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Abstract

Simultaneous machine translation (SiMT) re-
quires a robust read/write (R/W) policy in con-
junction with a high-quality translation model.
Traditional methods rely on either a fixed wait-
k policy coupled with a standalone wait-k
translation model, or an adaptive policy jointly
trained with the translation model. In this study,
we propose a more flexible approach by decou-
pling the adaptive policy model from the trans-
lation model. Our motivation stems from the
observation that a standalone multi-path wait-
k model performs competitively with adaptive
policies utilized in state-of-the-art SiMT ap-
proaches. Specifically, we introduce DaP, a
divergence-based adaptive policy, that makes
read/write decisions for any translation model
based on the potential divergence in transla-
tion distributions resulting from future infor-
mation. DaP extends a frozen wait-k model
with lightweight parameters, and is both mem-
ory and computation efficient. Experimental
results across various benchmarks demonstrate
that our approach offers an improved trade-off
between translation accuracy and latency, out-
performing strong baselines. 1

1 Introduction

Simultaneous Machine Translation (SiMT) (Gu
et al., 2017) poses a unique challenge as it generates
target tokens in real-time while consuming stream-
ing source tokens, mostly applying to the scenario
of speech translation (Zhang et al., 2019, 2023; Fu
et al., 2023). Unlike traditional machine transla-
tion (MT) (Bahdanau et al., 2015; Vaswani et al.,
2017) where the entire source is available, SiMT
requires a read/write (R/W) policy to determine
whether to generate target tokens or wait for addi-
tional source tokens, along with the ability to trans-

∗ Work was done during Libo Zhao’s research internship
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Figure 1: An example demonstrating that the optimiza-
tion of cross-entropy loss on an adaptive path can be
achieved through multi-path wait-k training. Note that
any adaptive path can be composed of subpaths (high-
lighted by the green and blue circles) derived from vari-
ous wait-k paths.

late from source prefixes to target prefixes (P2P)
(Ma et al., 2018). Conventionally, the read/write
policy and the translation model are designed to
work in tandem: a simple wait-k policy with an
offline or wait-k translation model (Ma et al., 2018;
Elbayad et al., 2020; Zhang et al., 2021b), or an
adaptive policy (Gu et al., 2017; Dalvi et al., 2018;
Zheng et al., 2019, 2020; Ma et al., 2020a; Guo
et al., 2023) that dynamically makes read/write
decisions based on context, paired with a trans-
lation model that learns to translate the prefixes
determined by the policy. The latter approach has
achieved state-of-the-art results (Zhang and Feng,
2022, 2023). However, it entails dedicated architec-
ture designs and multitask learning to jointly train
tightly coupled adaptive policy and the translation
model in order to balance translation quality and
latency, resulting in computational complexity and
challenges in optimizing individual components.

On the other hand, the multi-path wait-k ap-
proach proposed by (Elbayad et al., 2020) intro-
duces an effective method for training prefix-to-
prefix translation models by randomly sampling dif-
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ferent k values between batches. Intuitively, as de-
picted in Figure 1, any read/write path determined
by an adaptive policy can be composed of sub-
paths from various wait-k paths with different k val-
ues, which can be effectively translated by a well-
trained multi-path wait-k model. Although the per-
formance of the multi-path wait-k approach falls
behind the adaptive counterparts, we argue that
this discrepancy should be attributed to the wait-k
policy rather than the translation model. Notably,
our observations indicate that multi-path wait-k
models can achieve competitive results when com-
bined with the adaptive policy proposed in (Zhang
and Feng, 2022). This suggests a decoupled modu-
lar approach where the adaptive read/write policy
can be modeled and optimized separately from the
translation model, offering increased flexibility and
the potential for improved performance.

A key aspect of this approach lies in acquir-
ing high-quality signals to effectively supervise
the learning of the read/write policy model. We
draw inspiration from human simultaneous trans-
lation (Al-Khanji et al., 2000; Liu, 2008), where
interpreters make a switch from listening to trans-
lating once they have gathered enough source con-
text x≤g(t) to determine how to expand the partial
translation y<t to produce the next target word yt.
In other words, they anticipate that seeing addi-
tional future words would not impact their current
decisions. This behavior implies a small discrep-
ancy between the interpreters’ modeling of trans-
lation distribution given the partial source context
p(yt|y<t,x≤g(t)), and the translation distribution
given the full source context p(yt|y<t,x). Con-
versely, interpreters would wait for more source
words if the discrepancy becomes significant.

This observation motivates the utilization of sta-
tistical divergence (Lee, 1999) between the two
conditional distributions for any prefix-to-prefix
pair given a translation model as an informative
criterion for making read/write decisions. In light
of this, we propose DaP-SiMT, a novel divergence-
based adaptive policy for simultaneous translation,
to enable adaptive simultaneous translation using
estimated divergence values, considering that the
full source context is unavailable during the trans-
lation process.

While there are various options of neural archi-
tectures for the policy model and the translation
model, we choose to build upon a well-trained
multi-path wait-k translation model with frozen

parameters, and introduce additional lightweight
parameters for the adaptive policy model. This
design choice minimizes the memory and compu-
tation overhead introduced by the policy model,
while providing an effective mechanism to achieve
an adaptive read/write policy within an existing
SiMT model. Our main contributions can be sum-
marized as follows.

1. We propose a novel method to construct
read/write supervision signals from a paral-
lel training corpus based on statistical diver-
gence.

2. We present a lightweight policy model that is
both memory and computation efficient and
enables adaptive read/write decision-making
for a well-trained multi-path wait-k transla-
tion model.

3. Experiments conducted on multiple bench-
marks demonstrate that our approach outper-
forms strong baselines and achieves a superior
accuracy-latency trade-off.

