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Abstract

Large language models (LLMs) have recently
reached an impressive level of linguistic capa-
bility, prompting comparisons with human lan-
guage skills. However, there have been rel-
atively few systematic inquiries into the lin-
guistic capabilities of the latest generation of
LLMs, and those studies that do exist (i) ig-
nore the remarkable ability of humans to gen-
eralize, (ii) focus only on English, and (iii)
investigate syntax or semantics and overlook
other capabilities that lie at the heart of hu-
man language, like morphology. Here, we
close these gaps by conducting the first rigor-
ous analysis of the morphological capabilities
of ChatGPT in four typologically varied lan-
guages (specifically, English, German, Tamil,
and Turkish). We apply a version of Berko’s
(1958) wug test to ChatGPT, using novel, un-
contaminated datasets for the four examined
languages. We find that ChatGPT massively
underperforms purpose-built systems, particu-
larly in English. Overall, our results—through
the lens of morphology—cast a new light on
the linguistic capabilities of ChatGPT, suggest-
ing that claims of human-like language skills
are premature and misleading.

1 Introduction

Do large language models (LLMs) possess human-
like linguistic capabilities? With the advent of the
latest generation of LLMs such as GPT-4 (OpenAI,
2023b), LLaMA (Touvron et al., 2023), and PaLM
(Chowdhery et al., 2022), there appears to be grow-
ing evidence for answering this question with yes
(Bubeck et al., 2023): LLMs are capable of gen-
erating text that crowdworkers cannot distinguish
from human-generated text (Clark et al., 2021) and
excel at linguistic probing tasks such as predicting
grammaticality, detecting the subject and tense of

*Equal contribution.
†Authors sorted alphabetically.
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Figure 1: Experimental paradigm for this study (illus-
trated with Turkish). Human annotators and an LLM
are given examples and a nonce word to be inflected.
The generated inflected forms are compared.

clauses, and identifying the grammatical number
of subjects and objects (Jin et al., 2022).
Despite these encouraging results, the existing

body of work has so far examined a relatively lim-
ited part of the full spectrum of phenomena that
are known to characterize human language, with a
heavy focus on syntax and semantics. One area
that has been neglected in particular is morphol-
ogy, i.e., the capacity to create words according
to systematic patterns of covariation in form and
meaning (Haspelmath and Sims, 2010). This gap
in the LLM literature is noteworthy given that mor-
phology has been a hallmark of research on com-
putational approaches to language since the very
beginnings of neural language processing in the
1980s (Rumelhart and McClelland, 1986b; Plun-
kett and Juola, 1999; Albright and Hayes, 2002,
2003; Goldberg, 2019).
In this study, we present the first systematic anal-

ysis of the morphological capabilities of LLMs, fo-
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cusing on ChatGPT (OpenAI, 2023a) as the most
prominent and most widely-used LLM. Specifi-
cally, we investigate ChatGPT’s morphological ca-
pabilities using the wug test (Berko, 1958), an
experimental paradigm in which a participant is
asked to provide an inflected or derived form
of a nonce word. An example for our evalua-
tion setup is given in Figure 1. Our experiments
cover a broad range of morphological construc-
tions and four typologically diverse languages: En-
glish, German, Tamil, and Turkish. We find that
ChatGPT falls short not only of human perfor-
mance but also of various supervised baselines.
In sum, our contributions are as follows:

• We conduct the first systematic analysis into the
morphological capabilities of LLMs.

• Our study covers a diverse set of morphological
constructions/languages and introduces datasets
for future research in the area.1

• We show that ChatGPT has not achieved human
parity—or even state-of-the-art performance—
on our nonce-word inflection/reinflection tasks
but performs about as well as some older super-
vised models. We furthermore find evidence for
the existence of a real word bias in ChatGPT that
is the more pronounced the more data ChatGPT
has seen for a given language.

2 Related Work

2.1 Computational Morphology
Linguists divide morphology into inflection and
derivation (Haspelmath and Sims, 2010). While
inflection accounts for the different word forms of
a lexeme, e.g., listen, listens, and listened, deriva-
tion accounts for the different lexemes of a word
family, e.g., listen, listener, and listenable. Both
inflection and derivation have been addressed in
computational linguistics and natural language pro-
cessing (NLP), albeit with a heavy focus on in-
flection. One line of work, which is conceptu-
ally similar to wug testing, has sought to gener-
ate inflected forms, given a stem and a morpho-
logical tag (Cotterell et al., 2017a, 2018; Vylo-
mova et al., 2020; Goldman et al., 2022), using
systems ranging from weighted finite state trans-
ducers and GRU/LSTM encoder-decoder models

1We release our dataset along with our code at https://
github.com/dmort27/chatgpts-wugs, carefully following
the guidelines laid out by Jacovi et al. (2023).

(with soft attention or hard monotonic attention) to
various transformer models. A special subtype of
this task is morphological reinflection, where the
input can be a form that is itself inflected (Cot-
terell et al., 2016a; Kann and Schütze, 2016; Kann
et al., 2017; Silfverberg et al., 2017; Pimentel et al.,
2021). Other typical tasks in computational re-
search on inflection are morphological segmenta-
tion (Cotterell et al., 2015, 2016b,c; Kann et al.,
2016), unsupervised morphology induction (Ham-
marström and Borin, 2011; Soricut and Och, 2015;
Xu et al., 2018; Weissweiler et al., 2022), and mor-
phological paradigm completion (Erdmann et al.,
2020a,b; Jin et al., 2020). There has also been
some interest in the modeling of derivation (Cot-
terell et al., 2017b; Vylomova et al., 2017; Deutsch
et al., 2018; Hofmann et al., 2020b,c).
More recently, there have been a few studies

examining the morphological capabilities of lan-
guage models (Edmiston, 2020; Hofmann et al.,
2020a), but they focus on smaller language models
such as BERT (Devlin et al., 2019). By contrast,
we examine ChatGPT, a model whose parameter
count is three orders of magnitude larger, and we
analyze its zero-, one-, and few-shot capabilities,
an approach fully neglected by prior work.

