilize the
sample generator trained in the first iteration
to generate pseudo samples.

As shown in Table 5, all variants exhibit perfor-
mance declines on HANS, indicating the effective-
ness of our special designs. Particularly, w/o bias
indicator demonstrates the most significant per-
formance drop, which is intuitive since the bias
indicator can guide the sample generator to pro-
duce pseudo samples with fewer biased features.
Without the bias indicators, the generated pseudo
samples will contain undesired biased features, re-
sulting in poorer performance on the challenge set.

3.6 Adversarial Tests for Combating Distinct
Biases in NLI

As shown in (Liu et al., 2020), current debiasing
approaches primarily concentrate on addressing
known biases, and thus might fail to mitigate un-
known biases in NLI tasks. To assess the robustness
of NLI models, Liu et al. (2020) introduce sev-
eral comprehensive test sets to evaluate the model
performance across various types of biased fea-
tures, including partial input heuristics (PI), inter-
sentence heuristics (IS), logical inference ability
(LI), and stress tests (ST). Moreover, they propose
several data augmentation strategies to improve
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Method PI-CD PI-SP IS-SD IS-CS LI-LI LI-TS ST Avg.

Text Swapping* 71.7 72.8 63.5 67.4 86.3 86.8 66.5 73.6
Sub(synonym)* 69.8 72.0 62.4 65.8 85.2 82.8 64.3 71.8
Sub(MLM)* 71.0 72.8 64.4 65.9 85.6 83.3 64.9 72.6
Paraphrasing* 72.1 74.6 66.5 66.4 85.7 83.1 64.8 73.3

BERT-base(MNLI) 70.3 73.7 53.5 64.8 85.5 81.6 69.2 71.2

IBADR 72.49 76.28 71.67 68.75 91.43 82.46 71.90 76.43

Table 6: Results on the NLI adversarial test benchmark (Liu et al., 2020). We compare IBADR with the data
augmentation techniques investigated by Liu et al. (2020). BERT-base(MNLI) indicates the BERT-base model
trained on the training data of MNLI. Note that training on the IBADR’s augmented datasets significantly improves
the model performance on nearly all test sets.

the model generalization: (i) Text Swapping: this
strategy exchanges the premise and hypothesis in
each original training sample; (ii) Sub(synonym):
words in the hypothesis are randomly replaced with
synonyms; (iii) Sub(MLM): a masked language
model is used to predict the randomly masked
words in the hypothesis; (iv) Paraphrasing: the
hypotheses are paraphrased through back transla-
tion.

We compare IBADR with the above data aug-
mentation strategies in Table 6. Overall, IBADR
achieves better results on nearly all test sets. This
reveals that IBADR can effectively mitigate vari-
ous biases simultaneously. We attribute this success
to the fact that IBADR does not rely on predefined
biased features, which enables it to better handle
unknown biases.

3.7 Generalization on Different Sizes of
Pre-trained Language Models

To further explore the compatibility of IBADR
with different sizes of pre-trained language mod-
els, we reconduct experiments by individually re-
placing the BERT-base model with BERT-large,
RoBERTa-base and RoBERTa-large. We also com-
pare IBADR with z-filter, which is the current
SOTA data refinement method. The comparisons
are performed on the MNLI and SNLI datasets.†

As presented in Table 7, IBADR consistently
outperforms z-filter on all test datasets. When re-
spectively using BERT-large, RoBERTa-base, and
RoBERTa-large as pretrained models, IBADR
achieves average improvements of 3.29, 1.88, and

†Since the code of z-filter only supports MNLI and SNLI,
we exclusively compare our results with theirs for these two
datasets.