2 Related Works

Existing SiMT policies are mainly classified into
fixed and adaptive categories. Fixed policies (Ma
et al., 2018; Elbayad et al., 2020; Zhang et al.,
2021b) determine read/write operations based on
predefined rules. For example, the wait-k policy
(Ma et al., 2018) first reads k source tokens and
then alternates between writing and reading one
token. On the other hand, adaptive policies predict
read/write operations based on the current source
and target prefix, achieving a better balance be-
tween latency and translation quality. Reinforce-
ment learning has been used by (Gu et al., 2017) to
learn the policy within a Neural Machine Transla-
tion (NMT) model. Dalvi et al. (2018) designed an
incremental decoding that outputs a varying num-
ber of target tokens. Meanwhile, Arivazhagan et al.
(2019) and Ma et al. (2020a) presented approaches
to learning the adaptive policy through attention
mechanisms. Recent advancements like the wait-
info policy (Zhang et al., 2022b) and ITST (Zhang
and Feng, 2022) have quantified the waiting latency
and information weight respectively to devise adap-
tive policies. To the best of our knowledge, ITST
is currently the state-of-the-art method in SiMT.

One of the most relevant works to ours is the
Meaningful Unit (MU) for simultaneous transla-
tion (Zhang et al., 2020). This approach detects
whether the translation of a sequence of source
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Figure 2: The combination of multi-path wait-k model
with any independent read/write policy model for simul-
taneous translation inference.

tokens forms a prefix of the full sentence’s trans-
lation. This method was further generalized to
speech translation in MU-ST (Zhang et al., 2022a).
While MU-ST inspects the target prefix in the vo-
cabulary domain, our work advances further by
examining the distribution of target tokens.

3 Preliminary

3.1 Full-sentence MT and SiMT
In the context of a full sentence translation task,
given a translation pair x = (x1, x2, ..., xN ) and
y = (y1, y2, ..., yT ), an encoder-decoder model
such as Transformer (Vaswani et al., 2017) maps
x into hidden representations and then autore-
gressively decodes the target tokens. Generally,
the model is optimized by minimizing the cross-
entropy loss.

Lmt = −
∑T

t=1
log p (yt | x,y<t) (1)

For the SiMT task, given that g(t) is a monotonic
non-decreasing function representing the end times-
tamp of the source prefix that must be consumed to
generate the t-th target token, the objective function
of SiMT can be modified as follows,

Lsimt = −
∑T

t=1
log p

(
yt | x≤g(t),y<t

)
. (2)

3.2 Wait-k Policy and Multi-Path Wait-k
Wait-k policy (Ma et al., 2018), the most widely
used fixed policy, begins by reading k source to-
kens and then alternates between writing and read-
ing one token. The function g(t) for the wait-k
policy can be formally calculated as,

g(t; k) = min{t+ k − 1, N}. (3)
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Figure 3: Comparison of BLEU vs. AL curves between
multi-path (abbreviated as Mp) wait-k, ITST, and ITST-
guided multi-path wait-k.

Multi-path Wait-k (Elbayad et al., 2020) is an
efficient technique for wait-k training. It randomly
samples different k values between batches during
model optimization. Concretely, the loss of one
training batch is computed as follows,

k ∼ Uniform(K)

Lmp
simt = −

∑T

t=1
log p(yt|x≤g(t;k),y<t),

(4)

where K is the candidate set of k. The main advan-
tage of this method is its ability to make inferences
under different latencies with a single model. Ad-
ditionally, by adopting the unidirectional encoder,
it can cache the encoder hidden states of stream-
ing input. Previous experiments have shown that
its performance is comparable to multiple wait-k
models trained with different k values.

4 Method

4.1 Motivation

Typically, a fixed k value is used when performing
inference with a multi-path wait-k model, follow-
ing the wait-k read/write path. As exemplified in
Figure 1, any adaptive read/write path can be com-
posed of subpaths of various wait-k paths. Given
that a multi-path wait-k model is trained to perform
prefix-to-prefix translation for different k values,
we argue that such a model can also achieve com-
petitive performance when used with an adaptive
read/write policy.

To evaluate this hypothesis, we construct a SiMT
system by combining a multi-path wait-k model
with the adaptive policy from ITST (Zhang and
Feng, 2022), as shown in Figure 2. Although ITST
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Figure 4: Example of a Zh→En divergence matrix D
using cosine distance, where Dt,g(t) = D

(
ppart
t ,pfull

t

)
.

A potential read/write path is indicated by the red ele-
ments in the matrix and can be determined based on a
predefined threshold (0.2 in this case).

has an integrated translation module, we only uti-
lize its policy module to make read/write decisions
and rely on the multi-path wait-k model for transla-
tion. As illustrated in the BLEU/AL (BLEU Score
vs. Average Lagging) curves in Figure 3, the re-
sulting ITST-guided multi-path wait-k approach
achieves competitive performance in all latency
settings. It consistently outperforms the original
multi-path wait-k approach. When compared to the
original ITST approach, the combined approach
achieves significantly better BLEU scores in the
low latency region while obtaining comparable re-
sults in mid-to-high latency settings.

This positive observation leads to a natural ques-
tion: Can we develop a better adaptive policy for a
multi-path wait-k model?

4.2 Divergence-based Read/Write Supervision

Learning an adaptive policy requires high-quality
read/write supervision training data. It is unfeasi-
ble to collect manual annotations due to both the
cost and complexity of the task. Instead, we draw
inspiration from human simultaneous translation
and propose to create such data automatically. We
consider that a good write action should only occur
when the partial source information is sufficient
to make accurate translations, i.e., the translations
should be similar to that with the complete source
input. To be precise, we want to quantify the diver-
gence D

(
p

part
t ,pfull

t

)
between two distributions,

one computed given partial source input and an-

R/W Policy Net

Decoder Layer x 1

Regression Head

Multi-path Wait-k Model (Frozen)

Encoder Layer x N Decoder Layer x N

<s>x2 y1x3x1 y2

READ or WRITE

Source Embedding Layer Target Embedding Layer

Linear Layer + Softmax

Figure 5: Architecture of the DaP-SiMT approach. It
is equivalent to adding an extra decoder layer to the
original SiMT. The output of the extra decoder will
be fed into a regression head to determine read/write
action.

