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Abstract

Modern machine translation models and lan-
guage models are able to translate without hav-
ing been trained on parallel data, greatly ex-
panding the set of languages that they can serve.
However, these models still struggle in a vari-
ety of predictable ways, a problem that can-
not be overcome without at least some trusted
bilingual data. This work expands on a cheap
and abundant resource to combat this prob-
lem: bilingual lexica (BILEXs). We test the
efficacy of bilingual lexica in a real-world set-
up, on 200-language translation models trained
on web-crawled text. We present several find-
ings: (1) using lexical data augmentation, we
demonstrate sizable performance gains for un-
supervised translation; (2) we compare several
families of data augmentation, demonstrating
that they yield similar improvements, and can
be combined for even greater improvements;
(3) we demonstrate the importance of carefully
curated lexica over larger, noisier ones, espe-
cially with larger models; and (4) we compare
the efficacy of multilingual lexicon data ver-
sus human-translated parallel data. Based on
results from (3), we develop and open-source
GATITOS, a high-quality, curated dataset cover-
ing 170 mostly low-resource languages at the
time of this submission, one of the first human-
translated resources to support many of these
languages1.

1 Introduction

Neural machine translation (NMT) has emerged
as the dominant way of training machine transla-
tion models (Bahdanau et al., 2015), where trans-
lation is modeled as a sequence-to-sequence task
to be learned by neural networks (Sutskever et al.,
2014). Massively multilingual machine translation
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1https://github.com/google-research/url-nlp/
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(MMMT) refers to the concept of training a single
machine translation model on many languages and
language pairs using a shared set of parameters,
and has also seen success in recent years (Firat
et al., 2016; Wu et al., 2016; Johnson et al., 2017;
Aharoni et al., 2019; Fan et al., 2022; NLLBTeam
et al., 2022; Bapna et al., 2022; Siddhant et al.,
2022). Training these models typically relies on
large-scale parallel corpora mined from the web
(Resnik and Smith, 2003; Uszkoreit et al., 2010;
Esplà-Gomis, 2009; Bañón et al., 2020).

However, beyond the traditional technique of
training NMT models with human-translated paral-
lel texts, a number of other strategies have shown
success recently, especially on lower-resource lan-
guages. One of these techniques is self-supervised
training using monolingual corpora (Siddhant et al.,
2020; Cheng et al., 2021). With this approach,
NMT models are pretrained or jointly trained on a
self-supervised task with monolingual data, such
as the MASS (Song et al., 2019b) or BART (Lewis
et al., 2020; Liu et al., 2020) tasks, as well as
the usual neural machine translation task. This
training regime can aid the model in performing
zero-shot translation (Bapna et al., 2022; Siddhant
et al., 2022), in cases where a language has mono-
lingual data but no parallel data. Moreover, both
the self-supervised task and the supervised MT task
can be modeled as neural sequence-to-sequence
(Seq2Seq) problems, meaning a single Seq2Seq
model can be used for training on both tasks.

Other techniques that have proven useful for
low-resource MT include back-translation (Sen-
nrich et al., 2016; Caswell et al., 2019; Feld-
man and Coto-Solano, 2020) and the incorporation
of language models into MT training (Gulcehre
et al., 2017; Baziotis et al., 2020; Freitag et al.,
2022b). There has also been extensive work on
training completely unsupervised MT systems us-
ing monolingual corpora only (Artetxe et al., 2017,
2019). For example, Artetxe et al. (2017) uses a
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combination of denoising autoencoding with pre-
trained cross-lingual embeddings and on-the-fly
back-translation to achieve reasonable MT perfor-
mance with zero parallel data.

In our work, we supplement the approach that
combines supervised and self-supervised training
with multilingual lexica. The motivation for us-
ing this resource is as follows. Despite the suc-
cesses of the approach combining supervised and
self-supervised training, cross-lingual vocabulary
alignment is still highly imperfect in these mod-
els, especially for low-resource and unsupervised
languages (see Bapna et al. (2022) for examples
of some common failure modes). That is, training
on all languages using a shared set of parameters
is insufficient to induce perfect cross-lingual vo-
cabulary alignment. Of course, we are not the first
to experiment with multilingual lexica to improve
NMT performance, or multilingual NLP applica-
tions more generally; Section 2 gives more details.

Using the publicly available massively multilin-
gual lexicon Panlex (Kamholz et al., 2014), we
demonstrate that this added lexical data leads to
small but significant gains over a baseline model
on average, even for high-resource languages; and
with smaller but carefully curated bilingual lexica,
the gains are substantially larger. In both cases,
the gains are most significant for unsupervised and
low-resource languages. Our contributions are as
follows:

1. We provide a thorough comparison of several
lexicon-based data augmentation variants for
MT, all of which are simple, generalizable,
and easy to implement;

2. We test these approaches “in the wild”, i.e.
on in a highly multilingual, web-mined data
regime such as production systems tend to
use, with hundreds of languages and billions
of monolingual and parallel sentences;

3. We explore the effects of lexical data quality
and quantity;

4. We demonstrate the efficacy of bilingual
lexicon-based approaches as models scale;

5. We open-source the high-quality multilingual
GATITOS lexicon for low-resource languages.

The tl;dr of this paper is that bilingual lexica
help low-resource and zero-shot NMT in almost
all cases, and that most training-time augmentation
methods have similar efficacy, and can be com-
bined to be more effective. When scaling up to
larger and more expressive models, these methods

retain their efficacy, but the quality of the translated
bilingual lexica becomes more important than the
sheer quantity of lexical data points used for data
augmentation. For instance, small, high-quality
lexica like GATITOS show about 5x larger CHRF
improvement than larger, noisier lexica like Panlex.

Throughout this paper, experiments are done on
only 24 GATITOS languages; based on the success
of these, we expand the dataset to 170 languages,
all low-resource, and open-source it.

2 Related Work

A number of works have looked at using multi-
lingual lexicon data augmentation for NMT and
other NLP tasks. The first class of augmenta-
tions that we experiment with is “codeswitching,”
where words in the source sentence are swapped
out for their dictionary translations to create mixed-
language sentences. This approach has been used
for a range of multilingual NLP tasks, including
MT (Reid and Artetxe, 2022; Yang et al., 2020;
Liu et al., 2021; Lin et al., 2020, 2021; Pan et al.,
2021; Yang et al., 2021; Kumar et al., 2022; Khatri
et al., 2021; Kuwanto et al., 2021; Xia et al., 2019).
Many of these, however, only look at codeswitch-
ing between the source and target languages, e.g.
substituting source words with dictionary transla-
tions into the target language, or word-for-word
BiLex translations of the target to make synthetic
back-translated data (Nag et al., 2020). Qin et al.
(2020) experiment with codeswitching on NLI, sen-
timent classification, document classification, dia-
logue state tracking, and spoken language under-
standing, Malon (2021) looks at codeswitching em-
beddings for language modeling, and Wang et al.
(2022) experiment on NER, POS tagging, and de-
pendency parsing. Another similar work is Chaud-
hary et al. (2020), in which the MLM task is modi-
fied such that instead of predicting masked source
tokens in the source language, the authors provided
language embeddings to cue the model to predict
the masked tokens in a different language instead.
Codeswitching augmentations go by a variety of
different names, e.g. “dictionary denoising” (Reid
and Artetxe, 2022), “Random Aligned Substitution”
(Lin et al., 2020), or “code-mixing”. In our paper,
we will stick to the term “codeswitching,” though
we will try to point out where an identical or similar
approach has been tried under a different name.

The second class of augmentations we experi-
ment with involves prepending lexicon translations
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to source sentences as additional cross-lingual sig-
nal, as instead of swapping out words in the source
sentence. This approach has been tried as well
for enhancing MT performance, e.g. in Song et al.
(2019a); Maheshwari et al. (2022); Niehues (2021);
Michon et al. (2020); Zhong and Chiang (2020);
Susanto et al. (2020), and for similar tasks like lan-
guage modeling (Yu et al., 2021). One potential
advantage this approach has over the codeswitching
method is that it can be applied at inference time as
well: multilingual lexicon entries can be prepended
to sentence queries to steer the model toward more
accurate word translations. Outside of NMT mod-
els, this lexical prompting approach has also been
applied to translation with LLMs: Ghazvininejad
et al. (2023) provide LLMs with dictionary transla-
tions of some of the source sentence words, which
the model can use to cover gaps in its vocabulary
coverage (although the authors do not experiment
with truly low-resource languages). With the rise
in popularity of LLMs for MT and other tasks, this
is an exciting area for further research.

3 Training data

Models are trained on sentence-level web text.

3.1 Monolingual data

The monolingual training data is from a clean,
sentence-level web-mine following the approach
set forth in Caswell et al. (2020). To make rapid
training and development possible, we subsampled
the monolingual data for the 100 highest-resource
languages to 10% of its original size. In sum, this
totaled about 4B sentences, or about 80B tokens.
For the large model experiments in section 8.1, we
used the full data, totaling 27B sentences (540B
tokens).

3.2 Parallel data

We use an in-house mine of parallel data. It tends to
be much noisier than the monolingual data. All par-
allel data are sampled to 10% of their original size,
resulting in 9B parallel sentences (162M tokens)
into English and the same number out of English,
as well as 700K non-English-centric sentence-pairs.
The large models in Section 8.1 use the full dataset.

3.3 Multilingual lexica

3.4 GATITOS

The GATITOS dataset is a new dataset open-sourced
in this paper. It consists of 4000 short English seg-

ments translated into 170 very low-resource lan-
guages; however, at the time of the experiments
in the paper, it covered only 24. The English
source text is a mixture of words from a variety
of sources, including frequent tokens in the En-
glish language, words for numbers, months, days
of the week, Swadesh words, names of the lan-
guages themselves (including the endonym), and
a few short sentences. The tokens were manually
reviewed by the authors of this paper to ensure
they looked reasonable. As the name implies, this
dataset is mostly very short, consisting of 93% sin-
gle tokens. There are also some short sentences,
though only 23 entries have over 5 tokens. We
hope this dataset will complement existing publicly
available multilingual lexicons like MUSE (Con-
neau et al., 2017; Lample et al., 2017)

3.5 Panlex

Panlex (Kamholz et al., 2014) is a free, open-access
massive online database consisting of word and
phrase translations for 5000+ languages, sourced
from 2500 individual dictionaries. Panlex contains
≈ 1.3B translations across all language pairs. For
our experiments, we use a subset of the Panlex
database covering 177 languages and containing
66M word pairs. Languages were chosen largely
by availability of eval sets; details in Appendix J.1.

4 Evaluation

We use two translation evaluation sets: FLORES-
200 (NLLBTeam et al., 2022; Goyal et al., 2021;
Guzmán et al., 2019), an open-sourced evalua-
tion set consisting of 2009 English Wikipedia sen-
tences translated by humans into 200 languages,
and GATONES, an in-house evaluation set of 1,200
English sentences translated into various languages.
We use the SacreBLEU (Post, 2018) implementa-
tion of CHRF 2 for our evaluation metric. Higher-
quality, embedding-based metrics like BLEURT

(Sellam et al., 2020) are not available for these
languages, and CHRF seems to be the one of best
of the surface-level metrics for low-resource lan-
guages (Bapna et al., 2022; Kocmi et al., 2021;
Freitag et al., 2022a).

For this study, we only evaluate on English-
centric directions. The reason is that, although both
evaluation sets are multi-way parallel, they are both
also English-original, and thus lose the same infor-

2signature nrefs:1|case:mixed|eff:yes|nc:6|nw:0
|space:no|version:2.3.1
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mation that pivot translations do. Furthermore, this
study places more weight on the en→xx direction
than the xx→en direction. The main reason for this
is that the xx→en direction is generally an easier di-
rection for models to learn (since they see so much
more English text), so the en→xx direction is usu-
ally the limiting reagent when it comes to model
quality; as a result we care more about improving
this direction.

5 Model

For our experiments we use a Transformer Big
encoder-decoder model (Vaswani et al., 2017) with
approximately 475M parameters. We train each
model for 400K steps on 64 TPU v2 chips. Our
models assign a 40% weight to the translation task,
and a 60% weight to the MASS task. For mod-
els augmented with a monolingual data augmenta-
tion, we split the 60% weight on the MASS task
into a 30% weight on the augmented data and a
30% weight on the non-augmented data. Parallel
data augmentations were done in an analogous way.
For the raw-token-pair augmentation, we add in
this task with a 5% weight and shrink the other
weights accordingly. We use a task-specific token
for each of the tasks the models may see, namely
translation, MASS, GlowupMono, GlowupParallel,
CodeswitchMono, and CodeswitchParallel.

6 Methods

In this paper, we divide our augmentation ap-
proaches into two classes: “codeswitching” ap-
proaches, which involve substituting source sen-
tence words for their dictionary translations, and
“GLOWUP,” which entails prepending dictionary
translations of source words to source sentences.
The main difference between these approaches is
whether dictionary translations are substituted for
source text (in the case of codeswitching) or added
to the sentence (in the case of GLOWUP). As a third
augmentation, we experiment with training on raw
lexicon token pairs directly, treating them like any
other parallel data.

The novelty of our contribution lies not so much
in any one of our methods, but rather in (1) the ap-
plication of these methods to unsupervised machine
translation; (2) the number of methods we compare
in controlled experiments; (3) the scale of our ex-
periments, in terms of number of languages, data
quantity, and model capacity; and (4) the applica-
tion of these methods to “in the wild” web-crawled

data. While a variety of papers (e.g. Reid and
Artetxe (2022); Yang et al. (2020)) have explored
specific augmentations on particular language pairs,
we believe our paper is the first to undertake a rig-
orous comparison of different augmentation strate-
gies across hundreds of languages in a real-world
setting.

6.1 Codeswitching

In our “codeswitching” augmentation strategy,
words in the source sentence are swapped out
for their dictionary translations to create mixed-
language sentences. We experiment with this aug-
mentation on both monolingual and parallel data.
The details of this method are described below.

6.1.1 Codeswitched Autoencoding

Our multilingual codeswitching autoencoding
(MCA) approach is similar to the “dictionary de-
noising” objective in Reid and Artetxe (2022). Let
D represent a multilingual lexicon containing word
or phrase translation pairs for many languages.
Given a source sentence x = (x1, x2, ..., xn) from
monolingual corpus Xmono, we substitute each to-
ken in x for its dictionary translation with proba-
bility ptr = 0.4. (More implementation details in
Appendix Section H). Note that Reid and Artetxe
(2022) also apply additional noise to x on top of
codeswitching, along the lines of (m)BART (Lewis
et al., 2020; Liu et al., 2020). For simplicity and
so we can better examine the effects of lexicon
information in isolation, we do not do this.

6.1.2 Codeswitching MT

Our codeswitching MT task is essentially the same
approach as described in Section 6.1.1, except it
applies to parallel rather than monolingual data.
Given a source sentence x from parallel corpus
Xparallel, we perform the identical procedure de-
scribed in section Section 6.1.1 to obtain multilin-
gual codeswitched sentence x′. We then train the
model on the translation task using sentence pairs
(x′, y), where (x, y) is a sentence pair in Xparallel.
This method is effectively identical to the Random
Aligned Substitution method proposed in Lin et al.
(2020). As with MCA, we use ptr = 0.4 and apply
the augmentation on half the available parallel data.

6.2 Lexical prompting (GLOWUP)

The second class of lexical augmentations we ex-
periment with is lexical prompting, which we
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call GLOWUP (Guiding Lexical Outputs With Un-
derstandable Prompts). This method prepends
(src, transl) pairs to the beginning of a source
sentence for some uniform random fraction of the
words in that sentence that are in out bilex. These
hints can then be used to help the model guess the
translation or the denoised sentence. The GLOWUP
task has the advantage that it can be used at infer-
ence time, without retraining a model, and may be
simpler to implement. However, it does result in
longer and less balanced sequence lengths, which
can pose problems for decoding.