2.2 Multilingual Capabilities of LLMs
Recent studies have extensively examined the eval-
uation of LLMs in multilingual settings. Some of
these studies have specifically investigated the ex-
tent to which LLMs can be used for traditional
multilingual NLP tasks such as machine transla-
tion (Bawden et al., 2022; Hendy et al., 2023; Jiao
et al., 2023;Wang et al., 2023). Brown et al. (2023)
demonstrate that LLMs perform well across mul-
tiple languages even with minimal task-specific
training, highlighting their transferability and gen-
eralization in multilingual understanding.

2.3 LLM Performance on Unseen Data
The fact that LLMs have been pretrained on mas-
sive amounts of data means that they have seen and
potentially memorized a substantial amount of the
items of data used in typical evaluation setups (Ma-
gar and Schwartz, 2022). There have been a few
attempts in NLP to specifically control for previ-
ous exposure (Haley, 2020; Hofmann et al., 2020a;
Maudslay and Cotterell, 2021). We follow this
idea by generating datasets of novel and uncontam-
inated nonce words, thus ensuring that the words
have not been seen by ChatGPT before.
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3 Data and Morphological Constructions

In this paper, we examine ChatGPT’s morpho-
logical behavior on a typologically diverse set of
languages: English, German, Tamil, and Turkish.
While English and German belong to the same lan-
guage family, German has a more fusional mor-
phological system than English. Turkish is cho-
sen since it is a non-Indo-European language with
a fully agglutinative morphology. Tamil is cho-
sen since it is a Dravidian language exhibiting an
agglutinative morphology with fusional elements.
Thus, in terms of the classical triangle of fusional,
isolating, and agglutinative morphologies (Dixon,
1994), the languages cover four different points:
almost fully isolating (English), intermediate be-
tween isolating and fusional (German), interme-
diate between fusional and agglutinative (Tamil),
and fully agglutinative (Turkish). Furthermore, the
chosen languages also cover different points in the
spectrum from low-resource to high-resource, en-
abling us to form hypotheses about the impact of
the amount of language-specific training data on
the morphological capabilities of an LLM. Statis-
tics for the amount of data in train, dev, and test
for the baselines, as well as the number of wug test
words, are given in Table 1. We report the accuracy
of one annotator at a time against the judgments of
all other annotators in Table 2.

3.1 English

The English past tense has a long and storied
history in computational studies of morphology
(Rumelhart and McClelland, 1986a; Pinker and
Prince, 1988; Ullman et al., 1997; Plunkett and
Juola, 1999; Albright and Hayes, 2002, 2003;
Kirov and Cotterell, 2018; Ma and Gao, 2022). En-
glish displays a handful of conjugation classes as
well as frequent morphographemic alternations—
consonant doubling and e-deletion, for example—
affecting past forms of verbs.
To create the English data, 50 two- to five-letter

irregular verbs (defined as verbs that do not form
the past tense simply by adding -ed) were sam-
pled from the UniMorph 4.0 dataset (Batsuren
et al., 2022). These items were each perturbed by
one or two letters (substituting phonetically simi-
lar sounds) producing a word not included in Uni-
Morph. These verbs were then annotated by 28
volunteer annotators. Participants were asked to
provide the past tense of the nonce word and given
an example (wug→ wugged) and the frame “They

Lang. Train Dev Test Wug test

English 10,000 1,000 1,000 50
German 10,000 1,000 1,000 174
Tamil 1,541 368 — 123
Turkish 8,579 851 846 40

Table 1: Data statistics. Please see Appendix A.1 for
the distribution of morphological tags across the differ-
ent splits for the four languages. There was not enough
data available for Tamil to form a test set.

Accuracy (%)

Lang. @1 @3 @5

English 67.14 ± 17.76 85.29 ± 13.06 87.64 ± 12.13
German 63.05 ± 12.62 83.80 ± 10.57 87.88 ± 10.34
Tamil 37.09 ± 26.39 43.85 ± 26.95 43.85 ± 26.95

Table 2: Accuracy of one annotator at a time against the
judgments of the other annotators on our collected wug
dataset, for different values of k. For Turkish, since the
morphology is deterministic, there is no variation.

{nonce_word} all the time. In fact, they
just yesterday.” This yielded mappings between
a lemma and a ranked list of inflected verbs, e.g.,
veed→ [veeded, ved, vode]. Themodal annotation
was always a regularly inflected form (-ed with ap-
propriate allomorphic variation), but other inflec-
tional classes were attested.