other given full source:

p
part
t = p(yt = ·|x≤g(t),y<t) (5)

pfull
t = p(yt = ·|x,y<t), (6)

where the distributions can be computed using a
well-trained offline translation model or simultane-
ous translation model. In this paper, we quantify
D(·, ·) with three different divergence measures2:

Euclidean: ∥ppart
t − pfull

t ∥2
KL-divergence: KL

(
p

part
t ∥pfull

t

)

Cosine distance: 1− cos
(
p

part
t ,pfull

t

)

We utilize the divergence measures to automati-
cally construct read/write supervisions from a par-
allel corpus used for MT training. For each parallel
sentence pair, we compute a divergence matrix D,
where each element Dt,g(t) = D(p

part
t ,pfull

t ), for
all possible prefix-to-prefix pairs. We can then
make read/write decisions by comparing Dt,g(t)

with a threshold λ:

write if Dt,g(t) < λ, else read (7)

Figure 4 shows an example divergence ma-
trix and a highlighted read/write path. Varying
the threshold would result in a different latency.
For each chosen threshold, we could construct

2Although cosine distance does not meet the indiscernible
condition (d(a, b) = 0 ↔ a = b) of statistical divergence for
general vectors, it does for probability distribution vectors)
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read/write samples and train a separate read/write
policy model, however, the resulting model would
be specific for that threshold. Instead, we treat
the divergence measures computed from parallel
sentences as ground-truth values, and train a sin-
gle adaptive read/write policy model to predict the
ground-truth values from the partial source and
target pair:

(
x≤g(t),y<t

) R/W Policy Net−−−−−−−−→ Dt,g(t) (8)

4.3 SiMT with Adaptive Policy

The architecture of our proposed DaP-SiMT model,
as depicted in Figure 5, integrates a SiMT model
with a divergence-based adaptive read/write pol-
icy network. In contrast to the design shown in
Figure 2, which employs an independent policy,
our approach incorporates a policy network that
leverages the hidden states from the SiMT model’s
encoder and decoder as inputs, tailored explicitly
to enable adaptive read/write decisions within the
SiMT model.

More specifically, the policy network includes
an additional transformer decoder layer placed atop
the original SiMT decoder, followed by a regres-
sion head responsible for predicting divergence
values. The incorporation of an extra functional
decoder layer aligns with the common practices
found in previous works on NMT (Li et al., 2022,
2023). The design of the regression head adheres
to Roberta (Liu et al., 2019), featuring two lin-
ear layers with a tanh activation function sand-
wiched in between. In terms of the learning objec-
tive, we employ Mean Squared Error (MSE) for
divergence measures based on Euclidean distance
or KL-divergence, and binary cross-entropy with
continuous labels for measures based on cosine
distance.

During training, we only tune the parameters
of the adaptive policy network while keeping the
parameters of the multi-path wait-k model fixed.
In the inference phase, we compare the predicted
divergence values with a predefined threshold to
make read/write decisions, following Equation 7,
and can achieve varying latency levels by adjusting
the threshold. Additionally, we have empirically
observed that introducing another hyper-parameter
to limit the maximum number of continuous READ
operations for certain languages (see analysis in
Section 5.4.2 for the impact on different language
pairs) results in a better balance between transla-

tion quality and latency. The inference process of
DaP-SiMT is summarized in Algorithm D in the
Appendix.

5 Experiments

5.1 Datasets

WMT2022 Zh→En3. We use a subset with 25M
sentence pairs for training4. We first tokenize the
Chinese and English data using the Jieba Chinese
Segmentation Tool5 and Moses6, respectively, and
then apply BPE with 32,000 merge operations. We
employ a validation set of 956 sentence pairs from
BSTC (Zhang et al., 2021a) as the test set.
WMT15 De→En7. All 4.5M sentence pairs from
this dataset are used for training, and are tok-
enized using 32K BPE merge operations. We use
newstest2013 (3000 sentence pairs) for validation
and report results on newstest2015 (2169 sentence
pairs).
IWSLT15 En→Vi8. All 133K sentence pairs from
this dataset (Luong and Manning, 2015) are used
for training. We use TED tst2012 (1553 sentence
pairs) for validation and TED tst2013 (1268 sen-
tence pairs) as the test set. Following the settings in
(Ma et al., 2020b), we adopt word-level tokeniza-
tion and replace rare tokens (frequency < 5) with
<unk>. The vocabulary sizes are 17K for English
and 7.7K for Vietnamese, respectively.

5.2 Settings

All our implementations are based on the Trans-
former (Vaswani et al., 2017) architecture and
adapted from the Fairseq Library (Ott et al., 2019).
For the Zh→En experiments, we utilize the trans-
former big architecture, while the base and small
architectures are used for De→En and En→Vi ex-
periments respectively. We use the cosine distance
to calculate the read/write supervision signals in
the main experiments, and investigate the effects
of different divergence types in Section 5.4.2.

For evaluation, following ITST (Zhang and Feng,
2022), we report case-insensitive BLEU (Papineni
et al., 2002) scores to assess translation quality and
Average Lagging (AL/token) (Ma et al., 2018) to
measure latency. Regarding the maximum num-

3
www.statmt.org/wmt22

4The data sources include casia2015, casict2011, casict2015, datum2015,
datum2017, neu2017, News Commentary V16, ParaCrawl V9.

5
https://github.com/fxsjy/jieba

6
https://github.com/moses-smt

7
www.statmt.org/wmt15

8
nlp.stanford.edu/projects/nmt
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Figure 6: Comparison of BLUE vs. AL curves between multi-path (abbreviated as Mp) wait-k, ITST, ITST-guided
multi-path wait-k, and our proposed DaP-SiMT approach on three language pairs.

ber of continuous read actions in our method, we
empirically select the best-performing configura-
tions, which are no constraint, 4, no constraint for
Zh→En, De→En, En→Vi respectively.