6.2.1 MASS with monolingual GLOWUP
To apply GLOWUP to monolingual text, we simply
first sample the lexical prompts, and after those
translations are prepended to the source, we ap-
ply MASS in the standard way to mask random
subspans. This may mean that the GLOWUP prompt
itself is masked.

6.2.2 GLOWUP-MT
The extension of GLOWUP to parallel data (GLOWUP-
MT), is effectively the same as the monolingual
variant of the task, but without the MASS element.
For a given sentence pair (x, y) in the training cor-
pus, the prompting is performed on the source sen-
tence x, essentially to give it hints about how to pro-
duce y. The model is then trained on the translation
task using (x′, y), with the task token <2glowup>
instead of <2translation>. Like GlowupMono,
this can be applied in an inference-only way.

7 Experiments

7.1 Training regimes

In our experiments, we train models with various
combinations of the augmentations outlined above,
as well as a baseline (with no data augmentation
of any kind) and a model where we simply provide
word pairs from the lexicon as additional paral-
lel data. The details of our training regimes are
discussed below.

7.1.1 Baseline
We first train a baseline model with no data augmen-
tation, using the monolingual and parallel data de-
scribed in Sections 3.1 and 3.2, respectively. This
model is comparable to the model trained in Bapna
et al. (2022), but smaller, and without iterative back-
translation; larger models with more data, are ex-
plored in Section 8.1.

7.1.2 Token-pair-only model
In addition to the baseline model, we also experi-
ment with the extremely simple approach of pro-
viding raw word pairs from multilingual lexica to
the model as additional parallel data. That is, given
a dictionary entry s and its translation t, we pro-
vide the model with a “sentence” pair of the form
(<2translation> <2lang> <2script> s, t). We
call this token-pair baseline GatiPanlexTokenPairs.

7.1.3 Single augmentation models
We also train models on each of the augmenta-
tions described in Section 6. As noted in that sec-
tion, we only augment half the relevant data (mono-
lingual, parallel, or both) before training each of
these models, leaving the other half to be trained
identically to the baseline (i.e. joint training on
the MT task and MASS). The models with a sin-
gle augmentation are named after their augmenta-
tion, viz. CodeswitchMono, CodeswitchParal-
lel, GlowupMono, and GlowupParallel; those
with two or more augmentations include them
all in the name, viz. CodeswitchMonoParallel,
GlowupMonoParallel, CodeswitchMonoParal-
lelGatiPanlex, and GlowupMonoParallelGati-
Panlex. We leave experimentation with a hybrid
codeswitch-GLOWUP approach (e.g. Codeswitch-
MonoGlowupMono) for future work.

8 Results

We evaluate all our models on the FLORES-200
dataset (NLLBTeam et al., 2022; Goyal et al., 2021;
Guzmán et al., 2019), which contains English-
aligned parallel sentences for 200 languages. In
Appendix section B we also report scores on the
in-house GATONES eval set.

We use the following resourcedness classifica-
tions for our analysis:

1. High-Resource Languages (HRLs): > 2B to-
tal training tokens in parallel data

2. Medium-Resource Languages (MRLs):
360M to 2B training tokens in parallel data

3. Low-Resource Languages (LRLs): 1 to 360M
training tokens in parallel data

4. Unsupervised Languages (URLs): no parallel
data

The results relative to the baseline, in ∆CHRF,
are summarized in Tables 1 (en→xx) and 2
(xx→en). A few trends jump out. Firstly, all
models trained with only monolingual data aug-
mentations see consistent performance gains over
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Model µ HRL MRL LRL URL LRLGAT URLGAT

Baseline 39.7 50.5 46.6 34.4 28.7 35.4 26.6

GatiPanlexTokenPairs +0.4 -0.3 -0.1 +0.5 +1.4 +1.8 +5.1

CodeswitchMono +0.8 +0.8 +0.9 +0.8 +0.4 +1.9 +4.8

CodeswitchParallel -1.4 -1.9 -1.7 -1.2 -0.9 +0.2 +2.1

CodeswitchMonoParallel -0.2 -1.0 -0.7 +0.0 +1.1 +1.5 +5.2

CodeswitchMonoGatiPanlex +1.0 +0.4 +0.6 +1.3 +1.5 +2.8 +7.0
GlowupMono +1.1 +1.5 +1.4 +1.0 +0.5 +2.2 +5.6

GlowupParallel -1.1 -2.0 -1.8 -1.1 +0.4 +0.8 +3.0

GlowupMonoParallel +0.3 +0.1 +0.2 +0.1 +1.0 +1.3 +3.4

GlowupMonoGatiPanlex +1.2 +1.3 +1.2 +1.4 +0.8 +2.5 +5.6

Table 1: en→xx performance on the FLORES-200 test set, measured in ∆CHRF over the baseline. Gains are particularly strong
on the languages with GATITOS (last columns), reaching +7 CHRF for unsupervised language pairs.

Model µ HRL MRL LRL URL LRLGAT URLGAT

Baseline 47.2 57.2 52.1 43.6 37.0 49.1 36.1

GatiPanlexTokenPairs -0.0 -0.3 -0.3 +0.1 +0.5 +1.0 +2.4

CodeswitchMono +0.2 +0.5 +0.4 +0.1 -0.1 +0.8 +1.5

CodeswitchParallel -1.2 -1.6 -1.5 -1.2 -0.3 +0.0 +1.2

CodeswitchMonoParallel -0.8 -0.7 -0.9 -0.8 -0.7 -0.1 +1.1

CodeswitchMonoGatiPanlex +0.1 +0.3 +0.1 +0.3 -0.1 +0.9 +2.9
GlowupMono +0.7 +1.2 +1.1 +0.6 +0.0 +1.5 +2.0

GlowupParallel -1.3 -1.7 -1.6 -1.2 -0.6 -0.1 +1.2

GlowupMonoParallel +0.1 +0.0 -0.0 -0.0 +0.5 +0.6 +1.7

GlowupMonoGatiPanlex +0.6 +1.0 +0.8 +0.6 -0.1 +1.3 +1.8

Table 2: xx→en performance on the FLORES-200 test set, measured in ∆CHRF over the baseline, showing a weaker version of
the same trends from en→xx.

the baseline. Conversely, models with only paral-
lel data augmentations show performance degra-
dations. Models mixing monolingual and parallel
data augmentations fare in-between those poles.

These general trends are the same between
en→xx and xx→en directions, though the gains are
generally lower in the xx→en direction. As noted
in Section 4, this is expected, and this direction
is less of a priority for translation improvements.
Results on GATONES, in Appendix B, show the
same trends, though the performance gains tend to
be larger for all augmentations, with CodeSwitch-
MonoGatiPanlex gaining +2.3 CHRF for URLs.

Despite these trends seeming robust across mod-
els, the effect sizes are relatively small, maxing
out at about +1.5 average ∆CHRF gain. How-
ever, the picture changes dramatically when only
looking at the subset of languages that has the
higher-quality GATITOS training lexica. For these
26 languages, every augmentation, even the paral-
lel ones, have large performance gains. The win-

ning augmentations for URLs remain CodeSwitch-
MonoGatiPanlex and GlowupMonoGatiPanlex, the
former having an average gain of +7.0CHRF on
FLORES-200and +8.0CHRF on GATONES, and
the latter having +5.6CHRF on FLORES-200 and
+9.5CHRF on GATONES.

Finally, although it was not the first place model
in any category, the GatiPanlexTokenPairs has large
gains in all directions over baseline, and only falls
short of the more complex augmentations by a
small margin. Furthermore, when used in conjunc-
tion with either Glowup or Codeswitch, it further
improves performance across all categories. This
may be one of the most useful long-term findings
of this study: raw token pairs perform roughly on
par with all the other fancier augmentations!

8.1 Scaling up: bigger models, more data

Sometimes, results on smaller models do not trans-
fer to larger models. To this end, we train larger
transformer models with 1.6B parameters using
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10× the parallel data and 10× the high-resource
monolingual data.

We trained three large models: a baseline, a
token-pair model, and a token-pairs + Codeswitch-
Mono model. The CHRF scores for these models
can be seen in Table 3. There are a number of
obvious differences between these results and the
results on the smaller (475M parameter) models
trained with ≈ 1

10 th the data. First, the positive
impact of the data augmentations is smaller in all
categories, indicating that the gains previously seen
from augmentations are partially washed out in the
larger-data, larger model regime. On FLORES-200
en→xx, both models are very close to baseline—
within the realm of noise. On GATONES en→xx,
they see consistent small gains of around +0.5
CHRF, much smaller than previously. For both
eval sets in the xx→en direction, there are consis-
tent small losses.

Is this the Bitter Lesson (Sutton, 2019) getting us
again? Perhaps—but the picture is less bleak than it
first appears. When we look at the subset of the lan-
guages where we have a higher assurance that the
bilingual lexica are higher-quality—namely, those
that use GATITOS bilingual lexica—we still see
consistent wins.For these 26 languages, all models
see consistent gains, and the gains are biggest on
unsupervised languages.

Overall, the takeaway from these experiments
is that one has to ensure that the data is of high
quality when applying lexical data augmentation
at such a large scale. While we saw substantial
improvements for many languages, these were bal-
anced out by losses for other languages (especially
those with only Panlex, but not GATITOS, data).

8.2 Glowup Decoding

In principle, one of the advantages of the Glowup-
Parallel approach is that lexica can be used at in-
ference time. Therefore, we experimented with
decoding the eval sets not with the translation
task ID, but with the Glowup task ID, along with
the relevant lookups from the lexica. Unfortu-
nately, these decodes failed impressively, with per-
formance degrading the more prompts that were
included. Model decodes often had long sequences
of control tokens. Further work should not disre-
gard this direction; indeed, a variant of this likely
has particular promise in the world of foundation
models. The current approach likely just needs
some tweaks to eliminate this sort of out-of-domain

decoding errors we were seeing, but we leave an
investigation of this hypothesis for future work.

8.3 Oracles: trusted parallel text
Parallel text is much more costly to produce than
bilingual lexica, but also contains many more use-
ful signals, including examples of word usage in
context. But how much more helpful is it, really,
than bilingual lexica? The answer seems to be
“much more helpful”.

To measure this, we trained a model with a mix-
ture of thirteen public parallel datasources (Ap-
pendix A) covering our lowest-resource languages.
These are high-quality, trusted datasets, prepared
by community members – a very different resource
than the web-mined parallel data that the model is
otherwise trained on.

Table 4 reports on the 24 GATITOS languages,
comparing four models: the standard baseline and
GatiPanlexTokenPairs model, as well as the “Paral-
lel” model (which adds the external parallel trans-
lation task with a 5% weight) and the “Parallel +
GatiPanlexTokenPairs” model, which uses both the
token-pairs and the parallel data, with a combined
weight of 5%. On both eval sets, we see that using
Bilex yields a gain of around +3.5 CHRF, but using
true parallel yields a much larger gain of about +10
CHRF. Using the bilingual lexica on top of the par-
allel data yields a further gain of about +0.5 CHRF,
demonstrating that, though many of the gains have
been washed out by the true parallel data, there
are still modest gains to be had from bilex training.
Full results are in Appendix Table 9.

8.4 How many token pairs do I really need?
We examine the relationship between the num-
ber of lexical token pairs provided during train-
ing and CHRF. First, we perform regressions us-
ing ∆CHRF over baseline as the outcome variable
and three predictor variables: (1) number of Pan-
lex entries, (2) number of GATITOS entries, and
(3) number of monolingual sentences. We include
monolingual sentences in the regression to control
for it as a confound. To eliminate parallel data
quantity as a confound, we only perform this anal-
ysis on URLs.

As expected, both the number of Panlex word
pairs for a given language and the number of GATI-
TOS word pairs have a positive β coefficient. How-
ever, note that the β for GATITOS is ≈ 3× larger
than β for Panlex on FLORES-200, and ≈ 39×
larger for GATONES. We conclude that GATITOS is
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HRL MRL LRL URL LRLGAT URLGAT

FLORES-200 en→xx

BaselineBig 56.1 51.2 38.5 35.5 24.4 36.0

GatiPanlexTokenPairsBig -0.5 -0.3 +0.1 -0.3 +1.2 +2.2

CodeswitchMonoGatiPanlexBig +0.1 +0.1 +0.3 -0.3 +0.9 +3.4

GATONES en→xx

BaselineBig - 34.1 26.9 25.5 23.9 27.1

GatiPanlexTokenPairsBig - +0.2 +0.6 +0.7 +1.6 +3.5

CodeswitchMonoGatiPanlexBig - +0.4 +0.7 +0.2 +1.4 +4.2

Table 3: Average CHRF scores by resource category for the larger models, reported in delta relative to baseline. These models
are trained with 10x the data and 3x the parameters. The gains as a whole are washed out somewhat, but for those low-resource
and unsupervised language pairs with the more trusted GATITOS data (last two columns), there is still a noticeable gain.

Baseline GatiPanlexTokenPairs Parallel Parallel + GatiPanlex
FLORES-200 21.1 24.4 33.6 34.2
GATONES 20.2 23.9 29.5 30.1

Table 4: Comparing en→xx improvements from token-pair data to the oracle: training on trusted parallel data. Parallel data is
much more effective than GATITOS alone, but the combination of the two is the most effective overall.

more efficient for improving MT than Panlex, prob-
ably due to higher quality. Full regression results
are given in Appendix Table 6.

The most practical question we can seek to an-
swer is, If I can spend $X on translating tokens,
how much quality increase can I expect? To in-
vestigate this “bang for buck” question in a more
controlled way, we observe the effects of the GATI-
TOS dataset in isolation, without Panlex. We train a
“GatiTokenPairs” model, which is identical to the
“GatiPanlexTokenPairs” model, except the token-
pair task has only GATITOS data. Thus, this tells
us specifically what gains we can expect if we are
to get 4,500 tokens’ worth per language.

The result of this experiment is a gain of
+4.9 CHRF on FLORES-200 and +5.2 CHRF on
GATONES, respectively, for en→xx URLs; the im-
provement for languages with some parallel data
is reduced but significant, at +1.6/2.3 CHRF resp.
Full results reported in Appendix Table 10.

9 Conclusions

In this paper we explore the ways that that aug-
menting training data with bilingual lexicon infor-
mation can improve the performance of machine
translation models on low-resource and unsuper-
vised languages, and open-source the GATITOS

dataset, which leads to average gains of about +7
CHRF on unsupervised languages. We perform
extensive experimentation with three main types
of lexical augmentation: codeswitching, lexical

prompting, and raw token-pair training. The results
show that applying any of these augmentations to
monolingual data yields substantial improvements,
and that they can be combined for greater effect.
The leader (by a small margin) is the combination
of CodeswitchMono and raw token-pair training.
These results hold when scaling up model and data
size, but in the settings with more data and larger
models, the quality of the bilingual lexica plays a
relatively bigger role, and augmentation with the
noisier Panlex begins to lag in quality behind the
much smaller, yet higher-quality, GATITOS dataset.

Future work will likely want to focus on prompt-
ing foundation models with bilingual lexica. Large
Language Models show promise on machine trans-
lation for high-resource languages (Jiao et al.,
2023), but their capabilities on low-resource lan-
guages have yet to be thoroughly explored. Ad-
ditionally, a more thorough investigation of the
trade-off between cost and quality for tiny datasets
can be explored: with a fixed budget of time or
money, should one spend their time translating text,
making monolingual text, or making bilingual lex-
ica?

10 Limitations

There are several limitations with the present work.
For one, we rely on the automated metric CHRF,
which is less reliable than human ratings. Similarly,
though we perform some qualitative evaluation of
error types (Appendix G), a detailed human eval-
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uation might reveal the precise ways in which our
models are failing.

A second limitation is that, while we open-
source GATITOS, the base training data from our
models is not opensourced (to protect copyright),
and thus our experiments are not replicable.

Finally, we leave open two important questions:
1) how much data do I need translated before I can
reach X quality? and 2) if I can only translate X
tokens’ worth of data, what is the best way to select
those X tokens? The present work only partially
answers the first question, and does not address the
second at all.