3.2 German
The German plural of nouns is a morphological
phenomenon intensely studied in linguistics and
the cognitive sciences due to the general complex-
ity of the alternation between the eight different op-
erations that can be used to express it. German plu-
ralization is particularly notable due to the fact that
none of the possible operations express it in a ma-
jority of cases (McCurdy et al., 2020). In fact, the
most frequent German plural noun suffix -en has
been argued not to be the default (i.e., the suffix
that applies to novel nouns)—an honor that goes
to -s (Marcus et al., 1995).
To create the dataset of novel German nonce

nouns, we drew upon Unipseudo.2 We generated
200 nonce words with a length between four and
seven characters (50 nonce words per character
length), using German nouns as input to the algo-
rithm. We then had one German native speaker un-
related to the study (i) generate articles (der, die, or
das) for each of the nonce words, and (ii) generate
a plural based on the nonce words and the previ-

2http://www.lexique.org/shiny/unipseudo/
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ously selected articles. We manually filtered out
words whose plural is blocked by existing German
lexemes, resulting in a final set of 174 nonce nouns.
These nouns were then annotated by 21 volunteer
annotators. Participants were asked to provide the
plural of the nonce word and were given an exam-
ple (Wug → Wugs) and the frame “Hier ist ein/e
{nonce_word}. Jetzt sind es zwei .” Simi-
larly to English, this yielded mappings between a
lemma and a ranked list of inflected nouns.

3.3 Tamil
Tamil is a Dravidian language primarily spoken
in regions of South India and Sri Lanka. It is an
agglutinative languange in which verbs are conju-
gated for tense, transitivity, person, number, and
(in some cases) gender. For the most part, af-
fixes display allomorphy only due to phonologi-
cal conditioning and are otherwise invariant across
verbs, as is the casewith the person/number/gender
(PNG) affix (Arden, 1891, 71). This is not the
case, however, for tense markers. Among linguists
working on Tamil, it is not completely agreed upon
how many verb classes there are in the language,
with some proposing up to 13 and others as few as
three (Lisker, 1951; Agesthialingom, 1971). In the
spoken form of Tamil, there are points where verbs
are part of completely different classes than their
literary counterpart, so in this study we focus ex-
clusively on the written form (Schiffman and Ren-
ganathan, 2009).
To simplify the analysis, we utilize a modifi-

cation of Graul’s classification seen in The En-
glish Dictionary of the Tamil Verb, where there
are seven primary classes (Schiffman and Ren-
ganathan, 2009). The tense most impacted by
these verb classes is the past tense, with each class
having a unique form, while the present and future
only demonstrate three forms across the classes.
As such, we focus on the past tense and desig-
nate the same transitivity (intransitive) and PNG
(third person singular masculine) affix across all
experiments. In examining this, we gain infor-
mation about the ways LLMs handle morpholog-
ically complex languages with inflectional classes
defined in both phonological and morphological
terms. This contrasts with English, where inflec-
tion is not agglutinative, and Turkish, where mor-
phology is agglutinative but where there are no in-
flectional classes.
To create a dataset for training the baseline

models and generating samples for the few-shot

Features Example
First person singular
agreement and past tense

zöbür-ür-üm→ zöbür-dü-m

Second person plural
agreement,
reported/inferential past
tense, and negative
polarity

zöbür-ür-sünüz→
zöbür-me-miş-siniz

Dative case, first person
possessive

zürp-ten→ zürb-üm-e

Accusative singular börüt→ börüd-ü

Table 3: Turkish tasks. Forms with colored suffixes are
actually used in the long prompt in a contextually mean-
ingful short sentence. Hyphens represent morpheme
boundaries. The last row is for simple inflection. The
predicted forms (to be predicted, on the right) have the
following morphosemantics: “I [verb]-ed”, “(I heard
that) you have not [verb]-ed”, “to my [noun]”, “the
[noun] (as a definite object)”.

prompts, 86 common Tamil verbs were sampled
and conjugated with every possible combination
of tense and PNG suffixes. These conjugations
were generated automatically and then validated
by two native speakers for accuracy. Unlike in
the nonce word case, there was 100% agreement
between speakers. The nonce words were gener-
ated by combining syllables from real verb roots
and checking against a Tamil dictionary to assure
the words created were not real. Nonce verbs
were created to be between two and six letters long
to best match the distribution of real Tamil verbs.
In order to get the “correct” past tense for these
verbs, five native Tamil speakers were asked to pro-
vide past tense forms (e.g.,நிடு niʈu→ [நிடுத்தான்
niʈut̪ːaːn, நிட்டான் niʈːaːn, நீடினான் niːʈinaːn]).
The mode of these responses was taken to be the
gold form, with the level of agreement amongst
speakers recorded for later analysis. The compar-
atively lower inter-annotator agreement can be ex-
plained by the lack of historical and linguistic con-
text given to the annotators, since a large part of
classification is historical.

3.4 Turkish

Turkish is an agglutinative language where words
consist of multiple morphemes attached to a root.
Surface realizations of morphemes are influenced
by deterministic morphophonological processes
like vowel harmony, consonant assimilation, and
elision. Unlike many other languages, Turkish
has complex word form morphotactics, particu-
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larly when multiple derivations are present.
To simplify the task and reduce the number

of feature combinations, we utilized four datasets
with different levels of complexity and a limited
number of inflectional features. In most cases, the
context provides an inflected form with one set of
features, and the model must predict the form with
the requested set of features. The first three tasks
are reinflection tasks, demanding proficiency in
both morphotactics and morphographemics. The
fourth task is a straightforward inflection task (see
Table 3). Each task consists of up to five shot exam-
ples for real roots and 10 test examples with nonce
roots. Stimuli and gold annotations were produced
by our (single) Turkish annotator.

4 Methodology

We compare the outputs of ChatGPT under a vari-
ety of prompting regimens and a substantial set of
supervised baselines (both neural and non-neural)
to human annotations of the data described in Ap-
pendix 3. Results are evaluated using accuracy
at k (acc@k), i.e., a model’s response is regarded
as correct if it is in line with any of the top k
human responses. This evaluation method takes
into account inter-speaker morphological variabil-
ity, which is more wide-spread than previously
thought (Dammel and Schallert, 2019).