5.3 Main Results

The performance of our method is compared to
previous approaches on three language pairs in Fig-
ure 6.

First, it is evident that the performance of a multi-
path wait-k model can be significantly improved
when guided by an adaptive read/write policy like
ITST, compared to using a fixed wait-k policy. This
enhanced performance often closely matches or
even surpasses that of ITST, the previous state-of-
the-art SiMT model, particularly in low latency set-
tings for De→En translation. These results under-
score the competitiveness and flexibility of prefix-
to-prefix translation within the multi-path wait-k
model, a potential that remains largely untapped
with a fixed wait-k policy.

Secondly, our proposed DaP-SiMT approach sig-
nificantly enhances the performance of the multi-
path wait-k model, outperforming all other ap-
proaches. The divergence-based adaptive pol-
icy consistently surpasses the fixed wait-k policy
across all latency levels. Furthermore, when com-
pared to the adaptive policy in ITST, it achieves
comparable results in the De→En scenario and
superior performance in the Zh→En and En→Vi
translations, all while using the same multi-path
wait-k model as the translation model. This result
suggests that the divergence-based approach not
only surpasses the fixed wait-k policy but also com-
petes effectively with state-of-the-art approaches

0 2 4 6 8 10

3

3.4

3.8

4.2

AL

N
L

L

Wait-k

ITST

DaP-SiMT Prediction

DaP-SiMT Ground Truth

Figure 7: NLL vs. AL curves comparing four read/write
policies utilizing the same SiMT model. "DaP-SiMT
Ground Truth" indicates read/write paths derived from
ground truth divergence values calculated using the full
sentence, while "DaP-SiMT Prediction" is based on
divergence values predicted by the policy model.

like ITST, which features a closely integrated adap-
tive policy and translation model.

5.4 Analysis

In our analysis, we aim to provide a more in-depth
understanding of our proposed approach. Unless
otherwise stated, results are based on the Zh→En
Transformer-Big model.

5.4.1 The NLL vs. AL Curve
In addition to the commonly used BLEU vs. AL
curves that assess the quality of complete transla-
tions across different latency levels, we introduce
a novel evaluation metric: the NLL vs. AL curve.
This metric enables a qualitative measurement of
the average impact of various read/write policies on
translation quality at each translation step, all while
utilizing the same translation model. To construct
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Figure 8: Ablation studies on the proposed DaP-SiMT method

the NLL vs. AL curve, we begin with a read/write
policy and the necessary hyper-parameters, such as
k for the fixed wait-k approach and the threshold
λ for the divergence-based adaptive policy, which
controls the latency level. Given a parallel sen-
tence, we first derive the read/write path, denoted
as g(1), g(2), ..., g(T ), under the read/write policy,
and then calculate the negative log-likelihood of
the translation along the read/write path, follow-
ing Eq. (2). By aggregating these NLL scores and
their corresponding latency levels across an entire
dataset, we can generate NLL vs. AL curves for
any read/write policy.

Figure 7 provides a comparative analysis of NLL
vs. AL curves for four read/write policies: wait-
k, ITST, and two variations of DaP-SiMT. The
first DaP-SiMT variant is based on divergence val-
ues predicted by the policy model, while the sec-
ond relies on ground truth divergence values com-
puted using full sentences. The results underscore
the effectiveness of our DaP-SiMT approach, as it
consistently yields substantially lower NLL scores
when compared to the fixed wait-k policy at equiv-
alent latency levels. This confirms that the SiMT

model is more adept at accurately predicting the
correct translation along the resulting read/write
paths. Furthermore, the DaP-SiMT approach ex-
hibits a lower NLL curve compared to ITST’s pol-
icy model, aligning with the trends observed in the
BLEU vs. AL curves depicted in Figure 6. Notably,
the DaP-SiMT variant employing ground truth di-
vergence values has a much lower curve than its
counterpart based on predicted divergence values.
This suggests that there is potential for further im-
provement through better modeling of divergence
supervision signals.

5.4.2 Ablation Study

Effect of translation model for divergence su-
pervision In our main experiment, we utilized
an offline translation model to calculate the diver-
gence supervision values. Here, we assess the im-
pact of utilizing a SiMT model for this purpose.
Figure 8(a) illustrates that supervision signals com-
puted by the multi-path wait-k model result in al-
most identical performance to those obtained from
the offline model.

Effect of the divergence measures We exam-
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ine the influence of various divergence measures,
including Euclidean distance, KL-divergence, and
cosine distance, on the performance of DaP-SiMT.
As depicted in Figure 8(b), the almost identical
curves suggest that our approach is not sensitive to
the choice of divergence measures.

Effect of the number of layers for the policy
net To examine whether a single additional de-
coder layer can effectively model the divergence
supervision signals, we conducted comparative ex-
periments using either 0 or 3 additional decoder
layers. Figure 8(c) demonstrates that configura-
tions with 1 or 3 additional decoder layers yield
similar results. Although the configuration with
0 additional decoder layers does not perform as
strongly, it still manages to achieve a reasonable
balance between accuracy and latency.

Effect of the max continuous READ con-
straint As discussed in Section 4.3, we introduce
a constraint on the maximum number of continu-
ous reads during inference, forcing a write action
after reaching the limit. Figure 8(d) shows that
this constraint has varying impacts on different lan-
guage pairs. In the cases of Zh→En and En→Vi,
this hyperparameter has minimal influence on re-
sults, especially in the low-latency region, which is
a primary focus in SiMT. However, for De→En, a
substantial improvement is observed with the intro-
duction of this constraint.

We hypothesize that this difference is related
to the modeling difficulty for language pairs with
varying degrees of word order variations. As quan-
tified in Appendix B, the De→En translation direc-
tion exhibits the highest anticipation rate among
the three language pairs and demonstrates the most
significant divergence in word order (Wang et al.,
2023). Consequently, it naturally requires more
read actions for an accurate De→En translation,
which is reflected in the distribution of divergence
supervision signals and subsequently influences the
learned policy model. By adjusting the threshold λ
to achieve low latency, we inadvertently exacerbate
the negative effects of exposure bias, resulting in
excessive reads, as observed in our experiments.
Introducing the maximum number of continuous
reads serves as an ad-hoc solution to address this
challenge, and we leave it to future research to
investigate this issue thoroughly.