11 Ethics Statement

Improving the state of technology for under-served
communities is usually considered a positive contri-
bution. There are various nuances to this, however,
including questions of consent of and involvement
of the affected community, “helicopter NLP,” and
data sovereignty. By open-sourcing GATITOS to
be used by all affected communities, we hope to
respect their data sovereignty and not keep this
resource from them. Throughout this project we
have also sought advice from community members,
which we hope will alleviate the other concerns.
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Figure 1: Examples of the monolingual (top) and parallel (bottom) GLOWUP augmentation strategies. In both cases, random
tokens in the source sentence are prepended to the source sentence, along with their translations in a random language from a
multilingual lexicon. As in Figure 2, differential color coding is done to draw attention to dictionary translations in different
languages.

Figure 2: Examples of the monolingual (top) and parallel (bottom) codeswitching augmentation strategies. In both cases,
random tokens in the source sentence are replaced with their translations in a random language from a multilingual lexicon.
Color coding is used to indicate which source words have been swapped for their dictionary translation. The different colors are
used simply to point out the fact that the words are from codeswitched words in each sentence come from different languages.

A Public parallel data used

The datasets we used were HornMT (Hadgu et al.,
2022), SALT (Sunbird AI Language Translation)
dataset (Akera et al., 2022), FFR: Fon-French
Neural Machine Translation (Emezue and Dos-
sou, 2020), Tatoeba (Tiedemann, 2020), The Mak-
erere MT Corpus: English to Luganda parallel cor-
pus (Mukiibi et al., 2021), Commonvoice (Ardila
et al., 2020), Kencorpus: Kenyan Languages Cor-
pus (Wanjawa et al., 2022), Chuvash-Russian
parallel corpus( Antonov, Alexander, 2022),
Abkhaz Corpus (Tlisha, Nart, 2022), Bashkir
Corpus(Shakirov and Kunafin, 2023), Sprotin
Faroese Corpus(Andersen, Jógvan, 2021), Jojajovai
Guarani-Spanish Parallel Corpus (Chiruzzo et al.,
2022), and the NLLB Seed data (NLLBTeam et al.,

2022). We were not able to use AmericasNLP
(Mager et al., 2021) because of the license.
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Source Khawvelah hian tawng chi hrang 5000 chuang a awma, heng zinga tawng 20 ai tam hi chuan tawng hmangtu
maktaduai 50 aia tam a nei a ni.

Reference The world has over 5,000 different languages, including more than twenty with 50 million or more speakers.
Baseline There are 5000 houses in the city, 5000 houses in the city, and 5000 houses in the city.
Augment There are 5000 languages in the world, 20 of which are 50 million languages.
Source Maani isumaqarpunga inuunerma sinnerani pilluartussanngorlunga.
Reference Here I think I’ll remain happy throughout my life.
Baseline I believe I am the only one who has ever died.
Augment I mean, I’m blessed with a lifetime of joy.
Source нагахь вы ж хьашто хилар в дӀадахар къамелан ма расширяемости, дазар с нами хула uservoice
Reference If you are interested in continuing the conversation around extensibility, connect with us via uservoice
Baseline If you want to use the extension, see uservoice
Augment If you want to learn more about extensibility, contact us at uservoice

Table 5: Examples of translations where our lexical data augmentation methods appear to have helped the model choose the
correct vocabulary, in Mizo (lus), Kalaallisut (kl), and Chechen (ce). Words appearing in the lexical data are colored green.

No. PanLex No. GAT. No. mono Intercept Adjusted R2

∆FLORES-200 6.55e-5 1.96e-4 −6.71e-7 1.93 0.40
∆GATONES 6.59e-6 2.58e-4 −7.78e-8 2.91 0.23

Table 6: Linear regression results in the en→xx direction. Here, the dependent variable is ∆CHRF over the baseline, and the
independent variables are: number of PanLex word pairs for a given language (No. PanLex), number of GATITOS word pairs
(No. GATITOS), and number of monolingual sentences (No. mono).

B Results on GATONES

The main paper reports the scores on the more
widely-used FLORES-200 eval set; this section re-
ports on the other dataset that we evaluate our mod-
els on. This is an in-house eval set, which we
call GATONES (Google AuTOmatic NTL Eval Set).
The dataset contains 63 languages, most of which
are unsupervised or low-resource. Here are some
notes, by translaiton direction:

en→xx The evaluation results on GATONES for
the en→xx direction are summarized in Table 7.
The trends are mostly the same as what we saw for
the FLORES-200 en→xx evaluation. Codeswitch-
MonoGatiPanlex emerges, even more definitively
than on FLORES-200, as the best model, winning
all categories except MRLs.

xx→en The evaluation results for the xx→en di-
rection are given in Table 8. The single most im-
portant takeaway from this part of the analysis is
the same as it was for the FLORES-200 evaluation:
the plain GatiPanlexTokenPairs model helps URLs
the most in this direction, with a ∆CHRF of +1.1
over the baseline. Yet again, the improvements
are smaller in this direction than for en→xx. The
only other thing that stands out about this part of
the evaluation is that the GlowupMono augmen-
tation doesn’t seem to be as helpful according to
this test set as for the FLORES-200 set. Although
GlowupMonoParallel and GlowupMonoGatiPan-
lex do reasonably well, their improvements are sig-

nificantly smaller than the improvement from using
GatiPanlexTokenPairs alone, and the GlowupMono
augmentation by itself actually results in losses on
URLs. So taking the GATONES and FLORES-200
results together, it seems that adding raw token
pairs as additional parallel data is the best way, out
of the techniques we tried, to improve performance
in the xx→en direction for very low-resource lan-
guages.

C Bilexica vs true parallel data

In the main paper in Section 8.3, we evaluate on
the 24 GATITOS languages, comparing four models
with different combinations of trusted parallel data
and GATITOS bilingual lexica. The full results are
given here in Table 9, on both FLORES-200 and
GATONES, sorted from highest-resource to lowest-
resource.
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Model µ MRL LRL URL LRLGAT URLGAT

Baseline 21.4 28.7 22.9 19.1 17.1 20.0

GatiPanlexTokenPairs +1.7 +0.6 +1.6 +1.8 +3.6 +8.4

CodeswitchMono +1.4 +1.6 +0.8 +1.9 +3.2 +8.3

CodeswitchParallel -0.5 -1.8 -0.9 -0.0 +0.9 +3.4

CodeswitchMonoParallel +1.4 -0.1 +0.7 +2.2 +2.5 +6.1

CodeswitchMonoGatiPanlex +2.2 +1.1 +2.1 +2.3 +3.9 +8.0

GlowupMono +0.3 +1.0 +0.6 -0.2 +2.0 +7.6

GlowupParallel -0.2 -1.6 -0.7 +0.6 +1.0 +3.0

GlowupMonoParallel +0.2 -0.3 -0.7 +1.1 +2.1 +7.6

GlowupMonoGatiPanlex +1.3 +1.4 +1.9 +0.7 +3.5 +9.5

Table 7: en→xx performance on the GATONES test set, measured in ∆CHRF over the baseline.

Model µ MRL LRL URL LRLGAT URLGAT

Baseline 29.4 43.2 30.2 27.0 24.7 22.1

GatiPanlexTokenPairs +0.8 +0.0 +0.5 +1.1 +1.1 +3.2

CodeswitchMono +0.1 +0.1 +0.0 +0.2 +0.8 +2.2

CodeswitchParallel -0.4 -1.2 -0.9 +0.2 +0.3 +1.8

CodeswitchMonoParallel -0.5 -0.8 -0.7 -0.2 +0.2 +1.6

CodeswitchMonoGatiPanlex +0.5 +0.0 +0.5 +0.6 +1.1 +3.3
GlowupMono -0.0 +0.9 +0.2 -0.4 +0.5 +1.7

GlowupParallel -0.6 -1.5 -0.9 -0.3 +0.0 +1.3

GlowupMonoParallel +0.0 -0.2 -0.2 +0.2 +0.2 +1.6

GlowupMonoGatiPanlex +0.2 +0.8 +0.3 +0.1 +0.8 +3.3

Table 8: xx→en performance on the GATONES test set, measured in ∆CHRF over the baseline.

386



mean ts nso lg ee bho bm ff gn ti om

en→xx Parallel toks 375169 2296670 606853 315905 275417 154023 148549 130953 112958 43511 42018

en→xx Bilex toks 16324 8015 4500 8298 6755 24665 24665 70854 4500 6484 4500

FLORES-200 en→xx

Baseline 21.1 33.2 31.9 30.1 26.9 14.7 15 19.1 19.1 5.9 15.5

GatiPanlexTokenPairs 24.4 37.3 31.9 32.7 30.5 25.5 22.6 19.6 19.4 8.1 16.1

Parallel 33.6 45.6 48 39.4 28 40.6 30.7 25 39.2 15.7 24.1

Parallel + GatiPanlex 34.2 45.3 45.3 38.2 31.1 40.8 30.1 24.9 39.9 18.1 28.8

GATONES en→xx

Baseline 20.2 32.1 28.3 27.6 23.5 15.8 13.5 23.9 15.6 6.9 14.6

GatiPanlexTokenPairs 23.9 37.3 28.7 31.3 28.1 26.2 22.5 23.5 16.1 9.3 15.6

Parallel 29.5 42.9 39.9 35.5 26.9 38.5 30.3 23.6 28.2 11.1 18

Parallel + GatiPanlexTokenPairs 30.1 42.6 37.9 35 29.6 38.7 30.4 22.6 30.1 13.1 20.8

Table 9: Comparing improvements from token-pair data to the oracle: training on trusted parallel data.

D Training only on GATITOS

The main paper (Section 8.4) describes the results
of training models only on GATITOS and not on
PanLex. Full results are reported here, in Table
10, reported in delta versus the baseline model for
both FLORES-200 and GATONES in the en→xx
direction. The improvement for unsupervised lan-
guages is around +5.0 CHRF for both eval sets;
the improvement for languages with some parallel
data is less but still noticeable, hovering around
+2 CHRF. The largest improvement is in Goan
Konkani (+11.0 CHRF), with Mizo, Ilocano, and
Bambara close on its heels with gains of around +8
CHRF. Only Maithili, which has interesting prop-
erties a a close dialect of Hindustani, sees a loss on
both eval sets. The gains are not obviously related
to the total number of tokens per language.

As an aside, it is heartening that FLORES-200
and GATONES seem to agree very nicely, despite
their different domains (Wikipedia versus web +
question-answers).
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TOTAL TOKENS 1.8M 2.1M 2.6M 3.6M 3.7M 5.4M 6.2M 14.7M 14.8M 16M 16.9M 26.1M

µlrl µurl ff mni-Mtei kri doi bm ay gom bho kl ee qu ts

∆ FLORES-200 +1.6 +4.9 +0.1 - - - +5.0 +0.8 - +4.5 - +2.9 - +4.2

∆ GATONES +2.3 +5.2 +0.0 +0.7 +5.1 +1.5 +7.6 -0.1 +11.0 +5.1 +4.8 +3.9 +1.7 +5.3

TOTAL TOKENS 26.4M 27M 28M 40M 41M 52M 52M 80M 115M 124M 157M 167M 204M 505M

ak mai ln lg gn nso ilo ti om sa dv lus as ckb

∆ FLORES-200 - -1.2 +1.3 +1.6 -0.4 -0.5 +7.0 +0.9 -0.2 +0.2 - +8.6 +3.0 +3.3

∆ GATONES +2.0 -1.2 1.2 +3.0 +0.5 +0.2 +8.0 +1.7 +0.1 +0.4 +6.1 +9.3 +3.4 +2.7

Table 10: Improvements on languages with GATITOS data when training ONLY on GATITOS data, in the en→xx direction.
Sorted by total training tokens (mono, parallel, and bilex), in millions.

E Effects on distributionally similar
noun mistranslation

Part of the motivation for using bilingual lexicons
for unsupervised translation was to see whether
we could repair the common error mode of mis-
translating distributionally similar nouns. Bapna
et al. (2022) note that this error mode is particularly
common for two categories of nouns: animals and
colors.

To measure improvement on this phenomenon,
we define the token hit-rate as the following: for
some set of desired tokens D, let RD be the sub-
set of the eval set such that each reference con-
tains at least one token in D. The hit-rate is then
the percentage of times in RD that the model cor-
rectly generated one of the desired tokens in D.
For instance, if the desired tokens are “kitten” and
“puma”, RD is the set of references containing one
of these words, e.g. “The kitten lies” and “A Puma
eats hot chip”. If the model produces “kitten lie
on floor” and “Crocodile charge they phone” from
the corresponding sources, it has a hit-rate of 50%,
since it correctly got “kitten”, but not “puma”.

Table 11 looks at the token hit-rate for the mod-
els BaselineBig and CodeswitchMonoGatiPan-
lexBig, for the categories of animals occurring in
GATITOS (bear, bee, bird, butterfly, cat, chicken,
deer, dog, elephant, fish, frog, goat, horse, in-
sect, lion, monkey, parrot, pig, rabbit, sheep, snail,
snake, tiger, turkey, turtle), animals NOT appear-
ing in GATITOS (ant, antelope, buffalo, cheetah,
crocodile, dolphin, dormouse, gorilla, jellyfish,
koala, leopard, moose, mosquito, newt, ocelot, ot-
ter, reindeer, robin, scorpion, shark, sloth, spider,
springbok, tortoise, velociraptor), colors (black,
white, red, blue, yellow, green, purple, orange,
grey), and numbers (one, two, three, four, five, six,
seven, eight, nine, ten, hundred, million). All num-
bers and colors appear in GATITOS. Numbers are
included as a weak control, since the model will

tend to make fewer mistakes on them, though such
UNMT-style mistakes do occur.

As expected, the GATITOS-augmented model
performs better on these tokens. Two things are
worth noting. First, the model improves noticeably
on the complementary distribution—words that do
not appear in the lexicon training data—but un-
surprisingly improves more on the words that are
present in GATITOS. Second, the improvements are
not as large as expected: why is it not now getting
100% accuracy? Digging into the outputs, it seems
that this is mainly due to the high baseline of (a)
undertranslation; (b) hallucination; and (c) copying,
as we expect from a model trained without various
other tricks like back-translation (see Section G for
an analysis of common error types). This point is
underscored by the models’ imperfect performance
on the “easy” class of numbers.

F Biggest winners

We also look at the top 5 languages that were the
biggest gainers over the baseline for each model.
In some cases these may represent remarkable suc-
cesses of a particular approach—though in other
cases they may represent noisy outliers, as is to be
expected when evaluating 200 languages.

F.1 FLORES-200

en→xx The biggest winners for each model in
the en→xx direction for the FLORES-200 evalua-
tion set are given in Table 12.

There are seven languages that gained at least
5 CHRF over the baseline on at least one model
trained with data augmentation. These languages
are:

1. Bhojpuri (bho): up to +14.5 CHRF
2. Ilocano (ilo): up to +9.1 CHRF
3. Serbian (sr): up to +8.3 CHRF
4. Bambara (bm): up to +8.1 CHRF
5. Tibetan (bo): up to +8.0 CHRF
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FLORES-200 GATONES

cat. A ∈ GAT. A /∈ GAT. colors #s A ∈ GAT. A /∈ GAT. colors #s

BaselineBig 36.6 36.6 55.3 63.3 33.4 25.8 35.4 53.5

CodeswitchMonoGatiPanlexBig 45.5 40.7 66.5 66.8 44.9 32.5 47.8 58.0

∆ +8.9 +4.0 +11.1 +3.6 +11.5 +6.7 +12.4 4.5

Table 11: Comparing token hit-rate on classes of nouns known to have issues for UNMT models, along with a weak control of
numbers. There are large improvements for animals in the GATITOS training lexicon (A ∈ GAT ), as well as their complementary
distribution, animals not in GATITOS (A ̸∈ GAT ), and colors. Number hit-rate has a minor bump.

Figure 3: Number of word pairs available in Panlex for each of 4750 BCP-47 languages (log scale).