Test data Original z-filter Ours

B
E

R
T-

la
rg

e
MNLI dev-m 86.65 85.29 86.83
MNLI dev-mm 85.91 84.70 86.62
HANS 65.28 70.35 77.22
SNLI dev 91.74 88.71 91.22
Scramble 81.41 85.77 91.99
Adv.Test 76.66 78.10 78.71

R
oB

E
R

Ta
-b

as
e

MNLI dev-m 87.20 85.93 87.68
MNLI dev-mm 87.49 86.25 87.92
HANS 72.19 75.55 76.26
SNLI dev 91.90 88.24 91.80
Scramble 83.07 90.01 93.21
Adv.Test 78.52 79.67 80.03

R
oB

E
R

Ta
-l

ar
ge

MNLI dev-m 89.80 88.38 90.11
MNLI dev-mm 90.03 88.89 90.14
HANS 76.35 77.92 81.74
SNLI dev 92.87 88.30 92.70
Scramble 85.22 87.43 95.31
Adv.Test 82.22 81.97 82.95

Table 7: Results on MNLI and SNLI when training
different sizes of models on augmented datasets of z-
filter and IBADR.

3.34 point, compared to z-filter. These results
clearly demonstrate the superior generalizability
of IBADR across different sizes of pre-trained lan-
guage models.

3.8 Results on Different Sizes of Datasets

To investigate the robustness of IBADR when the
number of original training samples is limited, we
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Data Size Test Data BERT-base Ours

100K
dev-m 81.03 84.38

dev-mm 81.55 84.56
HANS 54.25 67.11

200K
dev-m 82.99 84.65

dev-mm 83.41 85.04
HANS 56.17 69.11

393K
dev-m 83.87 85.17

dev-mm 84.11 85.05
HANS 61.22 71.67

Table 8: Results on MNLI when using different sizes of
original training samples.

randomly select two subsets from original training
samples of MNLI, with sizes 100K and 200K, re-
spectively. Afterwards, we employ IBADR to aug-
ment these subsets and subsequently retrain NLU
models using the augmented datasets.

Table 8 presents the results of both the devel-
opment and challenge sets. We can observe that
IBADR consistently improves model performance
across all test sets. Notably, even when using a
limited number of original training samples, e.g.
100K, the model trained on the IBADR augmented
dataset outperforms the full-size baseline. This sug-
gests that IBADR exhibits remarkable robustness
on limited original training samples.

3.9 The Effect of Augmented Dataset Size

To explore the influence of augmented dataset
size, we retrain the NLU model on the MNLI
dataset with different numbers of augmented sam-
ples: 10K, 100K, 300K, 600K, and 900K, respec-
tively. As indicated in Table 9, the performance of
IBADR consistently improves. Moreover, with
just 100K augmented samples, IBADR outper-
forms z-filter across dev-m, dev-mm, and HANS.
It’s worth mentioning that z-filter utilizes a larger
set of 360K augmented samples.

3.10 The Compatibility with Advanced
Language Models

To ensure a fair comparison with z-filter, we em-
ploy GPT-2 Large as the sample generator in our
main study. In exploring IBADR’s compatibil-
ity with advanced large language models (LLM),
we finetune the LLaMA-7b model (Touvron et al.,
2023) using LORA (Hu et al., 2021) as an alter-
native to GPT-2 Large. The results on the MNLI

Data Size
MNLI

dev-m dev-mm HANS

0K 83.87 84.11 61.22
10K 84.68 84.88 67.11
100K 84.73 84.96 68.03
300K 85.11 85.13 70.21
600K 85.17 85.05 71.67
900K 85.24 85.03 71.60

z-filter 82.55 82.70 67.69

Table 9: Results on MNLI when using different sizes of
augmented datasets.

Data
MNLI

dev-m dev-mm HANS

IBADR (GPT-2 Large) 85.17 85.05 71.67
IBADR (LLaMA-7b) 85.64 85.81 72.78

Table 10: Results of IBADR with GPT-2 Large and
LLaMA-7b on MNLI.

dataset are listed in Table 10. We can observe that
the performance of IBADR is further improved
with LLaMA-7b, which indicates IBADR’s gener-
alizability.