5.4.3 Upper Bound of DaP-SiMT
We evaluate the upper bound performance of DaP-
SiMT to study the impact of modeling errors within

2 4 6 8 10

13

15

17

19

AL

B
L

E
U

DaP-SiMT Ground Truth

DaP-SiMT Prediction

Figure 9: BLEU vs. AL curves comparing between
DaP-SiMT with ground truth divergence and standard
DaP-SiMT with predicted divergence.

the policy model. Specifically, we substitute the
model-predicted divergence scores with the ground
truth divergence calculated using the complete sen-
tence D

(
p

part
t ,pfull

t

)
during DaP-SiMT inference,

following the procedure outlined in Algorithm D.
As illustrated in Figure 9, in line with the find-
ings from Section 5.4.1, the upper bound perfor-
mance of DaP-SiMT is substantially higher than
that achieved with the learned policy model. This
observation highlights the potential for further im-
provement in policy modeling.

5.4.4 Examples

We provide several examples in Appendix A com-
paring the divergence matrix predicted by the
learned policy model with the ground truth. Al-
though there are some discrepancies, the predicted
divergence matrix closely resembles the ground
truth matrix and can be used to make reasonable
read/write decisions.

6 Conclusion

In this paper, we introduce a divergence-based
adaptive policy for SiMT, which makes read/write
decisions based on the potential divergence in trans-
lation distributions resulting from future informa-
tion. Our approach extends a frozen multi-path
wait-k translation model with lightweight param-
eters for the policy model, making it memory and
computation efficient. Experimental results across
various benchmarks demonstrate that our approach
provides an improved trade-off between translation
accuracy and latency compared to strong baselines.
We hope that our approach can inspire a novel per-
spective on simultaneous translation.
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Limitations

Our evaluation primarily focused on assessing the
impact of the proposed adaptive policy on simul-
taneous translation using BLEU vs. AL and NLL
vs. AL curves. However, we acknowledge that
intrinsic evaluations of the policy model itself are
lacking, and further investigation in this area is nec-
essary to guide improvements. We provided only
a limited exploration of modeling variations for
the policy model, leaving room for more in-depth
analysis and enhancements. It’s worth noting that
while the threshold parameter λ controls latency, it
doesn’t have a direct one-to-one relationship with
latency, as is the case with the fixed wait-k policy.
This nuanced aspect requires careful consideration
in future investigations.
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A Divergence Matrix Examples

Divergence matrix examples are shown in Fig-
ure 10, Figure 11, Figure 12.

B Anticipation Rate

Anticipation occurs in simultaneous translation
when a target word is generated prior to the re-
ceipt of its corresponding source word. To detect
instances of anticipation, accurate word alignment
between the paired sentences is needed. Fast-align
(Dyer et al., 2013) is employed to obtain the word
alignment a between a source sentence X and a
target sentence Y. The resulting alignments com-
prise a set of source-target word index pairs (s, t),
where the sth source word xs aligns with the tth

target word yt. A target word yt is k-anticipated
(Ak(t, a) = 1) if it aligns to at least one source
word xs where s ≥ t+ k:

Ak(t, a) = 1[{(s, t) ∈ a|s ≥ t+ k} ≠ ∅]

The k-anticipation rate (ARk) of an (X, Y, a) triple
is further defined as follow:

ARk(X,Y, a) =
1

|Y|

|Y|∑

t=1

Ak(t, a)

The anticipation rates (AR%) of different language
pairs are shown in Table 2, from which we can find
that the De→En translation task exhibits greater
word order differences than the other two cases.

C How Sensitive Is The AL To
Thresholds During Inference?

Table 1 exhibits the sensitivity of the AL to thresh-
olds during inference based on different settings of
divergence types. It can be observed that the AL
is not particularly sensitive to the threshold over-
all, which makes the process of determining the
threshold straightforward.

D Algorithm

The inference process of DaP-SiMT is summarized
in Algorithm 1.

E Numerical Results

The numerical results are presented in Table 3, Ta-
ble 4, Table 5.

Divergence Type
Euclidean Distance KL Divergence Cosine Distance
AL Threshold AL Threshold AL Threshold
0.67 0.5 0.72 1.8 1.18 0.52
1.47 0.4 1.37 1.4 1.85 0.4
2.1 0.33 2.21 1.0 2.8 0.26
3.51 0.24 3.03 0.7 3.72 0.18
4.67 0.2 4.07 0.5 4.54 0.14
5.53 0.18 4.94 0.4 5.85 0.1
6.73 0.16 6.32 0.3 6.83 0.08
7.42 0.15 7.61 0.24 8.36 0.06
9.04 0.13 8.56 0.2 10.71 0.04

10.01 0.12 9.88 0.16

Table 1: The sensitivity of the AL to the threshold during
inference based on different settings of divergence types.

Experiment k = 1 k = 3 k = 5 k = 7

De→En 30.4 15.2 8.5 5.1
Zh→En 25.4 12 6.3 3.6
En→Vi 17.3 5.2 1.9 0.8

Table 2: Anticipation rates (AR%) of different language
pairs

Algorithm 1: SiMT inference with DaP
Input: streaming source tokens: X≤j ,

threshold: δ,
target idx: i← 1,
source idx: j ← 1,
max continuous READ constraint:
rmax,
current number of continuous
READ: rc ← 1

Output: target tokens: Y ← {<BOS>}
1 while Yi−1 ̸= <EOS> do
2 calculate R/W confidence c with Yi−1

using the R/W decision net mentioned
in 4.3;

3 if c ≤ δ or rc ≥ rmax then
4 translate yi with X≤j ,Y≤i−1;
5 if yi ̸= <EOS> or j ≥ |X| then
6 // execute WRITE action

7 Y.Append(yi);
8 rc ← 0;
9 i← i+ 1;

10 else
11 // execute READ action

12 j ← j + 1;
13 rc ← rc + 1;
14 else
15 // execute READ action

16 j ← j + 1;
17 rc ← rc + 1;
18 return Y
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@@

The

night

view

of

this

city

is

beautiful

.