6. Nuer (nus): up to +6.8 CHRF
7. Mizo (lus): up to +6.2 CHRF
Unsurprisingly, most of these languages are un-

supervised or low-resource, except for Serbian
which is medium-resource in our dataset. Of the
seven languages listed above, we use Panlex data
for Ilocano, Serbian, Bambara, Tibetan, Nuer, and
Mizo, and there is GATITOS data for Bhojpuri, Ilo-
cano, Bambara, and Mizo. As will be discussed
in Section 8.4, the GATITOS bilingual lexica are
clearly a very useful resource for MT, although evi-
dently Panlex alone can help as well. Another inter-
esting finding is that Nuer, which has no English-
aligned entries in Panlex but ≈ 20K non-English-
aligned entries, still sees large improvements when
translating from English. This is evidence that lex-
icon data can improve performance even in the
zero-shot case, where e.g. the model learns better
vocabulary alignment between English and Nuer
despite not receiving explicit alignment informa-
tion during training. In Section 8.4, we look at
the relationship between the number of lexical data
points for a language and the CHRF improvement,
which provides some insight (albeit not perfect clar-
ity) into why these particular languages did well.

xx→en Table 13 shows the top 5 biggest win-
ners per model for the xx→en direction. Clearly
there is a lot of overlap with the en→xx direction,
although there are some differences. Also, note

again that the magnitude of improvement in this
direction is smaller, likely because the baseline per-
formance is higher and there is less improvement
to be made simply by better aligning vocabulary
cross-linguistically. Some of the biggest winners
in this direction that weren’t already discussed for
the en→xx direction are:

1. Tsonga (ts): up to +3.1 CHRF
2. Guarani (gn): up to +2.8 CHRF
3. Bashkir (ba): up to +2.5 CHRF
4. Minangkabau (min): up to +2.5 CHRF

F.2 GATONES

en→xx The biggest winners on GATONES in the
en→xx direction are given in Table 14. Though
there is some overlap with the biggest winners on
the FLORES-200 dataset (e.g. Ilocano, Bambara,
Mizo, Bhojpuri), a number of different languages
perform well too, some of which simply aren’t
included in the FLORES-200 set. The languages
which gain > 5.0 CHRF on this part of the evalua-
tion are:

1. Adyghe (ady): up to +14.1 CHRF
2. Kedah Malay (meo): up to +12.6 CHRF
3. Goan Konkani (gom): up to +11.6 CHRF
4. Bhojpuri (bho): up to +10.4 CHRF
5. Ilocano (ilo): up to +9.8 CHRF
6. Avar (av): up to +9.5 CHRF
7. Bambara (bm): up to +9.0 CHRF
8. Mizo (lus): up to +8.9 CHRF
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Model
GatiPanlexTokenPairs ilo (+7.5) nus (+6.8) lus (+6.2) bm (+5.5) ts (+4.4)

CodeswitchMono bho (+8.6) bo (+5.6) lus (+5.2) ilo (+5.0) quy (+4.9)

CodeswitchParallel ilo (+3.7) bho (+3.5) as (+2.4) lus (+2.3) min (+1.9)

CodeswitchMonoParallel bho (+9.4) ilo (+6.4) bo (+6.2) lus (+6.0) ln (+4.9)

CodeswitchMonoGatiPanlex ilo (+9.1) sr (+8.3) bm (+8.1) bho (+7.9) bo (+6.8)

GlowupMono sr (+6.2) acq (+4.5) bo (+3.8) aeb (+3.1) bho (+3.1)

GlowupParallel bho (+4.4) shn (+3.8) sg (+3.7) kac (+3.6) kpb (+3.5)

GlowupMonoParallel bho (+12.3) sr (+7.1) sg (+4.5) bo (+4.1) nus (+3.3)

GlowupMonoGatiPanlex bho (+14.5) bo (+8.0) sr (+7.3) bm (+5.7) acq (4.2)

Table 12: Top 5 biggest winners per model (en→xx) on the FLORES-200 test set, measured in ∆CHRF over the baseline.

Model
GatiPanlexTokenPairs bm (+3.5) ts (+3.1) lus (+2.7) gn (+2.6) tum (+2.1)

CodeswitchMono bo (+2.5) lus (+2.4) ti (+1.4) ko (+1.3) ay (+1.3)

CodeswitchParallel mni (+2.2) min (+1.9) kg (+1.7) lus (+1.4) kbp (+1.4)

CodeswitchMonoParallel bo (+2.2) lus (+1.9) ay (+1.4) bm (+1.1) ff (+1.0)

CodeswitchMonoGatiPanlex lus (+5.0) bo (+3.5) bm (+3.2) gn (+2.8) ba (+2.5)

GlowupMono bo (+2.4) ti (+2.2) ks (+2.2) am (+2.0) mai (+2.0)

GlowupParallel min (+2.1) ee (+1.9) kg (+1.6) kac (+1.5) kbp (+1.5)

GlowupMonoParallel lus (+2.9) min (+2.5) bo (+1.8) ace (+1.8) bug (+1.8)

GlowupMonoGatiPanlex lus (+2.2) gn (+2.2) ko (+1.9) sa (+1.8) ckb (+1.7)

Table 13: Top 5 biggest winners per model (xx→en) on the FLORES-200 test set, measured in ∆CHRF over the baseline.
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9. Madurese (mad): up to +6.6 CHRF
10. Assamese (as): up to +6.3 CHRF
11. Pattani Malay (mfa): up to +5.7 CHRF
12. Kalaallisut (kl): up to +5.4 CHRF
13. Tibetan (bo): up to +5.2 CHRF

xx→en The biggest winners in the xx→en direc-
tion are given in Table 15. Many of the biggest win-
ners overlap with the en→xx direction, but some
of the languages that haven’t yet been mentioned
are:

1. Manipuri (mni{-Mtei}): up to +7.7 CHRF
2. Dogri (doi): up to +5.4 CHRF
3. Dhivehi (dv): up to +3.4 CHRF
4. Tigrinya (ti): up to +3.0 CHRF

F.3 Big model winners

The biggest winners for the 1.6B parameter models
are given in Tables 16, 17, 18, and 19.

F.4 Empirical study of the quality of Panlex

One way to judge the quality of a dataset is to
review it manually, as in (Kreutzer et al., 2022);
another is to see the empirical effects on model
quality of training on it. As a byproduct of using
Panlex for this project, can we judge the quality of
Panlex for different languages?

To reduce noise, we average the scores on
the three main uses of the bilexes, namely the
TokenPairs model, the Glowup model, and the
Codeswitch model. We average the FLORES-200
and GATONES scores. We then compare those
scores to the baseline model for both en→xx and
xx→en. For the purposes of this analysis, we treat
any absolute delta of under 0.3 CHRF to be noise.
The result is displayed in Tables 20 and 21.

One would like to say that the upper left-hand
corner represents languages with unequivocally
high-quality lexical data, and the lower right-hand
corner represents languages with poor quality lexi-
cal data. Alas, however, this picture is rather mud-
died when we scale up to larger models, as we
see that many languages jump from one bucket
to another. Nonetheless, we do see the trend that
GATITOS languages tend to cluster to the upper left-
hand corner in both cases, and that Shan (‘shn‘) and
Latin (‘la‘) do poorly in all cases, and should likely
be avoided by practitioners.

Teasing out the confound of the mixed GATI-
TOS and Panlex data: For the 26 GATITOS lan-
guages, it is harder to trust the previous analysis.
However, we can compare the scores of these lan-

guages between the GatiPanlexTokenPairs model
and the GatiTokenPairs model. The second of these
models is trained on a strict subset of the data that
the first is. If a language performs better with this
subset of the data, we can presume that the Panlex
data was on average lower quality; if a language
performs better on the superset, the Panlex data
might still be lower quality, but its quantity at least
makes up for performance to some degree. The
languages that do over +0.3 CHRF better on the
subset data are ts, dv, bm, lus, ff, and ckb,
suggesting that those may have poorer-quality Pan-
lex data, with the largest difference being lus at
+2.7 CHRF; those that do better on the superset
are gom, mni-Mtei, kri, ln, doi, ay, sa,
ti, mai, and as, suggesting that Panlex still adds
useful signal there.

The picture that begins to come together is that
Panlex often has some useful signal, but also con-
tains considerable amounts of noise. For a less
expressive model that is already not able to reach
very high quality, some noise in the lexicons does
not hurt, and Panlex can help the model get off
the ground for the lowest-resource languages. But
for a stronger baseline model that produces higher-
quality translations on average, this noise can ac-
tively harm performance. Therefore, more care-
fully curated bilingual lexica, like GATITOS, will
tend to will yield higher quality results when used
for model training with bigger models, as evinced
in Table 21.
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Model
GatiPanlexTokenPairs gom (+11.6) ilo (+8.1) meo (+7.7) bm (+6.8) lus (+6.6)

CodeswitchMono ady (+14.1) av (+9.5) meo (+6.8) mad (+6.3) gom (+5.3)

CodeswitchParallel tiv (+3.6) min (+3.4) as (+3.3) iso (+3.2) mfa (+2.9)

CodeswitchMonoParallel lus (+7.7) ady (+6.8) mad (+6.6) bm (+6.0) mfa (+5.7)

CodeswitchMonoGatiPanlex bho (+10.4) gom (+9.9) ilo (+9.8) bm (+9.0) lus (+8.9)

GlowupMono meo (+10.4) bho (+6.6) bo (+5.2) gom (+5.0) mfa (+4.1)

GlowupParallel bal (+4.1) yua (+3.1) meo (+3.0) tiv (+2.9) mni (+2.6)

GlowupMonoParallel meo (+7.1) gom (+5.9) mad (+3.9) za (+3.7) mni (+3.5)

GlowupMonoGatiPanlex meo (+12.6) gom (+11.6) as (+6.3) ilo (+6.2) kl (+5.4)

Table 14: Top 5 biggest winners per model (en→xx) on the GATONES test set, measured in ∆CHRF over the baseline.

Model
GatiPanlexTokenPairs bm (+4.7) mni-Mtei (+4.7) gn (+3.8) lus (+3.6) ilo (+3.5)

CodeswitchMono av (+3.5) mni-Mtei (+2.9) yua (+2.5) dv (+2.3) lus (+2.2)

CodeswitchParallel mni (+3.0) cv (+2.5) av (+2.1) lus (+1.9) ee (+1.8)

CodeswitchMonoParallel mni-Mtei (+7.7) av (+3.8) lus (+2.4) bm (+1.5) chr (+1.5)

CodeswitchMonoGatiPanlex mni-Mtei (+5.4) lus (+5.3) gn (+3.5) bm (+3.5) dv (+3.4)

GlowupMono ti (+3.0) bo (+1.8) or (+1.6) quc (+1.4) dv (+1.4)

GlowupParallel ee (+2.2) mad (+1.6) yua (+1.6) av (+1.6) bm (+1.5)

GlowupMonoParallel mad (+2.8) min (+2.2) lus (+2.0) quc (+1.6) gom (+1.3)

GlowupMonoGatiPanlex mni-Mtei (+6.0) doi (+5.4) gom (+3.5) dv (+3.3) bm (+2.7)

Table 15: Top 5 biggest winners per model (xx→en) on the GATONES test set, measured in ∆CHRF over the baseline.

Model
GatiPanlexTokenPairsBig ts (+7.5) din (+6.0) ln (+ 5.8) ilo (+5.3) ay (+4.1)

CodeswitchMonoGatiPanlexBig ts (+6.9) bm (+5.6) ilo (+5.2) ln (+4.8) mag (+3.8)

Table 16: Top 5 biggest winners per model (en→xx) on the FLORES-200 test set for the 1.6B parameter models, measured in
∆CHRF over the baseline.

Model
GatiPanlexTokenPairsBig tpi (+9.1) mni (+6.2) bm (+5.5) ts (+3.5) ay (+3.1)

CodeswitchMonoGatiPanlexBig tpi (+5.1) ay (+3.0) mni (+2.2) bm (+1.9) ltg (+1.2)

Table 17: Top 5 biggest winners per model (xx→en) on the FLORES-200 test set for the 1.6B parameter models, measured in
∆CHRF over the baseline.

Model
GatiPanlexTokenPairsBig ts (+7.7) gom (+6.1) ilo (+6.0) dv (+5.8) bm (+5.1)

CodeswitchMonoGatiPanlexBig ts (+7.3) bm (+7.0) ilo (+6.8) mni-Mtei (+5.5) gom (+5.3)

Table 18: Top 5 biggest winners per model (en→xx) on the GATONES test set for the 1.6B parameter models, measured in
∆CHRF over the baseline.
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Model
GatiPanlexTokenPairsBig cv (+8.7) mni (+8.4) bm (+6.6) kl (+5.8) ee (+5.0)

CodeswitchMonoGatiPanlexBig cv (+6.9) kl (+6.2) ce (+3.4) av (+2.8) chr (+2.7)

Table 19: Top 5 biggest winners per model (xx→en) on the GATONES test set for the 1.6B parameter models, measured in
∆CHRF over the baseline.

Win xx→en Neut. xx→en Loss xx→en
Win
en→xx

aa ace av ay bci bm bo
cv doi dv dyu dz ee gn
gom ilo kbp kl kri lg
lus mad min mni-Mtei
nso nus om quc quy sg
ts yua

cjk ckb ny ti tn acm acq aeb af am apc ar ar-MA arz as
awa az ba bbc be bg bho bn bs ca ce ceb
cs cy da de el eo et eu fa-AF fi fil fj fo fr
ga gl gu hr hu hy id is iso it iw ja jv ka
kk km kn ko ks ku lb lo lt ltg lv mag mfa
mg mk ml mn mni mr ms mt nl no pa pt
rn ro ru rw scn si sk sl sn so sq sr su sv
sw ta te tg th tr tt uk ur uz vi war xh yue
zh zu

Neut.
en→xx

ak bug pag qu tpi bew kmb or
pcm sat-Beng
sm

ban brx-Beng es fa gd ha hi ht ig ky ln
mai mi my ne oc pap pl ps sd skr st tk ug
vec wo yi yo zza

Loss
en→xx

din ff fon kg sa tum ady ber kac ahr ber-Latn hne la shn

Table 20: Languages sorted by whether it helps or hurts to include PanLex and GATITOS, for the smaller models (Transformer
Big, 475M). GATITOS languages bolded.

Win xx→en Neut. xx→en Loss xx→en
Win
en→xx

ay bm cv dv ee
gom ilo kl kri ltg
mni-Mtei sa

awa bci din doi fo ga lus mag quy tt aeb ahr ak ba ckb dyu kg lg ln
mfa pag pap rn sat-Beng skr su
ts yua

Neut.
en→xx

ce km mg tpi zza af am ar az ban be bg bho bn bs ca cs cy
da de el eo es et eu fa fa-AF ff fi fil fr gd
gl gu ha hi hne hr ht hu hy id is it iw ja
ka kk kn ko ky lb lo lt lv mad mi mk ml
mn mr ms mt ne nl no ny pa pcm pl pt
qu ro ru si sk sl so sq sr sv sw ta te tg th
tk tr uk ur uz vi yi yo zh zu

ace acm acq apc ar-MA arz bew
brx-Beng bug ceb dz fj ig jv ks
nso oc om or ps scn sd sm sn st
ug vec xh yue

Loss
en→xx

ady av ber-Latn min
mni

aa bbc cjk gn kmb my sg tn tum as ber bo fon iso kac kbp ku la
mai nus quc rw shn ti war wo

Table 21: Languages sorted by whether it helps or hurts to include PanLex and GATITOS, for the bigger models (Transformer
1.6B). GATITOS languages bolded.
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Figure 4: Number of lexicon word pairs in augmented data vs. ∆CHRF over baseline for unsupervised languages in the en→xx
direction. Results for FLORES-200 and GATONES are combined here.

Figure 5: Number of lexicon word pairs in augmented data vs. ∆CHRF over baseline for unsupervised languages in the xx→en
direction. Results for FLORES-200 and GATONES are combined here.