4.1 Baselines

We investigate the efficacy of several baselines
for the task of morphological inflection. The cho-
sen baselines encompass both statistical and neu-
ral architectures that have shown impressive per-
formance on the morphological generalization task
in recent years. We evaluate their performance on
the SIGMORPHON 2023 task as well as on our
constructed wug test set. The baselines have com-
plementary strengths (see Section 5).

4.1.1 Training Data
We used the train/dev/test splits of the SIGMOR-
PHON 2023 Inflection Shared Task3 for English
and German. The choice of the train/dev/test splits
was motivated by the fact that there was no over-
lap of lemmata between the individual splits, thus
mimicking a wug-like setting.
The Turkish training data for baselines was gen-

erated directly using a Turkish morphological ana-
3https://github.com/sigmorphon/

2023InflectionST

lyzer/generator (Oflazer, 1994), because the afore-
mentioned SIGMORPHON 2023 dataset did not
have a sufficient number of examples for most of
the feature combinations. The morphological gen-
erator was set up to generate only Turkish word
forms that corresponded to the selected inflectional
morpheme combinations we selected, for all ap-
plicable roots. For testing, we expected the base-
line systems to generate the word forms with the
selected inflectional feature combinations, but for
10 nonce roots. The nonce roots were chosen so
that they would force the inflected forms to orthog-
onally adhere to surface morphographemic con-
straints and rules such as various types of vowel
harmony, consonant elision, or assimilation at mor-
pheme boundaries.
Similarly, for Tamil, we split the data into train

and dev sets. Since we have a limited amount of
Tamil data, we kept the split ratio at around 4:1
between train and dev sets.
We report the results of all baselines in Table 4.

Baselines generally perform as expected, validat-
ing our usage of them. It should be noted that Min-
Gen and AED are evaluated in IPA/feature space
and may therefore be at a disadvantage compared
to baselines operating directly in orthography. The
training data was converted from orthography into
IPA using Epitran (Mortensen et al., 2018).

4.1.2 Affix Rule Learner (ARL)
As a baseline for the 2020 and 2021 SIGMOR-
PHON shared tasks, a simple non-neural system
(Liu and Mao, 2016) was implemented that uses
edit distance to “discover prefix and suffix rules in
training data.”4 At test time, the system modifies
a lemma by applying the longest matching suffix
rule and most frequently applied prefix rule for a
given morphosyntactic description.

4.1.3 Minimal Generalization Learner
(MinGen)

Wilson and Li (2021) proposed a minimal gener-
alization model based on a simplified form of Al-
bright and Hayes (2002) to learn morphological
rules. First, base rules that describe the changes
needed to convert a lemma to an inflected form are
generated from training data. The rules are further
generalized by comparing phonological features of
the rule contexts. The rules are then scored by
a confidence metric based on their accuracy and

4https://github.com/sigmorphon/2021Task0/tree/
main/baselines
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English German Turkish Tamil

Model Dev Test Dev Test Dev Test Dev

ARL 95.40 96.60 77.40 79.80 94.36 93.50 85.60
MinGen 81.40 78.70 72.70 70.70 93.65 93.03 87.23

FIT 96.22 ± 0.19 94.93 ± 0.49 79.01 ± 1.16 81.04 ± 1.39 97.00 ± 0.22 96.25 ± 0.26 64.24 ± 3.11
PPI 95.95 ± 0.63 94.74 ± 0.90 73.57 ± 5.37 78.26 ± 4.66 96.61 ± 0.60 96.56 ±0.66 76.76± 2.10
AED 71.06 ± 5.74 70.16 ± 5.79 64.44 ± 1.85 67.44 ± 2.02 95.54 ± 0.77 95.19 ±1.41 50.70± 2.84

Table 4: Results (acc@k) of the baselines on our development and test data. See Section 4.1.1 for full details.

scope. At test time, the rule with the highest score
among the applicable rules is used.

4.1.4 Feature Invariant Transformer (FIT)
Wu et al. (2021) proposed a simple technique em-
ploying a character-level transformer for feature-
guided transduction that was used as a baseline for
the 2021 SIGMORPHON shared task.5 This is a
generative model capable of performing character-
level decoding to generate target inflections. In
comparison to a vanilla transformer model, posi-
tional counts are used only for characters and not
for features. The model also incorporates unique
tokens to mark whether a given token is a feature.

4.1.5 Principle Parts for Inflection (PPI)
We apply the approach of Liu and Hulden (2020),
which recasts the task of morphological inflec-
tion as a “paradigm cell filling problem.” This
leverages a lexeme’s principal parts—the mini-
mum subset of paradigm slots needed to gener-
ate the other slots in its paradigm. Specifically,
for low-resource scenarios, the principal parts of a
paradigm identify additional slots that are crucial
in generating the target-inflected lemma.

4.1.6 Analogical Encoder-Decoder (AED)
Following up on Albright and Hayes (2003) and
Kirov and Cotterell (2018), Calderone et al.
(2021) proposed a recurrent neural network
encoder-decoder architecture augmented with pre-
compiled analogical patterns for generating mor-
phological inflections of nonce words. This model
leverages the UniMorph Tags and fine alternation
pattern (FAP) associated with each lemma in rela-
tion to its inflection form. FAPs analyze the posi-
tioning of word forms within the system to iden-
tify recurrent patterns representing conventional
linguistic elements.

5https://github.com/sigmorphon/2021Task0/tree/
main/baselines

4.2 Prompting

We employ three distinct prompting styles, namely
zero-, one-, and few-shot, to interact with the lan-
guage model. We start with a simple instruction in
each language, for example:

“Fill in the blank with the correct past
tense of the word ‘wug’. Give your re-
sponse in one word.
They wug all the time. In fact, they
just yesterday.”