(this) (city) (of) (night) (view) (very) (beautiful) (.)

0.873 0.432 0.172 0.217 0.767 0.045 0.002 0.0

0.987 0.398 0.407 0.295 0.321 0.048 0.003 0.0

0.982 0.979 0.973 0.972 0.007 0.003 0.001 0.0

0.265 0.007 0.0 0.008 0.0 0.0 0.0 0.0

0.672 0.012 0.017 0.002 0.004 0.0 0.002 0.0

0.989 0.032 0.083 0.001 0.0 0.0 0.0 0.0

0.95 0.977 0.922 0.998 0.999 0.0 0.0 0.0

0.864 0.716 0.806 0.848 0.762 0.147 0.003 0.0

0.003 0.153 0.008 0.131 0.387 0.684 0.634 0.0

(a) Ground Truth Matrix

@@

The

night

view

of

this

city

is

beautiful

.

(this) (city) (of) (night) (view) (very) (beautiful) (.)

0.447 0.344 0.434 0.285 0.322 0.067 0.033 0.004

0.993 0.179 0.629 0.255 0.163 0.03 0.014 0.001

0.587 0.613 0.662 0.75 0.087 0.041 0.019 0.001

0.717 0.237 0.17 0.096 0.043 0.023 0.014 0.001

0.32 0.026 0.039 0.011 0.007 0.007 0.004 0.001

0.917 0.05 0.079 0.011 0.004 0.002 0.001 0.0

0.917 0.959 0.945 0.966 0.962 0.035 0.005 0.0

0.899 0.886 0.894 0.898 0.905 0.513 0.082 0.006

0.273 0.452 0.367 0.589 0.71 0.721 0.784 0.003

(b) Prediction Matrix

Figure 10: Example 1
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@@

Text

classification

is

an

important

application

area

of

natural

language

processing

.

(text) (classification) (is) (natural) (language) (process) (of) (an/a) (important)(app area) (.)

0.003 0.007 0.003 0.001 0.001 0.0 0.001 0.001 0.0 0.0 0.0

1.0 0.244 0.082 0.041 0.039 0.023 0.003 0.004 0.002 0.002 0.0

0.999 0.998 0.87 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.0

0.987 0.928 0.995 0.996 0.867 0.952 0.923 0.54 0.01 0.002 0.0

0.603 0.198 0.987 0.923 0.979 0.935 0.95 0.768 0.0 0.0 0.0

0.984 0.968 0.988 0.982 0.978 0.976 0.982 0.98 0.983 0.004 0.0

0.997 0.993 0.994 0.991 0.963 0.917 0.876 0.861 0.855 0.007 0.0

0.991 0.985 0.98 0.958 0.777 0.621 0.34 0.028 0.039 0.021 0.0

0.995 0.996 0.997 0.701 0.009 0.001 0.001 0.0 0.0 0.0 0.0

0.294 0.116 0.297 0.799 0.004 0.0 0.0 0.0 0.0 0.0 0.0

0.994 0.994 0.993 0.996 0.997 0.0 0.001 0.0 0.0 0.0 0.0

0.01 0.022 0.126 0.529 0.441 0.593 0.514 0.625 0.793 0.846 0.0

(a) Ground Truth Matrix

@@

Text

classification

is

an

important

application

area

of

natural

language

processing

.

(text) (classification) (is) (natural) (language) (process) (of) (an/a) (important)(app area) (.)

0.499 0.31 0.15 0.105 0.093 0.064 0.065 0.043 0.028 0.018 0.001

0.851 0.181 0.15 0.124 0.093 0.074 0.069 0.054 0.042 0.027 0.001

0.888 0.858 0.354 0.053 0.032 0.031 0.033 0.009 0.007 0.004 0.0

0.932 0.919 0.97 0.807 0.808 0.827 0.756 0.303 0.18 0.044 0.0

0.892 0.844 0.983 0.914 0.889 0.878 0.85 0.76 0.004 0.001 0.0

0.796 0.726 0.849 0.779 0.743 0.746 0.772 0.773 0.79 0.008 0.0

0.9 0.924 0.862 0.412 0.291 0.386 0.322 0.246 0.358 0.018 0.0

0.84 0.882 0.875 0.528 0.255 0.242 0.132 0.056 0.038 0.007 0.0

0.771 0.889 0.949 0.403 0.137 0.113 0.048 0.015 0.01 0.005 0.0

0.745 0.718 0.723 0.874 0.045 0.031 0.015 0.009 0.006 0.002 0.0

0.643 0.764 0.765 0.83 0.906 0.065 0.031 0.016 0.012 0.004 0.0

0.335 0.372 0.319 0.585 0.678 0.74 0.633 0.679 0.861 0.875 0.001

(b) Prediction Matrix

Figure 11: Example 2
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@@

Machine

translation

has

become

an

important

auxiliary

tool

for

human

translation

.

(machine)(translation) (has) (become) (human)(translation) (for) (important)(auxiliary) (tool) (.)