G Does lexical augmentation fix common
MT mistakes?

In evaluating the “big” models with 1.6B parame-
ters, we wished to see whether our preferred lexical
data augmentation methods (GatiPanlexTokenPairs
or CodeswitchMonoGatiPanlex) reduced several
common types of MT errors. The errors we looked
at were (1) null output, or the “question mark phe-
nomenon,” where the model simply outputs some
unrelated symbol (such as question marks) instead
of actual text; (2) copying, where the model copies
some or all of the source sentence in its prediction;
and (3) repetition, where the model erroneously re-
peats the same word or phrase many times. There
are other error types we could look at, like halluci-
nation, but we stick with these three basic types for
this paper. More precise definitions of these errors

are given below.
The results of this analysis are given in Table 22.

For each error type, we computed the percentage of
sentences that were affected by dividing the num-
ber of affected sentences by the total number of
sentences in the eval set. FLORES-200 has 806248
sentence pairs across all languages and GATONES

has 309887.

Null output (question mark phenomenon) The
first error type occurs when the model outputs only
“??’, or some other arbitary character, as its predic-
tion. Instances of this likely indicate catastrophic
effects of out-of-domain phenomena for 0-shot
translation.

Copying Another common error is copying,
where the model’s prediction is close or identi-
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% question marks % near copy % repetition
FLORES-200

BaselineBig 0.7 4.5 3.4
GatiPanlexTokenPairsBig 0.9 3.6 2.7
CodeswitchMonoGatiPanlexBig 0.4 4.7 3.2

GATONES

BaselineBig 0.6 2.2 3.1
GatiPanlexTokenPairsBig 0.6 1.8 2.2
CodeswitchMonoGatiPanlexBig 0.4 2.3 2.6

Table 22: The frequencies of three common error types in MT in each of the eval sets, as a percentage of the total sentences in
the set that had each issue (lower is better). Exact descriptions of the error types are given in Section G.

cal to the source sentence. In measuring this phe-
nomenon, we said that any prediction with > 85%
character-level similarity to the source sentence
was considered a copy. To measure character-level
similarity, we took the multiset intersection of the
character frequencies in the source and the charac-
ter frequencies in the prediction, and then divided
the size of the intersection by the number of char-
acters in the source.

Repetition The last common error type we exam-
ined was repetition. To count these mistakes, we
divided the total number of tokens in a sentence
by the number of unique tokens. If the ratio was
> 3, we counted the prediction as an instance of
erroneous repetition.

H Comparing sampling strategies for
translating tokens

As one recalls from Section 6.1.1, the Codeswitch
augmentation works as follows: Let D represent
a multilingual lexicon containing word or phrase
translation pairs for many languages. Given a
source sentence x = (x1, x2, ..., xn) from mono-
lingual corpus Xmono, we substitute each token in
x for its dictionary translation with probability ptr.

However, there is an issue with this formulation.
Because the lexica we use do not have exhaus-
tive coverage across languages, it is often the case
that simply looping over x and attempting to trans-
late each token with probability ptr would result
in translating a fraction of x that is significantly
less than ptr. So in order to approximate this de-
sired fraction ptr as closely as possible, we first
count how many tokens in x have dictionary trans-
lations. Let this number be k. We then compute the
adjusted probability p̃tr = max(nptrk , 1), and sam-
ple from amongst the words in x with translations

with probability p̃tr, to obtain the codeswitched
sentence x′. When substituting a source word for
its translation, we choose a translation uniformly
at random from all available translations in all lan-
guages. Because of this, it is usually the case that
x is codeswitched into many languages. Finally,
we train the model to reconstruct the monolingual
sentence x from x′ using the same sequence-to-
sequence model and loss function as for the MT
task.

In our experiments we use use ptr = 0.4. We
apply MCA to all 208 languages in our corpus, but
augment only half the available monolingual data
and train the remaining half with MASS (Song
et al., 2019b), as done in the baseline training
regime (Bapna et al., 2022). We prepend a task
token, <2codeswitch>, to the codeswitched sen-
tences to cue the model to perform the MCA
task, as well as language (<2lang>) and script
(<2script>) tokens. The <2lang> and script
<2script> tags are used in all models, including
the baseline.

Since this augmentation samples each token with
some probability, the number of tokens translated
in a given sentence follows a binomial distribu-
tion. The Glowup augmentation, however, samples
a number of tokens to translate uniformly at ran-
dom from all possible translatable tokens. So one
has a binomial distribution over N tokens sampled,
and the other has a uniform distribution—does this
make a difference?

To test this we trained a version of the
CodeswitchMono model using uniform sampling.
The average CHRF of the CodeswitchMonoUni-
form model was 0.1 to 0.2 higher on all four of
the (en→xx xx→en) x (FLORES-200 GATONES)
directions. We conclude that this may have a slight
benefit, but the difference is within the realm of
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noise, and does not affect the conclusions else-
where in this paper.

I Relationship between number of tokens
and MT performance

We also graph the relationship between number
of lexical word pairs and ∆CHRF in Figures 4
(en→xx) and 5 (xx→en) for URLs only. The re-
sults for FLORES-200 and GATONES are combined
in these plots. In both directions, we observe a
moderate positive relationship between the number
of lexical word pairs for a given language in the
augmented data and the ∆CHRF over the baseline.

J Languages

J.1 Rationale for Language Choice
Although this project is aligned with the 1000-
language initiative from Bapna et al. (2022), we
wanted to use smaller models for more rapid itera-
tion, and as a result, commensurately smaller data
and number of languages to fit comfortably in the
model. Therefore, we chose to work with about
200 languages.

With this in mind, we also wanted to choose
specifically those languages whose performance
we could measure. Therefore, our approach was as
follows:

• Include all languages with supervised (paral-
lel) data, for maximal cross-lingual transfer