For Tamil, the instruction portion of the prompt is
omitted because of ChatGPT’s unreliable perfor-
mance when given instructions in that language.
We select one examplewith real words for eachma-
jor inflection class of the phenomenon in question.
We then perform multiple runs: 10 for the zero-
shot scenario, one for every shot for the one-shot
scenario, and 10 for the few-shot scenario, with
a new random permutation of all examples each
time. We query gpt-3.5-turbo-0613, select the
first word of the response, and filter by removing
non-word characters. We evaluate by computing
the accuracy for each of the runs, averaged over
all queried nonce words, and compute the mean
and standard deviation across all runs. We employ
acc@k as our evaluation metric, setting k = 5 for
our main evaluation. We provide results for k = 1
and k = 3 in Appendix A.4. The k gold forms are
the k responses most frequently generated by hu-
mans. Since only one Turkish response is possible
(the morphology is deterministic), k is always 1 for
this language. We then perform an additional ex-
periment for comparison in which we remove the
context around the nonce word and only give the
instructions as well as the last line. We call this
the short prompt and the original described above
the long prompt. We provide instances of long and
short prompt in Appendix A.5.
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5 Results

5.1 Overall Performance

For acc@5, the performance of ChatGPT never ex-
ceeded that of the strongest baselines (ARL, AED,
and PPI) regardless of the prompting regime, as
shown in Table 5. However, it beats certain older
baselines such as MinGen (the minimum general-
ization learner). ChatGPT performed best when
it was explicitly prompted to complete an analogy
with a single example (i.e., short 1-shot), as can be
seen in Figure 2. We observe that similar trends
hold for acc@1 and acc@3 (see Appendix A.4),
but the gap between the strongest baselines and
ChatGPT decreases with k.

English ChatGPT’s performance on Englishwas
uniformly worse than both the average annota-
tor (87.64%) and the strongest baselines. acc@1
falls below 60% in the 0-shot condition but is
markedly better when shots are supplied. Short
prompts, which require the model to complete
a simple analogy, resulted in better performance
than long prompts. In all conditions, authentic En-
glishwords that did not occur in the reference anno-
tations appeared as outputs when the nonce word
and the authentic word were orthographically sim-
ilar (see the discussion in Section 6.4).

German The best German result was 88.94%
(short 1-shot), which beat all of the baselines ex-
cept for ARL and FIT. The other results are simi-
larly strong in contrast to the other languages. The
impact of k is not noticeable here. This, in com-
bination with the fact that the human performance
on acc@5 was 88%, indicates that the task is per-
fectly performed by ChatGPT. It has reached the
upper bound given by the inherent subjectivity of
the task (reflected in the human variability) and the
impact of k is, therefore, not measurable. This is
further solidified by the very small impact of the
long vs. short prompts.

Tamil Tamil performance of ChatGPT was sig-
nificantly worse than the provided baselines, even
in the few-shot conditions. For the few-shot case,
there was marginally better performance when us-
ing short prompts, but this did not apply to the 0-
or 1-shot case (in which no accurate outputs were
generated). Across the board, the performance on
Tamil was markedly worse than performance on
English and German. However, considering that
the average annotator had only 43.85% accuracy

long 0­shot long 1­shot long few­shot
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Figure 2: Results for the different prompt scenarios, for-
mats, languages, and values of k.

against the judgments of the other annotators, the
few-shot accuracy is quite reasonable.

Turkish The prompting performance for the
Turkish inflection task is worse than for English
and German, especially in the long prompt case.
For this task, the morphotactics is trivial but the
selection of the allomorph depends on stem vow-
els, stem-final consonants, whether there is a con-
sonant cluster ending the stem, and whether the
stem is monosyllabic or not. ChatGPT gets better
results with the short prompt through an analogi-
cal example. For the three reinflection tasks, Chat-
GPT gets mixed results that are overall worse than
for the inflection task (see Table 6).

6 Analysis

6.1 The Nature of the Task

The inherent complexity of the inflection tasks for
the various languages (and the reinflection task for
Turkish) varies greatly. English and Turkish are
the simplest: the top-ranked form can always be
obtained by adding a single suffix and applying a
few morphographemic alternations. German anno-
tations show no dominant pattern and assign nonce
words to morphological classes according to com-
plex criteria. However, German performance is
clearly better, suggesting that factors other than in-
herent complexity play a role in ChatGPT’s ability
to generalize morphological patterns.

6.2 Impact of Tokenization

There is mounting evidence that the morpho-
logically suboptimal nature of many tokenizers
may limit the morphological capabilities of LLMs
(Bostrom andDurrett, 2020; Hofmann et al., 2021).
ChatGPT’s tokenization, i.e., byte-pair encoding
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Method English German Tamil Turkish

ARL 100.00 94.25 61.48 60.00
MinGen 62.00 64.37 49.18 40.00
FIT 98.00 ± 1.26 92.87 ± 0.74 63.28 ± 3.36 67.00 ± 4.58
PPI 94.60 ± 2.54 85.98 ± 5.91 55.33 ± 1.84 68.00 ± 4.00
AED 57.60 ± 6.62 48.51 ± 5.45 58.69 ± 5.46 56.00 ± 4.90

long 0-shot 58.40 ± 5.28 86.49 ± 1.07 0.00 28.00 ± 14.00
long 1-shot 73.60 ± 6.97 85.42 ± 2.52 14.52 ± 7.48 20.00 ± 14.14
long few-shot 76.40 ± 4.45 87.36 ± 2.37 42.70 ± 3.96 54.00 ± 10.20
short 0-shot 75.40 ± 5.87 88.62 ± 1.64 0.00 3.00 ± 4.58
short 1-shot 82.80 ± 5.60 88.94 ± 2.35 3.28 ± 3.99 58.00 ± 7.48
short few-shot 78.60 ± 2.84 88.33 ± 1.15 43.36 ± 3.12 59.00 ± 9.43

Table 5: Results (acc@k) for all languages (k = 5 except for Turkish where k = 1, cf. Section 4.2).