0.511 0.001 0.002 0.0 0.0 0.0 0.001 0.0 0.0 0.0 0.0

0.998 0.277 0.078 0.0 0.004 0.006 0.001 0.001 0.0 0.0 0.0

1.0 0.995 0.007 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.89 0.78 0.895 0.002 0.002 0.002 0.001 0.001 0.0 0.0 0.0

0.739 0.512 0.945 0.573 0.781 0.66 0.57 0.021 0.0 0.0 0.0

0.751 0.613 0.974 0.956 0.999 0.998 0.994 0.0 0.0 0.0 0.0

0.982 0.983 0.979 0.984 0.947 0.961 0.964 0.984 0.096 0.011 0.0

0.877 0.882 0.92 0.915 0.518 0.535 0.633 0.716 0.937 0.0 0.0

0.938 0.933 0.936 0.811 0.729 0.394 0.148 0.029 0.047 0.003 0.0

0.991 0.962 0.984 0.902 0.278 0.074 0.017 0.004 0.002 0.0 0.0

0.995 0.392 0.52 0.546 0.813 0.004 0.002 0.001 0.0 0.0 0.0

0.121 0.1 0.608 0.469 0.561 0.565 0.382 0.788 0.914 0.899 0.0

(a) Ground Truth Matrix

@@

Machine

translation

has

become

an

important

auxiliary

tool

for

human

translation

.

(machine)(translation) (has) (become) (human)(translation) (for) (important)(auxiliary) (tool) (.)

0.663 0.138 0.073 0.041 0.033 0.028 0.035 0.02 0.017 0.015 0.001

0.949 0.094 0.117 0.073 0.066 0.056 0.056 0.042 0.037 0.029 0.0

0.929 0.873 0.238 0.062 0.031 0.023 0.019 0.009 0.008 0.007 0.0

0.65 0.68 0.583 0.036 0.021 0.01 0.011 0.004 0.003 0.002 0.0

0.711 0.623 0.738 0.622 0.658 0.613 0.59 0.251 0.128 0.056 0.0

0.833 0.837 0.886 0.91 0.888 0.823 0.835 0.006 0.004 0.002 0.0

0.814 0.794 0.791 0.812 0.801 0.764 0.789 0.779 0.061 0.015 0.0

0.784 0.768 0.755 0.715 0.72 0.695 0.672 0.684 0.692 0.011 0.0

0.94 0.941 0.911 0.84 0.754 0.455 0.341 0.066 0.034 0.015 0.0

0.926 0.955 0.97 0.968 0.451 0.134 0.093 0.016 0.011 0.007 0.0

0.695 0.446 0.554 0.619 0.684 0.123 0.061 0.015 0.01 0.008 0.001

0.725 0.669 0.58 0.531 0.699 0.769 0.698 0.873 0.894 0.906 0.003

(b) Prediction Matrix

Figure 12: Example 3
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Main Results (Figure 6)
Mp Wait-k ITST ITST guided Mp Wait-k DaP-SiMT

Zh→En

AL BLEU AL BLEU AL BLEU AL BLEU
1.31 11.7 0.7 8.91 0.86 12.06 1.18 13.07
2.23 13.46 1.46 11.92 2.35 14.94 1.85 14.67
2.96 14.37 2.16 14.35 3.58 16.45 2.8 16.7
3.87 15.15 2.76 15.55 4.45 17.46 3.72 17.25
4.76 16.34 3.5 17.06 5.38 18.22 4.54 17.73
5.63 16.98 4.27 17.72 6.98 18.11 5.06 18.14
6.45 17.61 4.79 17.95 8.92 18.55 5.85 18.19
7.27 17.87 5.74 18.07 13.52 19.06 6.83 18.76
8.09 18.05 6.82 18.63 8.36 18.88
8.82 18.54 7.66 18.58 10.71 18.9
9.56 18.45 8.74 18.61

10.26 18.55 9.96 18.75
10.9 18.55 13.68 19.15

11.46 18.76

De→En

AL BLEU AL BLEU AL BLEU AL BLEU
0.47 21.08 1.57 19.2 0.49 22.15 0.49 21.65
1.45 23.97 2.17 24.71 1 24.03 1.3 24.51
2.12 26.21 2.77 28.26 1.56 25.98 2.17 27.12
3.12 27.15 3.31 28.85 2.6 28.04 3.25 29.19
4.1 28.53 4.01 29.55 3.28 28.81 4.31 29.97
5.05 29.16 4.82 30.35 3.98 29.57 5.87 30.84
6.03 29.72 5.66 30.52 4.79 30.2 7.65 31.29
6.97 30.16 6.65 30.91 5.71 30.71 8.98 31.52
7.9 30.69 7.7 31.05 6.66 31.07 10.53 31.6
8.78 30.86 8.73 31.08 7.67 31.22 12.53 31.79
9.7 31.11 9.79 31.2 8.78 31.5

10.57 31.2 12.6 31.32 9.83 31.45
11.42 31.41 12.65 31.72
12.24 31.41

En→Vi

AL BLEU AL BLEU AL BLEU AL BLEU
3.21 27.87 1.29 23.06 1.3 22.71 0.89 21.89
3.93 29.4 1.85 26.33 1.92 26.14 1.41 27.11
4.73 30.11 2.44 28.7 2.52 28.59 1.99 29.31
5.57 30.14 3.23 29.37 3.35 29.74 3.06 29.63
6.43 30.08 3.76 29.5 4.51 29.95 4.6 30.15
7.28 30.13 4.42 29.48 5.23 29.95 5.44 30.09
8.12 30.14 5.15 29.79 5.92 29.95 6.25 30.13
8.93 30.11 5.91 29.83 6.81 29.98 7.49 30.15
9.7 30.1 6.7 29.94 7.72 29.91 8.08 30.2

10.43 30.2 7.69 29.95 8.71 29.98 8.74 30.17
11.13 30.16 8.67 29.84 9.95 30.07 9.61 30.01
11.79 30.13 9.93 29.95 12.55 30.09 10.67 30.11
12.41 30.16 12.58 30.01 11.69 30.1
13.01 30.18

NLL vs. AL curves (Figure 7)
Wait-k ITST DaP-SiMT prediction DaP-SiMT Ground Truth