• Include all languages that have non-zero data
and a FLORES-200 eval set

• Include all languages that have non-zero data
and a GATONES eval set

J.2 Complete Language data
The following table gives a list of the languages
used in our experiments, along with some linguistic
and resource-related statistics. The numbers for
data resources (i.e. Mono, Parallel, Panlex, and
GATITOS) refer to the amount of data actually used
in our experiments, not necessarily the total amount
of data available. For example, we subsampled the
parallel and high-resource monolingual data we
had available by a factor of 10.
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BCP-47 Language Cat. Mono Parallel PanLex GATITOS Speak. Script Cont. Family
en English HRL 738.8M 4726.4M 3.6M 0 984M Latn Europe Indo-European
es Spanish HRL 175.1M 585.6M 2.4M 4K 528M Latn Europe Indo-European
de German HRL 169.3M 389.3M 2.8M 4K 130M Latn Europe Indo-European
id Indonesian HRL 95M 97.4M 1.1M 4K 198M Latn Asia Austronesian
yue Cantonese MRL 83.1M 405K 180K 0 84M Hant Asia Sino-Tibetan
hu Hungarian HRL 72.4M 50.9M 1.3M 0 13M Latn Europe Indo-European
pl Polish HRL 68.7M 152.8M 1.4M 4K 41M Latn Europe Indo-European
zh Mandarin HRL 67.6M 215.7M 6K 4K 1092M Hans Asia Sino-Tibetan
mi Maori MRL 67.4M 1.3M 474K 0 50K Latn Oceania Austronesian
ko Korean HRL 67.2M 128.1M 1.3M 5K 77M Kore Asia Koreanic
ja Japanese HRL 65.2M 307.7M 2.2M 4K 128M Jpan Asia Japonic
lo Lao MRL 59.4M 817K 184K 0 30M Laoo Asia Kra-Dai
ru Russian HRL 57M 294.7M 2.8M 4K 268M Cyrl Europe Indo-European
gd Scottish Gaelic MRL 56.9M 4M 324K 0 57K Latn Europe Indo-European
tr Turkish HRL 56.5M 159.2M 1.3M 4K 71M Latn Asia Turkic
so Somali MRL 56.4M 1.3M 112K 0 16M Latn Africa Afro-Asiatic
th Thai HRL 53.1M 69.1M 1.6M 4K 61M Thai Asia Kra-Dai
ha Hausa MRL 50.6M 1.8M 202K 0 80M Latn Africa Afro-Asiatic
it Italian HRL 49.1M 245.5M 2M 4K 66M Latn Europe Indo-European
pt Portuguese HRL 48.5M 240.7M 1.7M 4K 230M Latn Europe Indo-European
vi Vietnamese HRL 47.7M 94.2M 825K 4K 68M Latn Asia Austroasiatic
fr French HRL 45M 481.6M 2.5M 4K 230M Latn Europe Indo-European
ceb Cebuano MRL 43.9M 9.2M 62K 0 20M Latn Asia Austronesian
yo Yoruba MRL 43.4M 847K 244K 0 50M Latn Africa Niger-Congo
sd Sindhi MRL 42.3M 1.6M 43K 0 26M Arab Asia Indo-European
co Corsican MRL 41.2M 1.5M 148K 0 150K Latn Europe Indo-European
mg Malagasy MRL 40.2M 3.6M 116K 0 25M Latn Africa Austronesian
ms Malay HRL 39.4M 53.8M 0 0 77M Latn Asia Austronesian
ar-MA Mor. Arabic URL 35.5M 0 0 0 52M Arab Africa Afro-Asiatic
bew Betawi URL 33.3M 0 5K 0 5M Latn Asia Malay Creole
ny Nyanja MRL 32.9M 1.2M 26K 0 12M Latn Africa Niger-Congo
nl Dutch HRL 32M 258M 1.6M 4K 22M Latn Europe Indo-European
uk Ukrainian HRL 32M 75.3M 892K 0 35M Cyrl Europe Indo-European
sv Swedish HRL 31.1M 122.6M 1.3M 0 12M Latn Europe Indo-European
haw Hawaiian MRL 30.4M 698K 156K 0 24K Latn Americas Austronesian
ro Romanian HRL 30.1M 45M 841K 0 24M Latn Europe Indo-European
cs Czech HRL 30M 106.9M 1.6M 0 13M Latn Europe Indo-European
hmn Hmong MRL 27.7M 4.9M 4K 0 4M Latn Europe Hmong-Mien
yi Yiddish MRL 27.6M 760K 0 0 2M Hebr Europe Indo-European
fa Persian HRL 27.5M 45.2M 0 0 53M Arab Asia Indo-European
ig Igbo MRL 27.4M 647K 48K 0 27M Latn Africa Niger-Congo
lv Latvian MRL 26M 22.4M 0 0 2M Latn Europe Indo-European
ar Arabic HRL 25.8M 116.7M 0 4K 310M Arab Asia Afro-Asiatic
ckb Sorani MRL 25.1M 155K 53K 4K 7M Arab Asia Indo-European
tt Tatar MRL 25M 557K 128K 0 5M Cyrl Europe Turkic
sm Samoan MRL 23.9M 502K 58K 0 510K Latn Oceania Austronesian
zu Zulu MRL 23.4M 2.3M 144K 0 12M Latn Africa Niger-Congo
no Norwegian HRL 23.1M 85.8M 4K 0 5M Latn Europe Indo-European
st Sesotho MRL 22.6M 1.2M 35K 0 6M Latn Africa Niger-Congo
ta Tamil MRL 22M 11.1M 247K 0 76M Taml Asia Dravidian
or Odia (Oriya) MRL 21.2M 169K 16K 0 35M Orya Asia Indo-European
sn Shona MRL 18.5M 958K 102K 0 8M Latn Africa Niger-Congo
bo Tibetan LRL 17.8M 282K 56K 0 1M Tibt Asia Sino-Tibetan
el Greek HRL 17.3M 54M 1.2M 0 13M Grek Europe Indo-European
fi Finnish HRL 17.1M 48.6M 2.1M 0 6M Latn Europe Uralic
hi Hindi HRL 16.5M 75.7M 449K 4K 381M Deva Asia Indo-European
xh Xhosa LRL 15.8M 697K 57K 0 8M Latn Africa Niger-Congo
mr Marathi MRL 15.6M 8.1M 154K 0 75M Deva Asia Indo-European
sk Slovak HRL 15.6M 63.9M 1.1M 0 7M Latn Europe Indo-European
hy Armenian MRL 15.4M 6.9M 751K 0 5M Armn Asia Indo-European
kk Kazakh MRL 15.3M 6.6M 241K 0 13M Cyrl Asia Turkic
da Danish HRL 15.2M 78.9M 545K 0 6M Latn Europe Indo-European
mk Macedonian MRL 15M 6.6M 363K 0 2M Cyrl Europe Indo-European
bg Bulgarian MRL 14.9M 37.4M 693K 0 8M Cyrl Europe Indo-European
sr Serbian MRL 14.1M 30.6M 206K 0 8M Cyrl Europe Indo-European
ml Malayalam MRL 13.9M 6.4M 163K 0 34M Mlym Asia Dravidian
az Azerbaijani MRL 13.5M 19.6M 0 0 23M Latn Asia Turkic
is Icelandic MRL 13.4M 15.8M 620K 0 310K Latn Europe Indo-European
te Telugu MRL 12.7M 8M 311K 0 79M Telu Asia Dravidian
ne Nepali MRL 11.6M 9.7M 0 0 16M Deva Asia Indo-European
mzn Mazanderani URL 11.6M 0 29K 0 6M Arab Asia Indo-European
meo Kedah Malay URL 11.3M 0 0 0 3M Latn Asia Austronesian
et Estonian MRL 11.2M 30.1M 0 0 1M Latn Europe Uralic
iw Hebrew HRL 10.8M 57.1M 707K 0 5M Hebr Asia Afro-Asiatic
rw Kinyarwanda LRL 10.1M 803K 56K 0 10M Latn Africa Niger-Congo
mn Mongolian LRL 10M 4.1M 0 0 5M Cyrl Asia Mongolic
ur Urdu MRL 9.9M 15.2M 400K 0 163M Arab Asia Indo-European
apc N. Lev. Arabic URL 9.7M 0 0 0 15M Arab Asia Afro-Asiatic
hr Croatian MRL 9.7M 17.4M 738K 0 7M Latn Europe Indo-European
fil Filipino MRL 9.5M 25.3M 61K 0 45M Latn Asia Austronesian
as Assamese LRL 9.3M 575K 78K 4K 15M Beng Asia Indo-European
arz Egyptian Arabic URL 9.2M 0 101K 0 58M Arab Africa Afro-Asiatic
fo Faroese LRL 9.2M 26K 254K 0 66K Latn Europe Indo-European
pap Papiamento URL 9.1M 0 99K 0 341K Latn Americas Portuguese Creole
fa-AF Dari LRL 8.7M 10K 0 0 21M Arab Asia Indo-European
acm Mesop. Arabic URL 8.7M 0 11K 0 15M Arab Asia Afro-Asiatic
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lt Lithuanian MRL 8.6M 30.9M 611K 0 3M Latn Europe Indo-European
lus Mizo URL 8.3M 0 85K 4K 688K Latn Asia Sino-Tibetan
be Belarusian LRL 8.3M 6.5M 508K 0 3M Cyrl Europe Indo-European
kn Kannada LRL 8M 5.8M 116K 0 47M Knda Asia Dravidian
dv Dhivehi LRL 7.9M 1K 34K 4K 300K Thaa Asia Indo-European
my Burmese LRL 7.8M 5.5M 121K 0 43M Mymr Asia Sino-Tibetan
oc Occitan LRL 7.5M 6K 2.4M 0 500K Latn Europe Indo-European
bn Bengali MRL 7.3M 21.7M 259K 0 262M Beng Asia Indo-European
af Afrikaans MRL 7.1M 12.7M 258K 0 18M Latn Africa Indo-European
eu Basque LRL 7M 6.4M 792K 0 540K Latn Europe Language isolate
gu Gujarati LRL 6.9M 5.8M 198K 0 47M Gujr Asia Indo-European
gl Galician MRL 6.4M 13.1M 383K 0 2M Latn Europe Indo-European
sa Sanskrit LRL 6.2M 11K 168K 4K 100K Deva Asia Indo-European
sl Slovenian MRL 5.9M 27M 672K 0 2M Latn Europe Indo-European
ug Uyghur LRL 5.7M 526K 116K 0 10M Arab Asia Turkic
ba Bashkir LRL 5.6M 303K 112K 0 1M Cyrl Europe Turkic
si Sinhala LRL 5.6M 6.5M 88K 0 16M Sinh Asia Indo-European
om Oromo LRL 5.6M 203K 10K 4K 24M Latn Africa Afro-Asiatic
zza Zaza URL 5.3M 0 0 0 2M Latn Asia Indo-European
uz Uzbek MRL 5.3M 11.2M 0 0 34M Latn Asia Turkic
sw Swahili MRL 5.2M 10.5M 0 0 150M Latn Africa Niger-Congo
km Khmer MRL 5.1M 8M 188K 0 17M Khmr Asia Austroasiatic
ky Kyrgyz LRL 4.9M 2.9M 174K 0 5M Cyrl Asia Turkic
am Amharic LRL 4.7M 2.8M 71K 0 26M Ethi Africa Afro-Asiatic
vec Venetian URL 4.4M 0 202K 0 4M Latn Europe Indo-European
ca Catalan MRL 4.4M 32.9M 803K 0 9M Latn Europe Indo-European
tk Turkmen LRL 4M 416K 177K 0 7M Latn Asia Turkic
ti Tigrinya LRL 3.9M 67K 45K 4K 8M Ethi Africa Afro-Asiatic
pa Punjabi LRL 3.7M 3.3M 89K 0 29M Guru Asia Indo-European
sq Albanian MRL 3.2M 10.6M 269K 0 13M Latn Europe Indo-European
ka Georgian MRL 3M 11.7M 482K 0 4M Geor Asia Kartvelian
cv Chuvash URL 2.8M 0 121K 0 1M Cyrl Europe Turkic
ilo Ilocano URL 2.6M 0 41K 4K 9M Latn Asia Austronesian
bal Baluchi URL 2.5M 0 16K 0 8M Arab Asia Indo-European
eo Esperanto LRL 2.4M 7.5M 1.3M 0 2M Latn Europe Constructed
cy Welsh LRL 2.2M 6.4M 448K 0 590K Latn Europe Indo-European
la Latin LRL 2.2M 2.2M 740K 0 0 Latn Europe Indo-European
dz Dzongkha LRL 2.1M 260K 31K 0 200K Tibt Asia Sino-Tibetan
mt Maltese LRL 2.1M 7.3M 247K 0 470K Latn Europe Afro-Asiatic
tn Tswana LRL 2M 66K 100K 0 8M Latn Africa Niger-Congo
lg Luganda LRL 2M 3K 31K 4K 4M Latn Africa Niger-Congo
ht Haitian LRL 2M 3.4M 177K 0 8M Latn Americas French Creole
nso Sepedi LRL 1.9M 798K 13K 4K 5M Latn Africa Niger-Congo
ps Pashto LRL 1.8M 2.1M 0 0 50M Arab Asia Indo-European
za Zhuang URL 1.7M 0 0 0 15M Latn Asia Kra-Dai
ga Irish LRL 1.7M 4M 428K 0 1M Latn Europe Indo-European
tpi Tok Pisin LRL 1.7M 3.3M 62K 0 120K Latn Oceania English Creole
pcm Nigerian Pidgin LRL 1.6M 24K 4K 0 40M Latn Africa English Creole
lb Luxembourgish LRL 1.5M 4.6M 183K 0 420K Latn Europe Indo-European
ku Kurmanji LRL 1.5M 2.1M 0 0 15M Latn Asia Indo-European
tg Tajik LRL 1.4M 1.5M 194K 0 8M Cyrl Asia Indo-European
ln Lingala LRL 1.4M 5K 97K 4K 58M Latn Africa Niger-Congo
ce Chechen URL 1.4M 0 113K 0 1M Cyrl Europe NE Caucasian
mai Maithili URL 1.3M 0 0 4K 65M Deva Asia Indo-European
jv Javanese LRL 1.3M 6.2M 128K 0 84M Latn Asia Austronesian
ts Tsonga LRL 1.3M 2K 9K 4K 13M Latn Africa Niger-Congo
fj Fijian LRL 1.3M 6K 44K 0 339K Latn Oceania Austronesian
ak Twi LRL 1.3M 38K 115K 4K 11M Latn Africa Niger-Congo
ber-Latn Tamazight URL 1.2M 0 2K 0 30M Latn Africa Afro-Asiatic
su Sundanese LRL 1.2M 2.7M 90K 0 34M Latn Asia Austronesian
fy Western Frisian LRL 1.1M 4.8M 90K 0 850K Latn Europe Indo-European
skr Saraiki URL 974K 0 0 0 20M Arab Asia Indo-European
bbc Batak Toba URL 932K 0 23K 0 2M Latn Asia Austronesian
war Waray (PHs) URL 902K 0 48K 0 3M Latn Asia Austronesian
gn Guarani LRL 861K 1.3M 6K 4K 5M Latn Americas Tupian
qu Quechua LRL 842K 2K 46K 4K 9M Latn Americas Quechuan
bug Buginese URL 797K 0 19K 0 6M Latn Asia Austronesian
ee Ewe LRL 796K 4K 90K 4K 4M Latn Africa Niger-Congo
ltg Latgalian URL 796K 0 34K 0 170K Latn Europe Indo-European
kl Kalaallisut LRL 741K 500 48K 4K 56K Latn Americas Eskimo-Aleut
bho Bhojpuri LRL 734K 4K 0 4K 60M Deva Asia Indo-European
ar-Latn Arabic URL 634K 0 4K 0 3M Latn Asia Afro-Asiatic
pag Pangasinan URL 594K 0 19K 0 1M Latn Asia Austronesian
shn Shan URL 566K 0 16K 0 3M Mymr Asia Kra-Dai
min Minangkabau URL 533K 0 12K 0 6M Latn Asia Austronesian
cjk Chokwe URL 494K 0 8K 0 983K Latn Africa Niger-Congo
yua Yucateco URL 419K 0 67K 0 766K Latn Americas Mayan
sg Sango URL 410K 0 32K 0 400K Latn Africa Ngbandi Creole
iso Isoko URL 409K 0 3K 0 420K Latn Africa Niger-Congo
kac Kachin URL 402K 0 10K 0 940K Latn Asia Sino-Tibetan
kg Kongo LRL 376K 5K 15K 0 7M Latn Africa Niger-Congo
gom Goan Konkani URL 311K 0 37K 4K 2M Deva Asia Indo-European
bs Bosnian MRL 311K 22.6M 112K 0 2M Cyrl Europe Indo-European
av Avaric URL 301K 0 216K 0 760K Cyrl Europe Northeast Caucasian
tiv Tiv URL 297K 0 13K 0 2M Latn Africa Niger-Congo
ady Adyghe URL 296K 0 25K 0 575K Cyrl Europe Northwest Caucasian
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wo Wolof LRL 289K 290K 94K 0 4M Latn Africa Niger-Congo
hne Chhattisgarhi URL 269K 0 0 0 18M Deva Asia Indo-European
ay Aymara LRL 267K 600 91K 4K 3M Latn Americas Aymaran
quc K’iche’ URL 250K 0 54K 0 2M Latn Americas Mayan
ace Achinese URL 226K 0 18K 0 4M Latn Asia Austronesian
acq Mesop. Arabic URL 216K 0 3K 0 7M Arab Asia Afro-Asiatic
fon Fon URL 197K 0 8K 0 1M Latn Africa Niger-Congo
ban Balinese LRL 188K 9K 30K 0 3M Latn Asia Austronesian
bm Bambara URL 187K 0 73K 4K 14M Latn Africa Mande
doi Dogri URL 179K 0 0 4K 2M Deva Asia Indo-European
tum Tumbuka LRL 171K 4K 1K 0 2M Latn Africa Niger-Congo
bci Baoulé URL 152K 0 20K 0 2M Latn Africa Niger-Congo
quy Ayacucho Quechua URL 140K 0 94K 0 900K Latn Americas Quechuan
mad Madurese URL 138K 0 18K 0 7M Latn Asia Austronesian
awa Awadhi URL 136K 0 0 0 38M Deva Asia Indo-European
dyu Dyula URL 130K 0 5K 4K 3M Latn Africa Mande
kbp Kabiyè URL 129K 0 10K 0 1M Latn Africa Niger-Congo
kri Krio URL 129K 0 10K 4K 496K Latn Africa English Creole
rn Rundi LRL 125K 2K 27K 0 9M Latn Africa Niger-Congo
mni Manipuri URL 106K 0 2K 0 1M Beng Asia Sino-Tibetan
mni-Mtei Manipuri URL 103K 0 1K 4K 1M Mtei Asia Sino-Tibetan
ber Tamazight URL 96K 0 0 0 30M Tfng Africa Afro-Asiatic
kmb Kimbundu URL 94K 0 7K 0 4M Latn Africa Niger-Congo
scn Sicilian URL 92K 0 149K 0 5M Latn Europe Indo-European
ff Fulah LRL 86K 4K 30K 4K 50M Latn Africa Niger-Congo
aa Afar URL 82K 0 52K 0 4M Latn Africa Afro-Asiatic
ks Kashmiri LRL 71K 1K 24K 0 6M Arab Asia Indo-European
mag Magahi URL 66K 0 0 0 14M Deva Asia Indo-European
chr Cherokee LRL 63K 76K 61K 0 13K Cher Americas Iroquoian
din Dinka URL 62K 0 3K 0 1M Latn Africa Nilo-Saharan
aeb Tunisian Arabic URL 48K 0 13K 0 11M Arab Africa Afro-Asiatic
ahr Ahirani URL 24K 0 0 0 2M Deva Asia Indo-European
nus Nuer URL 24K 0 20K 0 890K Latn Africa Nilo-Saharan
mfa Pattani Malay URL 7K 0 0 0 1000K Arab Asia Austronesian
sat-Beng Santali URL 7K 0 0 0 6M Beng Asia Austroasiatic
brx-Beng Bodo (India) URL 4K 0 0 0 1M Beng Asia Sino-Tibetan
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K Full results

The full results on FLORES-200 for the various
models we trained are available in Tables 24 and
25. Model abbreviations are clarified in Table 23.
Scores from the NLLB model are included as refer-
ence, though keep in mind that the smaller research
models in this paper will naturally have lower qual-
ity; even the “Big” models are 30× smaller, and
not optimized with back-translation and so on.

Model Name Abbr. Description
Baseline B Trained on MASS + translation
GatiPanlexTokenPairs T Baseline + 5% token pairs
GatiPanlexTokenPairsSamp75 T75 token-pairs sampled to 75%
GatiPanlexTokenPairsSamp50 T50 token-pairs sampled to 50%
GatiPanlexTokenPairsSamp25 T25 token-pairs sampled to 25%
GatiTokenPairs TGAT token pairs with only GATITOS

CodeswitchMono CM See §6
CodeswitchParallel CP See §6
CodeswitchMonoParallel CMP See §6
CodeswitchMonoGatiPanlex CMT See §6
GlowupMono GM See §6
GlowupParallel GP See §6
GlowupMonoParallel GMP See §6
GlowupMonoGatiPanlex GMT See §6
BaselineBig BBIG Big version of the Baseline

(§8.1)
GatiPanlexTokenPairsBig TBIG Big version of the TP (§8.1)
CodeswitchMonoGatiPanlexBig (CM+T)BIG Big version of CMT (§8.1)
NLLB NL NLLB 54B model