Type 0-shot 1-shot few-shot

long 3.00 ± 1.80 20.67 ± 5.73 33.33 ± 4.94
short 7.00 ± 4.33 18.67 ± 6.18 31.00 ± 4.23

Table 6: Results for Turkish averaged over the three
reinflection tasks (k = 1).

(Sennrich et al., 2016), has been shown to be par-
ticularly problematic (Bostrom and Durrett, 2020;
Hofmann et al., 2022).
To examine the impact of tokenization, we mea-

sured the number of tokens into which the nonce
words are split for the individual languages and
computed the accuracy as a function of the num-
ber of tokens. Our hypothesis was that longer to-
ken sequences are less optimal, potentially leading
to worse performance. However, using two-sided
t-tests, we did not find a significant difference be-
tween nonce words with different token lengths.
We interpret this as indicating that tokenization
plays a less pronounced role for ChatGPT.

6.3 Impact of k

We observe that the gap between the baselines
and our results increases with k (see Table 5, Ap-
pendix A.4), suggesting that ChatGPT tends to
generate either a top-ranked form or an implausi-
ble inflection while the baselines tend to produce
plausible inflections which are less frequent in the
human annotations. ChatGPT’s penchant for im-
plausible inflectionsmay be a result of its real word
bias (see Section 6.4 below).

6.4 Real Word Bias

In English and German—and to a lesser extent in
Turkish—many of the forms generated by Chat-
GPT belong to a different lexeme than the nonce
word and thus do not constitute inflections in any

strict linguistic sense (see Section 2.1). Crucially,
the stem of the generated form is always a real
word (i.e., a word that exists in the respective lan-
guage). Examples of this phenomenon include, for
English: did as the past tense of dedo, blushed as
the past tense of blus, fried as the past tense of
fride; and for German: Ozeane (‘oceans’) as the
plural of Ozeak, Institute (‘institutes’) as the plu-
ral of Instite, Sklaven (‘slaves’) as the plural of
Schlave. It is important to notice that in all these
cases, (i) the generated form has the correct mor-
phological properties—e.g., the English forms did,
blushed, fried are indeed past tense forms—but the
stem is a real word rather than the nonce word, and
(ii) the stem that is generated in lieu of the nonce
word is a frequently occurring word in the respec-
tive language and has a certain (sometimes strong)
orthographic similarity to the nonce word. We de-
note this tendency real word bias.

The concept of real word bias allows us to make
a hypothesis about the way in which ChatGPT ad-
dresses morphological tasks. We think ChatGPT is
not applying morphological rules to a stem, which
would be in line with item-and-process accounts
of morphology (Hockett, 1954). Rather, it seems
to linguistically decode the point in its representa-
tional space defined by the semantic constraints in
the prompt. In cases where this point (and its im-
mediate neighborhood) is unoccupied, it generates
a form based on the nonce word, but in cases where
there is a form of a real word close to the point
(e.g., because of superficial orthographic similar-
ity), it generates this form instead. The fact that the
real word bias is strongest for German and English
(the two high-resource languages) suggests that the
representational space is more dense for these two
languages, increasing the probability that there is a
real word close to the point that the model is trying
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Figure 3: Confusion matrix for competing German plu-
ral morphemes for the few-shot setting.

to decode based on the prompt.

6.5 Morphological Productivity

The productivity of a morpheme is traditionally de-
fined as its propensity to be used in novel combi-
nations (Plag, 1999; Bauer, 2001; Haspelmath and
Sims, 2010). Crucially, morphemes with the same
meaning can differ in their productivity—for ex-
ample, for English deadjectival nominalizing suf-
fixes, -ness (e.g., robustness) is generallymore pro-
ductive than -ity (e.g, equality), which in turn is
more productive than the fully non-productive -th
(e.g., warmth). We are interested to see whether
there is any difference in the productivity of mor-
phological patterns exhibited by ChatGPT com-
pared to the human sample. We focus on German
as it has the most complex pattern of competing
morphemes, and we examine the few-shot results
as they show the best performance overall.
We start by comparing the distribution over al-

ternative plural morphemes generated by ChatGPT
with the human responses. As shown in Figure 3,
there are several morphemes that are used by Chat-
GPT similarly to humans (e.g., the null morpheme).
Cases of overgeneralization, where ChatGPT sys-
tematically generalizes the usage of a particular
suffix to contexts where the suffix is not used
by humans, are mainly limited to two plural mor-
phemes: -en (77 generations for gold morpheme
-e) and -s (79 generations for gold morpheme -e).
Interestingly, these two plural morphemes are the
two most productive plural morphemes in Ger-
man (Köpcke, 1988). This indicates two important
points: (i) ChatGPT is sensitive to the productiv-
ity of morphemes, i.e., it has acquired the ability
to model how productive certain morphemes are

as a result of pretraining; (ii) it does not identically
mirror the behavior of humans, but rather ampli-
fies the productivity of certain morphemes. The
finding that the most productive morphemes (for
humans) are becoming more productive for Chat-
GPTwhile the least productivemorphemes (for hu-
mans) are becoming less productive for ChatGPT
bears some theoretical resemblance to discussions
about bias amplification (Ahn et al., 2022).