Zh→En

AL NLL AL NLL AL NLL AL NLL
0.549 4.105 0.076 4.066 0.004 3.956 0.096 3.761
1.507 3.798 0.778 3.801 0.767 3.703 0.828 3.524
2.466 3.591 1.514 3.559 1.557 3.472 1.542 3.329
3.401 3.427 2.228 3.354 2.28 3.307 2.346 3.182
4.323 3.295 2.955 3.228 3.097 3.17 3.054 3.083
5.234 3.205 3.813 3.112 3.888 3.081 3.924 3.02
6.112 3.128 4.718 3.031 4.738 3.019 4.646 2.987
6.958 3.068 5.6 2.978 6.005 2.964 5.885 2.948
7.774 3.024 6.36 2.952 7.013 2.935 7.164 2.924
8.564 2.987 7.259 2.928 8.378 2.908 9.541 2.903
9.318 2.963 8.162 2.914 10.67 2.886
10.021 2.938 8.868 2.905
11.276 2.912 9.779 2.896

11.027 2.885

Table 3: Numerical results in Figure 6 and Figure 7.
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Translation Model Type (Figure 8(a))
Mp Wait-k Model Offlien model

Zh→En

AL BLEU AL BLEU
1.26 13.56 1.18 13.07
1.83 14.98 1.85 14.67
2.65 16.14 2.8 16.7
3.7 17.07 3.72 17.25

4.26 17.41 4.54 17.73
5.1 18 5.06 18.14

5.71 18.28 5.85 18.19
6.42 18.78 6.83 18.76
7.57 18.97 8.36 18.88
9.38 18.94 10.71 18.9
12.22 18.79

Divergence Type (Figure 8(b))
Euclidean Distance KL Divergence Cosine Distance

Zh→En

AL BLEU AL BLEU AL BLEU
0.67 11.88 0.72 12.3 1.18 13.07
1.47 14.02 1.79 14.63 1.85 14.67
2.45 16.34 2.71 16.36 2.8 16.7
3.51 17.11 4.14 17.45 3.72 17.25
4.67 17.96 4.94 17.89 4.54 17.73
5.53 18.12 6.32 18.33 5.06 18.14
6.73 18.54 7.61 18.78 5.85 18.19
8.23 18.74 8.56 18.83 6.83 18.76
9.04 18.94 9.88 18.85 8.36 18.88
10.1 18.85 10.8 18.89 10.71 18.9

Number of Extra Decoder Layers (Figure 8(c))
0 Extra Decoder Layer 1 Extra Decoder Layer 3 Extra Decoder Layers

Zh→En

AL BLEU AL BLEU AL BLEU
1.5 13.57 1.18 13.07 1.2 13.53

2.24 15 1.85 14.67 2.29 15.6
3.58 16.58 2.8 16.7 3.6 17.09
4.4 17.49 3.72 17.25 4.84 17.97

6.02 18.3 4.54 17.73 6.55 18.67
7.49 18.63 5.06 18.14 7.87 18.8
9.7 18.74 5.85 18.19 10.05 18.74

6.83 18.76
8.36 18.88

10.71 18.9

Table 4: Numerical results in Figure 8(a), Figure 8(b) and Figure 8(c).
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The Maximum Number of Continuous Read (Figure 8(d))
Max Conti READ 4 Max Conti READ 6 Max Conti READ 8 No Constraint

Zh→En

AL BLEU AL BLEU AL BLEU AL BLEU
0.89 12.45 1.08 12.74 1.12 12.76 1.18 13.07
1.6 14.26 1.79 14.66 1.89 14.97 1.85 14.67

2.36 15.77 2.7 16.62 2.83 16.79 2.8 16.7
3.1 16.97 3.67 17.39 4 17.52 3.72 17.25

4.25 17.38 4.44 17.61 4.9 17.65 4.54 17.73
5.67 18.03 5.68 18.42 6.44 18.53 5.06 18.14

7 18.21 6.87 18.7 7.74 18.48 5.85 18.19
9.12 18.35 8.57 18.62 9.73 18.78 6.83 18.76

10.84 19.14 12.06 19.19 8.36 18.88
10.71 18.9

Max Conti READ 4 Max Conti READ 6 Max Conti READ 8 No Constraint

De→En

AL BLEU AL BLEU AL BLEU AL BLEU
0.49 21.65 0.89 22.56 1.13 23 1.79 23.88
1.3 24.51 1.76 25.39 2.04 25.99 2.5 26.07

2.17 27.12 2.69 28.01 3.09 28.45 3.24 27.81
3.25 29.19 3.54 29.39 3.98 29.77 4.03 29.12
4.31 29.97 4.53 30.23 5.16 30.54 5.13 30.22
5.87 30.84 5.55 30.83 6.32 31.12 6.02 30.77
7.65 31.29 6.36 31.12 7.25 31.34 7.59 31.05
8.98 31.52 7.5 31.54 8.59 31.66 8.88 31.39
10.53 31.6 9.77 31.7 11.21 31.89 11.13 31.56
12.53 31.79

Max Conti READ 4 Max Conti READ 6 Max Conti READ 8 No Constraint

En→Vi

AL BLEU AL BLEU AL BLEU AL BLEU
0.88 21.81 0.89 21.87 0.89 21.89 0.89 21.89
1.4 27.03 1.41 27.11 1.41 27.12 1.41 27.11

1.94 29.3 1.97 29.27 1.98 29.3 1.99 29.31
2.74 29.64 2.89 29.56 2.96 29.58 3.06 29.63
3.7 30.04 4.08 30.02 4.31 30.07 4.6 30.15

4.24 30.01 4.76 29.98 5.05 30.02 5.44 30.09
5.38 30.07 5.32 30.07 5.7 30.08 6.25 30.13
6.1 30.2 6.21 30.09 6.69 30.05 7.49 30.15

7.15 30.04 7.1 30.18 7.7 30.19 8.08 30.2
7.76 30.12 7.67 30.08 8.32 30.04 8.74 30.17
8.49 30.17 8.35 29.98 9.06 30.04 9.61 30.01
11.04 30.03 9.04 30.02 9.83 30.06 10.67 30.11

9.9 30.01 10.83 30.02 11.69 30.1
12.77 30.05

Table 5: Numerical results in Figure 8(d).
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