Table 23: Names, abbreviations, and descriptions of the full
model results in Tables 25 and 24.
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lang cat. B T T75 T50 T25 TGatitos CM CP CMP CM T GM GP GMP GM T BBIG TBIG (CM T)BIG NLLB
µ mean 39.7 40.0 40.0 39.6 39.8 39.7 40.4 38.3 39.5 40.7 40.8 38.6 40.0 40.7 44.6 44.4 44.7 50.7
HRL mean 50.5 50.1 50.5 50.1 50.1 50.1 51.3 48.5 49.4 50.9 52.0 48.4 50.6 51.6 56.0 55.5 56.1 58.5
MRL mean 46.6 46.4 46.5 46.4 46.4 46.4 47.5 44.9 45.8 47.2 48.0 44.8 46.8 47.6 51.2 50.9 51.3 53.8
LRL mean 34.4 34.9 34.9 34.6 34.6 34.6 35.2 33.3 34.4 35.7 35.4 33.4 34.5 35.6 38.5 38.6 38.8 50.3
URL mean 28.7 30.2 29.5 28.8 29.5 29.1 29.2 27.8 29.9 30.2 29.2 29.2 29.7 29.5 34.8 34.5 34.5 40.1
OOM mean 6.2 12.6 10.9 13.2 12.3 12.5 13.7 9.7 12.2 12.2 14.2 8.8 14.8 10.6 11.0 12.9 13.0 -
∆UR mean 30.4 31.6 31.1 30.6 31.0 30.8 31.0 29.4 31.3 31.9 31.1 30.4 31.2 31.3 35.9 35.7 35.8 43.2
— — — — — — — — — — — — — — — — — — — —
ace URL 27.4 29.9 25.8 25.9 29.8 28.4 31.3 28.4 30.3 31.0 28.5 28.2 29.6 29.6 33.2 33.2 32.7 31.5
acm URL 42.0 41.5 42.5 41.3 41.3 41.7 43.4 39.8 41.3 42.9 44.4 39.3 42.5 43.4 49.0 48.2 48.8 42.1
acq URL 39.5 39.9 40.4 39.6 40.3 40.8 44.1 38.5 41.1 43.5 45.3 38.2 42.7 42.5 49.0 46.7 49.2 26.8
aeb URL 36.4 36.4 35.9 35.1 36.1 37.6 39.4 35.4 37.2 39.1 40.5 34.0 38.4 38.5 42.4 41.2 43.6 61.2
apc URL 40.8 40.1 40.2 39.8 39.5 39.8 43.7 35.3 41.5 42.8 45.2 37.4 41.8 42.2 50.0 47.8 50.2 38.9
ar-MA URL 36.0 35.7 36.2 35.6 35.7 35.5 36.8 34.5 35.2 36.3 37.3 34.0 36.0 36.5 39.9 39.8 40.2 28.3
arz URL 36.4 33.5 32.8 33.3 35.3 32.5 38.4 27.5 35.7 37.5 38.6 30.7 33.9 37.2 43.7 42.5 43.5 50.5
awa URL 43.0 43.5 42.9 42.2 42.1 41.4 43.5 37.0 42.4 44.0 44.8 41.0 43.1 44.4 46.0 43.4 46.7 27.1
ber URL 9.2 9.9 9.0 5.7 8.8 8.1 6.7 9.7 8.9 7.9 9.6 9.8 10.2 9.7 13.6 13.5 12.1 34.3
bm URL 15.0 20.5 21.0 20.4 18.1 20.0 14.4 16.6 20.3 22.6 13.8 16.9 14.3 18.4 23.1 26.5 28.7 44.3
bug URL 29.3 29.1 29.4 29.2 29.2 29.4 29.6 29.0 29.3 29.5 29.7 29.1 29.4 29.6 30.1 29.8 30.1 30.4
cjk URL 14.1 15.9 15.9 15.6 15.8 15.0 12.9 15.3 15.5 14.7 15.6 16.2 17.3 14.4 17.3 17.1 16.1 47.3
din URL 12.8 9.9 11.2 9.8 9.4 9.7 11.6 8.1 13.3 11.5 8.3 11.0 11.2 8.3 12.6 18.6 15.5 19.8
dyu URL 12.8 15.6 14.4 14.3 15.0 13.8 11.7 14.5 15.9 16.2 12.3 14.8 14.4 15.1 17.7 19.6 20.6 50.7
fon URL 12.3 13.7 12.3 11.1 13.0 11.8 10.7 12.7 12.5 10.6 11.5 14.3 13.4 10.0 18.7 17.0 15.8 31.3
hne URL 45.8 46.1 46.1 45.6 46.7 44.0 46.2 40.2 44.6 45.4 43.1 45.0 45.3 47.6 49.1 50.0 49.3 38.5
ilo URL 35.5 43.0 41.5 42.4 40.9 42.6 39.5 39.2 41.3 43.5 36.3 37.7 37.9 41.9 42.7 48.0 47.9 33.0
kac URL 16.5 17.2 16.3 13.5 17.6 15.7 12.9 15.1 16.1 16.4 15.3 20.1 18.0 12.0 26.5 23.8 22.5 46.8
kbp URL 12.6 13.4 13.6 10.2 11.4 14.1 13.0 12.4 14.2 12.4 13.0 16.2 14.6 13.7 21.2 18.3 16.2 48.4
kmb URL 19.2 23.4 19.4 19.2 20.6 17.6 15.7 19.8 22.2 19.0 19.1 22.4 21.8 17.5 25.0 24.7 20.5 41.4
ltg URL 29.1 29.2 29.1 29.8 30.9 30.4 31.7 30.1 30.6 31.7 30.5 31.0 30.6 31.4 38.1 38.2 38.7 34.5
lus URL 18.0 24.2 24.2 18.1 21.8 26.6 21.6 20.3 26.2 25.7 19.5 19.0 20.0 22.4 29.3 30.5 32.8 57.5
mag URL 47.3 48.0 46.4 46.0 47.1 45.0 48.2 38.5 45.1 48.4 47.9 45.8 47.5 49.1 47.5 50.2 51.3 23.5
mai URL 43.2 44.4 44.0 43.9 44.1 42.0 42.9 39.6 41.5 43.8 41.3 41.4 41.9 44.4 48.8 47.7 47.9 48.2
min URL 38.2 39.4 39.5 39.8 39.7 39.4 40.0 40.0 40.0 40.1 39.8 39.7 39.5 39.4 45.7 45.5 43.6 39.1
mni URL 13.2 12.8 15.7 14.2 14.6 14.1 12.8 15.1 14.5 12.8 15.7 16.2 17.2 14.6 22.9 20.3 15.3 38.0
nus URL 9.6 16.4 12.0 12.0 11.1 10.9 10.8 10.1 13.3 11.3 11.4 12.1 11.6 9.4 17.1 17.6 16.3 28.3
pag URL 35.9 36.9 36.3 35.7 36.1 36.3 35.1 35.8 37.3 36.4 34.9 36.8 37.0 35.6 39.9 40.2 40.9 55.6
pap URL 40.1 41.0 39.6 40.9 41.1 39.1 40.5 38.9 40.6 42.1 38.5 39.4 39.5 39.8 44.4 44.2 45.3 42.0
quy URL 26.6 30.5 27.5 29.6 28.5 31.1 28.8 28.3 30.7 31.2 27.6 28.1 28.6 26.3 31.5 31.6 34.5 49.6
scn URL 38.2 39.4 39.3 39.0 38.1 38.9 38.1 37.8 39.7 39.5 38.4 38.3 38.6 39.1 43.7 44.7 43.3 45.2
sg URL 21.9 25.1 23.1 21.9 22.4 21.4 19.0 22.3 25.9 21.5 23.4 25.6 25.9 19.8 31.2 29.8 28.7 56.8
shn URL 14.2 15.6 14.7 13.5 15.6 10.6 11.9 12.2 8.5 12.6 8.1 18.1 12.2 13.9 25.1 16.2 21.3 38.3
vec URL 42.3 42.2 42.2 42.1 42.0 42.1 42.8 42.0 42.3 43.0 42.5 41.5 42.6 42.8 44.4 44.1 44.3 41.9
war URL 51.5 53.2 53.0 52.9 53.1 52.3 51.7 53.2 51.2 51.2 52.3 52.0 52.3 51.9 57.1 56.1 53.1 31.8
am LRL 30.6 30.5 31.6 30.3 30.9 30.6 32.5 28.3 29.4 32.0 33.2 28.2 31.3 32.6 38.4 37.7 38.0 59.3
as LRL 13.1 15.3 17.0 12.9 16.0 16.0 11.1 15.5 14.5 18.6 15.9 12.8 15.1 15.9 20.7 18.2 17.2 48.9
ay LRL 22.5 25.9 23.1 24.0 22.9 23.3 22.5 23.2 26.0 22.9 22.6 24.4 22.7 24.6 22.9 27.0 23.5 50.7
ba LRL 14.6 16.8 13.0 14.3 15.5 15.9 13.6 15.2 13.2 17.3 16.3 17.2 12.9 15.8 16.9 15.6 18.3 50.8
ban LRL 41.0 40.6 40.6 40.3 40.8 40.7 41.6 39.8 40.2 41.3 41.0 39.0 40.6 41.3 42.4 43.1 42.2 53.2
be LRL 37.7 37.3 38.0 37.5 37.5 37.2 38.4 36.2 37.1 38.0 38.9 36.1 37.8 38.4 42.0 41.8 42.3 44.7
bho LRL 14.7 17.9 20.0 21.9 24.7 19.2 23.2 18.2 23.1 25.5 24.4 19.1 16.0 21.6 21.0 15.4 22.1 51.0
bo LRL 13.2 16.3 16.1 15.7 14.7 15.1 18.2 11.1 13.3 18.0 17.9 12.7 13.5 21.3 24.8 23.3 24.4 55.8
cy LRL 64.4 63.9 64.7 64.1 63.8 64.0 65.8 61.4 63.1 65.5 66.8 61.2 64.3 66.1 72.2 71.9 72.6 45.4
dz LRL 5.6 5.1 4.9 5.0 4.5 5.5 6.6 6.0 4.9 4.9 4.9 6.7 5.1 4.8 5.7 5.2 6.4 53.3
ee LRL 26.9 29.5 28.9 28.3 27.2 29.8 28.4 25.2 28.5 30.5 26.8 26.3 26.8 28.6 28.6 32.0 31.3 40.4
eo LRL 57.6 57.5 57.7 57.4 57.3 57.4 58.1 56.7 57.0 58.0 58.2 56.5 57.6 58.0 59.0 58.8 59.1 27.9
eu LRL 47.6 47.1 47.8 47.0 46.8 47.0 48.4 45.4 46.8 48.1 48.8 45.4 47.7 48.4 52.6 52.4 52.4 54.8
fa-AF LRL 47.4 47.1 47.5 46.7 47.0 46.6 48.0 45.9 46.1 47.0 49.4 45.0 48.3 48.6 53.3 53.1 52.9 54.0
ff LRL 19.1 18.9 19.0 19.4 18.3 19.3 18.8 18.8 18.8 19.6 19.0 18.6 19.6 19.2 19.8 20.1 20.2 46.2
fj LRL 33.7 34.8 35.6 33.7 35.6 34.0 34.0 33.7 35.5 34.8 34.0 34.2 35.7 35.2 39.7 39.6 39.7 42.3
fo LRL 38.5 38.2 38.4 38.0 38.3 38.2 40.1 37.7 39.0 39.6 38.7 37.5 37.0 38.5 44.4 44.7 45.1 43.3
ga LRL 47.9 47.6 48.6 47.9 47.6 47.9 49.5 46.1 47.3 49.1 50.2 45.7 48.0 49.7 55.0 54.8 55.7 40.8
gn LRL 19.1 19.6 19.2 18.5 19.4 18.7 20.3 18.4 19.2 19.4 19.0 19.3 19.3 18.0 20.8 20.7 20.1 31.6
gu LRL 49.8 49.5 49.9 49.1 49.4 49.4 50.7 47.7 48.6 50.3 51.2 48.0 49.9 51.0 54.1 53.6 54.5 51.1
ht LRL 49.6 49.1 49.6 49.3 49.4 49.4 49.9 48.6 48.9 49.7 50.2 48.4 49.6 49.9 51.2 51.1 51.0 48.3
jv LRL 51.7 51.8 52.7 52.1 51.5 51.7 52.5 50.7 51.1 52.3 53.1 50.7 51.6 52.8 54.5 54.3 54.4 50.6
kg LRL 33.1 31.9 33.0 32.9 31.0 32.9 32.3 31.9 32.9 32.8 32.9 32.9 33.1 32.1 32.8 35.2 35.1 61.1
kn LRL 50.5 50.4 51.0 50.0 49.9 49.9 51.4 48.4 49.2 51.2 52.2 48.4 50.6 51.7 55.5 55.0 55.7 42.8
ks LRL 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.8 1.0 40.9
ku LRL 33.2 33.1 32.8 32.5 32.9 32.4 33.8 31.5 31.7 33.4 34.1 30.9 33.4 33.9 37.9 37.1 37.0 35.4
ky LRL 41.8 41.1 41.5 40.9 41.2 41.2 42.4 39.6 40.5 41.8 42.8 39.7 41.7 42.7 45.7 45.4 45.7 53.9
lb LRL 50.0 49.8 49.9 49.8 49.9 49.6 50.7 48.4 49.4 50.5 51.8 48.3 50.1 50.4 53.9 53.5 54.3 55.4
lg LRL 30.1 31.9 31.4 31.5 30.5 31.7 32.0 29.4 32.3 32.7 26.6 29.0 29.9 31.3 30.9 34.4 32.0 61.5
ln LRL 31.9 34.8 35.2 34.9 32.3 33.1 28.9 30.9 36.0 38.6 32.3 29.0 30.7 33.0 33.8 39.6 38.5 51.8
mn LRL 42.4 41.9 41.5 41.3 41.9 41.8 43.0 39.9 40.7 42.7 43.7 39.9 42.4 43.2 47.8 47.5 48.0 50.9
mt LRL 62.6 62.7 62.4 62.5 62.0 62.7 63.5 60.7 61.6 63.1 64.0 60.3 62.4 63.8 68.2 68.0 68.2 60.4
my LRL 35.3 34.0 34.9 34.4 34.6 34.0 36.0 32.7 34.0 37.0 36.8 32.2 35.1 36.5 40.8 39.2 40.0 54.9
nso LRL 31.9 32.0 32.1 31.5 31.7 31.5 31.7 31.2 32.0 31.9 31.7 31.4 31.8 31.9 33.4 33.6 33.3 49.1
oc LRL 47.6 47.6 47.6 49.5 46.5 49.2 47.0 48.7 51.6 51.1 47.9 49.3 48.6 49.3 52.6 52.6 52.6 51.0
om LRL 15.5 15.5 15.5 15.7 15.5 15.3 16.0 15.3 16.0 16.1 15.4 15.3 15.2 15.6 17.1 16.8 16.8 42.2
pa LRL 44.7 44.6 44.3 44.0 44.3 44.3 45.3 42.5 43.4 45.0 45.8 42.7 44.6 45.5 49.7 49.2 49.2 40.3
ps LRL 33.7 33.3 33.2 32.8 33.5 32.9 33.9 32.0 32.9 33.9 34.7 32.5 33.8 34.2 36.5 36.3 36.3 59.1
rn LRL 31.1 31.8 31.5 31.6 31.4 32.0 32.5 30.4 31.9 32.5 32.2 30.9 32.2 32.9 35.8 36.6 37.0 53.8
rw LRL 34.4 35.5 34.7 34.8 33.9 34.5 35.7 33.2 34.0 34.9 35.1 33.1 34.9 35.4 44.1 42.5 43.5 57.2
sa LRL 23.0 23.7 22.4 23.0 23.9 23.2 22.7 21.1 22.5 24.3 22.4 22.1 21.9 23.9 24.9 25.2 26.0 72.6
si LRL 42.1 42.2 42.1 41.9 42.1 42.0 43.8 39.5 40.7 43.5 44.7 39.2 42.9 44.4 49.8 49.4 50.2 70.8
su LRL 46.5 46.6 47.1 46.8 46.6 46.8 47.2 45.9 46.8 47.4 47.5 45.8 46.8 47.3 46.2 46.2 47.4 54.7
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lang cat. B T T75 T50 T25 TGatitos CM CP CMP CM T GM GP GMP GM T BBIG TBIG (CM T)BIG NLLB
tg LRL 43.3 42.7 42.5 42.5 43.1 42.1 44.4 40.6 41.4 44.0 45.0 41.0 43.4 44.7 48.3 47.9 48.3 64.0
ti LRL 5.9 8.0 8.1 6.6 5.2 6.8 7.7 5.5 7.0 8.1 6.8 4.0 4.5 6.3 9.6 9.0 7.6 47.7
tk LRL 42.0 42.7 42.1 40.3 41.6 41.9 43.7 39.2 42.4 42.9 43.9 40.1 41.7 43.7 50.8 50.5 51.1 38.6
tn LRL 35.6 35.5 35.1 36.5 35.3 36.1 36.1 34.7 34.8 36.2 36.7 35.0 36.2 36.7 41.1 40.7 40.5 48.0
tpi LRL 25.2 25.2 25.2 25.2 25.2 25.0 25.2 25.2 25.2 25.1 25.0 24.6 25.0 25.0 25.3 25.3 25.2 56.6
ts LRL 33.2 37.6 35.9 36.1 35.1 37.4 35.3 31.9 34.8 37.3 31.9 32.2 32.9 34.6 33.9 41.3 40.7 40.1
tum LRL 32.1 32.0 31.6 32.0 32.3 32.1 31.4 31.0 31.0 30.1 31.3 30.8 30.8 31.9 32.4 32.5 31.3 45.7
ug LRL 36.2 37.0 36.9 35.9 36.9 35.5 38.6 32.2 35.3 39.2 38.1 32.8 37.3 38.6 47.9 47.7 47.9 58.3