7 Future Directions

Morphological patterns are only one kind of gen-
eralization that can be investigated through a wug-
like experimental paradigm. The form-meaning re-
lationships encoded in language and multimodal
models, including constructional and iconic pair-
ings, can be investigated through prompting with
nonce stimuli, leading to new insights regarding
the generalizations they capture.

Limitations

Our research was conducted with a single model
(gpt-3.5-turbo-0613), so it is not certain that our
results will generalize to other versions of GPT-3
or to GPT-4, let alone other LLMs. Although
we went to great lengths to develop prompts that
would maximize ChatGPT’s performance on the
tasks, it is not possible to state definitively that
another strategy would not produce better perfor-
mance. While the languages were typologically
varied, it is not clear whether the results observed
in the current study are generally robust or are co-
incidental properties of the small set of languages
and datasets under investigation. Furthermore,
comparing the languages to one another is prob-
lematic because it was not possible to control other
variables while varying the language. For example,
the English and Tamil tasks involve verbal inflec-
tion while the German and Turkish tasks involve
nominal inflection. Finally, the number of annota-
tors for Tamil was very small and inter-annotator
agreement was very low, meaning that the results
of the Tamil experiments must be approached with
special caution (but see our discussion about mor-
phological variation in Section 3).

Ethics

LLMs are already impacting the world’s people in
significant ways, for good and ill. Understanding
their limitations, particularly with regard to non-
hegemonic language communities, is an ethical im-
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perative. This study highlights one specific way
in which an LLM should not be treated as a sur-
rogate human, thus motivating additional research
on language modeling for structurally diverse and
low-resource languages.
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A Appendices

A.1 Morphological Tags
In Table 7, we provide details about themorpholog-
ical tags that are comprised by the train, dev, test,
and wug test sets for the four languages. The tags
for English (eng), German (deu), and Tamil (tam)
are defined in accordance with the description in
UniMorph 4.0 dataset. For Turkish (tur),the tags
are defined in Section 3.

A.2 Hyperparameter Tuning
For all baselines, we follow the hyperparameter
settings from the publicly available code reposito-
ries. The only exception is AED, where the num-
ber of epochs was increased from 40 to 200.

A.3 Qualtrics Details
Our study leveraged Qualtrics, a robust and com-
prehensive survey software tool that facilitates the
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Lang Tags Train Dev Test Wug

eng V;NFIN 2015 206 202 0
eng V;PRS;NOM(3,SG) 1987 190 213 0
eng V;PST 1981 198 185 50
eng V;V.PTCP;PRS 2018 201 200 0
eng V;V.PTCP;PST 1999 205 200 0

deu V.PTCP;PRS 246 19 19 0
deu V;IMP;NOM(2,PL) 246 19 16 0
deu V;IMP;NOM(2,SG) 241 22 17 0
deu V;IND;PRS;NOM(1,PL) 246 20 18 0
deu V;IND;PRS;NOM(1,SG) 227 21 17 0
deu V;IND;PRS;NOM(2,PL) 250 29 21 0
deu V;IND;PRS;NOM(2,SG) 258 25 15 0
deu V;IND;PRS;NOM(3,SG) 233 21 22 0
deu V;IND;PST;NOM(1,PL) 235 26 28 0
deu V;IND;PST;NOM(1,SG) 236 17 11 0
deu V;IND;PST;NOM(2,PL) 257 20 23 0
deu V;IND;PST;NOM(3,PL) 243 15 29 0
deu V;IND;PST;NOM(3,SG) 247 22 27 0
deu V;NFIN 248 21 13 0
deu V;SBJV;PRS;NOM(1,PL) 234 25 18 0
deu V;SBJV;PST;NOM(1,PL) 243 20 20 0
deu V;SBJV;PST;NOM(2,SG) 229 27 24 0
deu V;SBJV;PST;NOM(3,PL) 247 22 22 0
deu N;ACC(PL) 368 44 49 0
deu N;ACC(SG) 385 47 53 0
deu N;DAT(PL) 361 44 48 0
deu N;DAT(SG) 382 47 52 0
deu N;GEN(PL) 364 44 48 0
deu N;GEN(SG) 385 47 50 0
deu N;NOM(PL) 370 44 49 174
deu N;NOM(SG) 391 47 53 0
deu V.PTCP;PST 242 23 23 0
deu V;IND;PRS;NOM(3,PL) 232 25 19 0
deu V;IND;PST;NOM(2,SG) 215 25 18 0
deu V;SBJV;PRS;NOM(2,PL) 248 20 23 0
deu V;SBJV;PRS;NOM(3,PL) 247 26 26 0
deu V;SBJV;PRS;NOM(3,SG) 238 26 24 0
deu V;SBJV;PST;NOM(3,SG) 261 22 26 0
deu V;SBJV;PRS;NOM(1,SG) 246 22 16 0
deu V;SBJV;PST;NOM(1,SG) 238 21 28 0
deu V;SBJV;PST;NOM(2,PL) 239 17 17 0
deu V;SBJV;PRS;NOM(2,SG) 222 18 18 0

tur V;POS;PAST;A1SG 2005 201 202 10
tur V;NEG;NARR;A2PL 2005 201 202 10
tur N;A3SG;P1SG;DAT 2170 214 214 10
tur N;A3SG;PNON;ACC 2172 214 214 10