4 Related Work

Our related work primarily focuses on two cate-
gories of methods: model-centric and dataset re-
finement methods.

4.1 Model-centric Data Debiasing Methods

Numerous previous studies have adopted model-
centric approaches to address biases in NLU mod-
els. Informed by their deep understanding of task-
specific biases, they introduce innovative model
architectures and training objectives aimed at pre-
venting models from exploiting these biases. For
instance, Belinkov et al. (2019) introduce an ad-
versarial architecture specifically designed to miti-
gate hypothesis-only bias (Gururangan et al., 2018),
while Stacey et al. (2020) enhance debiasing by
employing multiple adversarial classifiers. Further-
more, there exists a complementary line of research
focus on debiasing the model by down-weighting
the importance of biased samples during training.
The typical methods include example re-weighting
(Reweight) (Schuster et al., 2019a), confidence reg-
ularization (Conf-reg) (Utama et al., 2020a; Du
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et al., 2021), and products-of-experts (POE) (Clark
et al., 2019; He et al., 2019; Karimi Mahabadi et al.,
2020). Typically, these methods follow a two-stage
paradigm. In the first stage, a bias-only model is
trained, either automatically (Utama et al., 2020c;
Geirhos et al., 2020; Sanh et al., 2021) or by lever-
aging prior knowledge about the bias (Clark et al.,
2019; He et al., 2019; Belinkov et al., 2019). Then,
in the second stage, the output of the bias-only
model is utilized to adjust the loss function of the
debiased model. Recently, Lyu et al. (2023) pro-
pose a novel approach using contrastive learning to
capture the dynamic influence of biases and effec-
tively reduce biased features, offering an alterna-
tive perspective on addressing bias in NLU models.
Wang et al. (2023) observe that lower layers in
Transformer models tend to capture biased features.
They introduce the residual connection to integrate
low-layer representations with top-layer ones, thus
minimizing biased feature impact on the top layer.

4.2 Dataset Refinement

Several studies have explored generative data
augmentation methods to enhance the model ro-
bustness in various domains. Lee et al. (2021)
train a generator to generate new claims and ev-
idence for debiasing fact verification datasets like
FEVER. Ross et al. (2022) introduce TAILOR, a
semantically-controlled perturbation method for
data augmentation based on some manually defined
perturbation strategies. Wu et al. (2022) identify a
set of biased features by z-statistics, and then ad-
just the distribution of the generated samples by
post-hoc filtering to remove the generated samples
with biased features.

Unlike these approaches, our framework does
not require data analysis to define biased features
or manual perturbation rules, and hence achieves
better generalizability.

5 Conclusions

In this work, we propose IBADR, an iterative
dataset refinement framework for debiasing NLU
models. Under this framework, we train a shal-
low model to quantify the bias degree of samples,
and then iteratively generate pseudo samples with
fewer biased features, which can be used to de-
bias the model via retraining. We also incorporated
two strategies to enhance the diversity of generated
pseudo samples, further improving model perfor-
mance. On extensive experiments of two tasks,

IBADR consistently shows superior performance
compared to baseline methods. Besides, IBADR
can better handle unknown biased features and has
good compatibility with larger language models.

In the future, we will explore the compatibility
of IBADR with other large language models, such
as GPT4 (OpenAI, 2023).

Limitations

The limitations of this framework are the following
aspects: (i) Despite filtering the pseudo samples
with low model confidence, IBADR might still pro-
duce pseudo samples with incorrect labels, which
limits the model performance; (ii) We only conduct
experiments on NLU tasks, neglecting the explo-
ration of its applicability to a wider range of tasks.

Ethics Statement

This paper proposes a dataset refinement frame-
work that aims to adjust dataset distributions in
order to mitigate data bias. All the datasets used
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per does not involve any data collection or release,
thus eliminating any privacy concerns. Oveall, this
study will not pose any ethical issues.
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