tam V;PRS-1SG 67 16 0 0
tam V;FUT-1SG 67 16 0 0
tam V;PST-2SG 67 16 0 0
tam V;PRS-2SG 67 16 0 0
tam V;FUT-2SG 67 16 0 0
tam V;PST-3SG.M 67 16 0 123
tam V;PRS-3SG.M 67 16 0 0
tam V;FUT-3SG.M 67 16 0 0
tam V;PST-3SG.F 67 16 0 0
tam V;PRS-3SG.F 67 16 0 0
tam V;FUT-3SG.F 67 16 0 0
tam V;PST-3SG.HON 67 16 0 0
tam V;PRS-3SG.HON 67 16 0 0
tam V;FUT-3SG.HON 67 16 0 0
tam V;PST-1PL 67 16 0 0
tam V;PRS-1PL 67 16 0 0
tam V;FUT-1PL 67 16 0 0
tam V;PST-2PL 67 16 0 0
tam V;PRS-2PL 67 16 0 0
tam V;FUT-2PL 67 16 0 0
tam V;PST-3PL 67 16 0 0
tam V;PRS-3PL 67 16 0 0
tam V;FUT-3PL 67 16 0 0

Table 7: Distribution of tags over the different splits for
the four languages.
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Figure 4: Confusion matrix for competing German plu-
ral morphemes for the one-shot setting.
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design of intricate online surveys.6
We initiated the survey by presenting an intro-

duction that detailed the concept of a wug test and
the associated information for the survey. This in-
troductory passage served to inform participants of
the nature and intent of the research study, and it
also provided examples to further facilitate their
understanding of our task requirements.
Our data collection phase consisted of two parts:

the English wug test and the German wug test.
Upon consenting to participate, respondents were
guided through a series of thoughtfully designed
prompts related to the wug test. These prompts en-
couraged them to provide suitable responses based
on their understanding of the task.
For the English wug test, we employed the fol-

lowing exemplary prompt: “Fill in the blank with
the correct past tense of the word ‘wug’. There is
no predetermined correct answer. We encourage
you to rely on your linguistic intuition. If you be-
lieve there are multiple possible responses, simply
note the form that seems most accurate to you. For
instance, ‘They wug all the time. In fact, they __
just yesterday!’”. Such prompts stimulated the par-
ticipants to produce responses that were entirely
their own, drawing on the provided information.
For the German wug test, we translated the task in-
structions and prompts into German, ensuring easy
comprehension for native German speakers.
In total, the English wug test incorporated 50

unique words for participants to respond to, while
the German version consisted of 174 unique words.
We received 28 responses for the English wug test
and 21 responses for the German wug test.

A.4 Other Values of k
Table 8 presents results for k = 1 and k = 3. Re-
sults for k = 5 are given in Section 5.

A.5 Prompts
We leveraged the following prompts for the indi-
vidual languages:

• English:

– Long: “Fill in the blank with the correct
past tense of the verb X. Answer with
one word. They X all the time. In fact,
they _ just yesterday! _ :”

– Short: “Form the correct past tense of
the verb X. Answer with one word. X :”
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• German:

– Long: “Fülle die Lücke mit dem korrek-
ten Plural des Nomens X aus. Antworte
mit einemWort. Hier ist ein X. Jetzt sind
es zwei _! _:”

– Short: “Bilde den korrekten Plural des
Nomens X. Antworte mit einemWort. X
:”

• Tamil:

– Long: “ேநற்று அவரிடம், "நீ X"
என்ேறன். அைதக் ேகட்டு அவன் ேபாய்
_. _:”

– Short: “X :”

• Turkish:

– Long: “Boşlukları X ile verilen eylemin
birinci tekil şahıs geçmiş zaman formları
ile doldurun. Ben her zaman X. Ama
dün _. _:”

– Short: “Tek bir sözcük ile farazi X
eyleminin birinci tekil şahıs geçmiş za-
man hali nasıl olur? X :”
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English German Tamil

Method k = 1 k = 3 k = 1 k = 3 k = 1 k = 3

ARL 66.00 98.00 71.84 91.95 49.18 61.48
MinGen 56.00 60.00 39.66 60.92 39.34 49.18
FIT 84.00 ± 2.97 96.20 ± 0.60 70.06 ± 1.67 90.69 ± 0.99 44.75 ± 2.01 59.84 ± 3.07
PPI 1 72.60 ± 6.00 90.80 ± 4.49 60.17 ± 6.80 82.59 ± 6.56 37.30 ± 2.57 51.07 ± 1.56
AED 44.20 ± 7.18 56.20 ± 6.54 27.82 ± 3.94 42.87 ± 4.65 46.15 ± 4.18 57.87 ± 5.46

long 0-shot 42.60 ± 4.90 55.60 ± 5.99 62.18 ± 2.45 81.55 ± 1.77 0.00 0.00
long 1-shot 58.40 ± 7.20 72.40 ± 6.50 63.36 ± 4.01 81.61 ± 3.09 5.27 ± 2.83 12.65 ± 6.19
long few-shot 57.60 ± 6.97 74.60 ± 4.90 65.86 ± 3.03 82.59 ± 1.96 15.25 ± 2.98 38.03 ± 4.18
short 0-shot 55.40 ± 6.07 72.20 ± 6.35 66.38 ± 2.48 84.43 ± 2.63 0.00 0.00
short 1-shot 61.20 ± 8.16 81.60 ± 6.97 67.31 ± 3.92 84.41 ± 2.36 1.99 ± 2.47 3.04 ± 3.58
short few-shot 61.40 ± 3.69 77.20 ± 3.12 68.97 ± 2.02 84.43 ± 1.07 17.05 ± 2.64 38.77 ± 2.86

Table 8: Results for other values of k.
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