wo LRL 13.9 15.2 14.5 14.8 14.4 13.0 11.6 12.1 14.8 14.2 14.0 14.7 14.3 14.8 21.4 20.4 20.9 54.9
xh LRL 47.6 47.1 47.2 47.3 47.6 47.3 48.1 46.3 46.4 47.9 48.8 46.0 47.8 48.1 52.2 51.6 52.1 48.8
af MRL 64.5 64.1 64.5 64.2 64.2 64.2 64.9 63.0 63.5 64.3 65.5 62.9 64.5 65.1 67.9 67.5 67.8 45.0
az MRL 42.1 42.0 42.1 41.7 41.9 41.8 42.6 41.1 41.3 42.2 43.2 40.8 42.1 42.6 45.2 45.2 45.1 50.4
bg MRL 59.3 58.8 59.3 58.8 58.7 58.6 60.0 57.1 58.4 59.6 61.2 57.0 59.5 60.6 65.6 65.2 65.8 60.6
bn MRL 47.1 46.7 47.2 46.5 47.0 46.5 48.0 45.1 46.1 47.8 48.8 44.7 47.1 48.2 51.9 51.3 51.8 50.9
bs MRL 52.9 52.7 53.3 52.8 52.6 52.7 53.9 51.3 52.4 53.4 54.8 51.4 53.1 54.4 58.4 57.8 58.5 49.2
ca MRL 60.7 60.4 60.8 60.4 60.4 60.5 61.4 59.4 60.3 61.2 62.0 59.1 60.8 61.6 64.8 64.7 65.3 52.5
ceb MRL 58.6 58.6 58.7 58.6 58.4 58.1 59.5 57.6 57.9 58.7 59.4 57.5 58.9 59.0 61.2 60.5 60.9 50.6
ckb MRL 31.9 35.0 34.9 33.5 31.8 35.2 35.9 28.9 33.8 37.1 31.9 30.3 31.2 36.5 43.2 44.7 44.6 61.2
et MRL 52.3 51.7 52.4 51.8 51.9 51.7 52.9 50.0 51.0 52.5 53.9 49.8 52.2 53.2 58.2 57.8 58.3 52.6
fil MRL 58.1 58.1 58.6 58.0 58.0 58.0 58.8 57.2 57.7 58.4 59.1 57.1 58.3 58.7 60.8 60.7 61.0 55.7
gd MRL 48.9 48.4 48.8 48.6 48.6 47.9 49.1 47.4 48.1 48.9 49.8 47.0 48.6 49.7 53.0 52.6 52.9 57.3
gl MRL 56.8 56.6 57.0 56.9 56.6 56.5 57.3 56.0 56.3 57.0 57.7 55.8 57.0 57.5 60.0 59.7 60.1 63.2
ha MRL 43.6 42.7 43.5 42.8 43.2 42.4 44.3 41.7 41.4 44.0 44.3 41.7 44.4 43.5 49.1 48.3 49.0 56.0
hr MRL 51.9 51.7 52.1 51.5 51.6 51.5 52.8 50.3 51.3 52.6 53.5 50.3 52.1 53.1 57.0 56.6 57.0 58.8
hy MRL 47.7 47.9 47.9 47.3 47.4 47.7 49.3 45.2 47.2 48.5 49.8 45.0 48.0 48.9 53.3 53.3 53.6 43.6
ig MRL 38.2 37.7 38.2 37.6 37.9 37.5 38.5 36.8 37.1 38.8 39.2 36.7 38.0 38.8 41.3 41.0 41.4 60.1
is MRL 43.8 43.6 44.2 43.4 43.6 43.7 44.7 41.8 43.0 44.5 45.7 41.7 43.8 45.3 51.0 50.4 51.1 41.8
ka MRL 45.2 45.3 45.4 45.0 44.9 45.0 46.3 43.5 44.3 45.6 46.5 43.0 45.2 46.0 49.5 49.3 49.6 57.8
kk MRL 49.6 49.5 49.7 49.5 49.4 49.4 51.0 46.9 49.1 50.3 51.6 47.0 49.9 51.1 55.6 55.2 55.5 49.7
km MRL 38.3 38.0 38.7 38.2 38.2 37.6 39.5 36.6 37.4 39.0 40.2 36.8 38.8 39.5 43.0 43.0 43.0 66.6
lo MRL 44.0 44.1 44.3 44.0 44.0 43.7 44.8 42.4 43.1 44.6 45.2 41.8 44.0 44.6 47.3 47.8 47.7 61.9
lt MRL 49.4 48.9 49.2 49.1 48.8 49.0 50.5 47.2 48.5 49.8 51.0 47.0 49.5 50.6 56.2 55.6 56.4 52.1
lv MRL 51.8 51.4 51.3 51.6 51.5 51.6 52.9 49.6 50.4 52.3 53.7 49.7 52.2 53.0 58.7 57.9 58.7 48.7
mg MRL 44.1 44.3 44.3 44.3 44.8 43.9 45.2 42.7 43.3 45.2 45.9 42.5 44.9 45.5 49.3 48.8 49.0 43.5
mi MRL 40.6 40.5 40.3 40.5 40.7 40.2 41.0 40.2 40.6 40.9 41.1 39.8 40.9 40.6 41.8 41.7 41.8 60.1
mk MRL 57.4 57.2 57.1 57.1 57.1 57.2 58.4 55.5 56.7 57.9 58.8 55.4 57.5 58.5 61.8 61.5 61.7 51.1
ml MRL 48.3 47.6 47.8 47.7 47.9 47.6 49.5 45.3 46.8 49.0 50.3 44.9 48.5 50.0 55.2 53.9 55.4 59.4
mr MRL 45.3 44.8 44.7 44.8 44.9 44.9 46.1 43.3 44.2 45.5 46.5 43.2 45.6 46.2 50.2 49.8 50.5 52.8
ne MRL 49.5 49.0 48.4 48.6 48.4 48.7 49.7 47.0 48.1 49.4 50.7 47.5 49.4 50.0 53.5 53.0 53.1 27.4
ny MRL 44.6 44.1 44.7 44.5 44.3 44.5 45.3 43.1 43.8 44.8 45.8 43.2 44.6 45.3 48.0 47.7 48.1 50.1
or MRL 40.6 39.5 39.2 39.2 39.3 39.5 41.0 37.4 38.5 40.6 41.6 37.4 40.1 41.4 47.3 46.1 47.1 61.4
sd MRL 44.0 43.5 43.3 43.2 43.7 43.1 43.9 42.8 42.6 43.6 44.4 42.5 43.6 44.0 46.1 46.1 46.2 54.2
sl MRL 50.7 49.9 50.6 50.1 50.1 50.3 51.5 48.8 49.7 51.0 52.1 48.4 50.7 51.7 56.1 56.1 56.6 47.1
sm MRL 49.2 48.7 48.9 48.9 48.8 49.1 49.4 48.2 48.5 49.4 49.7 47.5 49.3 49.6 52.0 51.3 51.6 54.2
sn MRL 43.4 43.3 43.2 43.3 43.4 43.2 44.0 42.3 42.9 43.5 44.2 42.0 43.5 43.8 46.4 46.1 46.1 56.0
so MRL 42.3 42.1 42.5 42.0 42.2 41.7 42.8 41.1 41.3 42.5 43.4 41.1 42.6 42.6 45.7 45.3 45.6 66.8
sq MRL 54.1 54.1 53.9 54.0 53.8 53.9 54.9 52.8 53.5 54.8 55.4 52.6 54.3 55.0 58.1 57.9 58.2 47.4
sr MRL 31.2 34.8 31.7 34.8 34.4 36.8 35.8 28.1 33.1 38.9 39.4 31.5 36.6 38.2 41.9 43.7 42.5 62.3
st MRL 44.6 44.5 44.3 44.6 44.4 44.3 44.9 43.5 44.1 44.7 45.3 43.4 44.8 45.2 47.2 47.1 47.1 58.8
sw MRL 58.3 58.1 58.2 58.3 58.0 58.1 59.2 56.6 57.4 58.6 59.8 56.3 58.4 59.5 62.4 62.2 62.2 53.5
ta MRL 52.9 52.5 52.0 52.4 52.4 52.4 53.9 50.3 51.8 53.5 54.4 50.0 52.9 54.2 58.5 58.2 58.5 59.6
te MRL 52.6 52.5 52.2 52.2 52.5 51.9 53.8 49.9 51.6 53.5 54.4 49.9 52.8 53.8 58.4 58.1 58.5 53.6
tt MRL 34.7 34.9 34.4 34.4 34.2 35.8 38.3 33.1 36.0 37.6 37.0 33.3 35.9 37.6 39.9 40.2 42.0 59.9
ur MRL 46.2 46.0 45.9 45.5 45.5 45.6 46.5 44.4 45.3 46.2 47.0 44.5 46.4 46.9 49.2 48.9 49.3 62.1
uz MRL 51.7 51.4 51.3 51.2 51.3 51.3 52.4 49.8 50.5 51.8 53.5 49.8 51.8 52.6 56.2 55.5 55.9 45.9
yi MRL 36.6 36.0 36.4 36.5 36.6 35.9 36.6 36.2 36.2 36.5 36.5 36.2 36.4 36.3 37.2 36.9 37.1 58.1
yo MRL 20.9 20.9 20.7 21.1 20.9 20.7 21.0 20.8 20.9 21.0 21.0 20.5 20.9 20.9 21.3 21.1 21.4 57.9
yue MRL 12.2 12.9 12.7 12.2 13.3 12.2 13.2 10.8 10.9 12.5 13.5 11.6 13.2 13.0 17.8 17.7 17.1 20.8
zu MRL 49.7 49.1 49.4 49.6 49.3 49.4 50.7 47.7 48.5 50.1 51.3 47.5 49.7 50.9 55.2 54.4 54.9 67.1
ar HRL 47.7 47.4 48.0 47.4 47.4 47.1 49.0 45.1 46.2 48.4 50.2 44.6 47.9 49.1 56.1 55.2 56.0 59.4
cs HRL 50.6 50.1 50.6 50.1 50.2 49.9 51.4 48.3 49.5 51.0 52.1 48.2 50.6 51.7 56.4 55.9 56.7 53.5
da HRL 62.8 62.2 62.7 62.4 62.4 62.3 63.2 61.2 61.7 62.8 64.0 60.8 62.7 63.4 67.3 66.8 67.3 63.6
de HRL 55.9 55.7 56.2 55.5 55.5 55.4 56.7 53.8 55.0 56.2 57.5 54.0 56.0 57.1 61.4 60.9 61.6 62.6
el HRL 45.1 44.8 45.5 45.0 44.9 44.8 46.4 43.1 44.1 45.9 46.9 43.0 45.5 46.3 50.9 50.4 51.2 54.3
es HRL 51.6 51.4 51.7 51.5 51.4 51.4 51.9 50.7 51.1 51.8 52.3 50.5 51.6 52.1 54.5 54.2 54.6 61.6
fa HRL 46.0 45.2 46.1 45.0 45.3 45.0 46.7 44.0 44.6 46.0 47.0 43.5 45.9 47.1 50.7 49.9 50.7 59.1
fi HRL 48.5 48.2 48.6 48.0 48.1 48.0 49.6 46.4 47.5 48.9 50.3 46.4 48.5 50.0 55.3 54.6 55.5 68.5
fr HRL 63.3 62.7 63.4 63.0 62.8 62.7 64.0 61.7 62.3 63.5 64.7 61.5 63.2 64.1 68.6 68.3 68.7 59.3
hi HRL 54.4 53.9 54.3 53.8 53.8 53.9 54.8 52.4 53.0 54.5 55.3 52.5 54.4 55.1 58.2 57.8 58.4 68.4
hu HRL 47.5 47.2 47.9 47.2 47.2 47.2 49.0 45.1 46.6 48.4 49.8 45.1 47.8 49.1 54.9 54.2 55.2 58.7
id HRL 63.8 63.7 64.2 63.8 63.8 64.0 64.7 62.5 63.3 64.4 65.3 62.6 64.2 65.0 68.4 68.0 68.2 51.4
it HRL 52.8 52.7 53.1 52.6 52.5 52.6 53.4 51.7 52.2 53.2 53.8 51.5 52.8 53.7 57.0 56.6 57.2 61.2
iw HRL 46.3 45.4 46.7 45.9 45.7 46.0 48.0 43.6 44.9 47.1 48.9 43.3 46.8 47.9 55.2 54.2 55.4 59.6
ja HRL 29.3 29.0 29.4 28.7 28.9 29.0 30.2 26.9 28.2 29.6 31.0 27.1 29.6 30.8 36.4 35.7 36.9 59.8
ko HRL 26.6 26.4 26.9 26.5 26.5 26.3 27.6 24.3 25.7 27.6 28.7 24.4 27.2 28.3 33.4 32.3 33.4 60.7
ms HRL 64.1 63.9 64.1 63.8 63.9 63.9 64.7 62.4 63.2 64.2 65.4 62.5 64.1 64.9 67.7 67.4 67.6 70.6
nl HRL 52.5 52.4 52.4 52.3 52.3 52.3 53.1 51.2 51.8 52.8 53.5 51.1 52.6 53.2 55.8 55.7 56.2 68.1
no HRL 57.6 57.2 57.5 57.5 57.6 57.5 57.9 56.3 56.6 57.7 58.7 56.1 57.6 58.2 60.8 60.6 60.8 38.0
pl HRL 43.8 43.3 43.4 43.1 43.3 43.5 44.2 42.0 42.7 44.1 44.8 42.0 43.5 44.7 48.4 48.3 49.0 61.8
pt HRL 64.0 63.9 64.0 64.0 63.6 63.7 64.7 62.6 63.4 64.2 65.1 62.6 64.4 65.1 68.4 67.9 68.4 52.1
ro HRL 57.0 57.2 56.9 56.9 56.7 56.8 58.0 55.2 56.4 57.6 58.8 55.3 57.5 58.1 62.6 62.4 62.7 29.3
ru HRL 49.5 49.2 49.3 49.3 49.0 48.9 50.0 47.7 48.4 49.8 51.1 47.5 49.7 50.5 55.3 54.9 55.4 69.6
sk HRL 51.6 51.3 51.3 51.2 51.2 51.0 52.5 49.7 50.4 52.1 53.6 49.3 51.7 52.9 58.6 58.2 58.7 35.0
sv HRL 62.0 61.5 61.8 61.8 61.7 61.6 62.8 60.0 60.9 62.4 63.4 59.9 61.8 63.1 67.2 66.7 67.0 59.9
th HRL 44.2 44.0 43.4 43.5 43.4 44.0 44.7 41.6 42.8 45.0 45.6 41.3 44.1 45.6 50.1 50.0 50.2 57.8
tr HRL 53.4 52.8 52.7 52.9 52.8 53.0 54.3 51.0 52.0 53.6 55.1 50.9 53.2 54.5 59.6 59.2 59.8 59.0
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lang cat. B T T75 T50 T25 TGatitos CM CP CMP CM T GM GP GMP GM T BBIG TBIG (CM T)BIG NLLB
uk HRL 49.5 49.2 49.5 49.2 49.3 49.0 50.5 47.4 48.6 49.9 51.2 47.5 49.9 50.6 55.4 55.0 55.5 65.2
vi HRL 49.9 50.0 50.0 49.7 49.9 49.8 50.7 47.9 48.8 51.0 51.8 47.9 50.4 51.2 55.9 55.3 56.1 71.4
zh HRL 22.3 22.1 22.1 22.2 22.0 22.0 23.0 19.9 21.2 22.7 24.1 20.2 22.6 23.4 29.6 29.3 29.9 56.0
ar-Latn OOM 3.0 3.0 3.0 3.6 3.5 2.9 2.3 2.2 2.9 3.8 2.9 3.0 2.8 3.6 1.6 2.1 2.1 -
kr OOM 11.1 6.3 5.3 4.3 4.8 17.5 17.4 4.2 15.9 6.7 17.0 12.8 17.9 3.9 15.3 6.0 6.7 31.5
ki OOM 8.7 14.6 13.1 15.5 15.3 15.9 14.8 13.6 15.0 14.5 16.0 10.5 16.9 12.3 14.9 16.1 12.3 40.1
taq OOM 9.8 16.4 15.1 18.0 18.2 18.0 18.9 14.8 15.6 16.0 17.6 12.6 18.5 14.9 16.0 18.0 16.3 25.9
nn OOM 11.7 20.4 19.8 22.3 21.8 16.0 21.9 18.8 20.7 20.2 21.7 16.5 23.4 18.5 19.4 22.4 21.1 56.1
luo OOM 2.4 15.2 6.5 14.8 6.8 7.9 10.3 3.9 7.2 10.9 13.7 3.6 14.8 6.6 11.4 16.2 19.8 41.7
lmo OOM 11.6 19.6 18.4 21.6 21.1 21.0 22.5 17.9 19.6 20.1 21.5 15.8 22.4 18.1 18.8 21.4 20.5 38.7
li OOM 11.3 20.7 19.2 23.0 22.7 20.9 22.4 19.3 20.5 20.6 22.4 16.3 23.9 18.7 17.5 22.9 19.2 51.6
fur OOM 11.8 20.3 19.3 22.5 22.1 20.7 22.0 18.2 20.5 20.1 22.5 16.0 23.8 18.8 19.5 22.2 18.7 58.7
szl OOM 3.8 15.4 14.6 16.9 16.4 15.3 17.1 13.9 15.0 15.2 16.8 11.9 17.4 13.8 15.1 16.7 15.7 56.7
lij OOM 11.1 20.7 19.1 22.5 22.1 22.7 22.3 18.6 22.6 20.1 22.6 16.2 23.7 18.9 20.3 22.3 18.6 56.1
bjn OOM 9.2 15.1 14.2 16.7 16.4 16.4 16.9 13.6 14.3 14.9 16.9 11.9 17.2 13.9 14.7 16.7 14.7 51.8
sc OOM 11.1 19.8 18.5 22.0 21.4 21.7 21.2 17.6 20.9 19.3 22.0 16.4 22.7 18.8 19.3 21.7 19.4 58.1
ss OOM 8.8 15.4 13.7 16.5 16.2 16.6 15.6 14.2 16.0 15.3 16.8 11.1 17.8 13.5 15.5 17.1 10.5 49.2
bem OOM 8.5 14.7 13.0 15.8 15.5 14.2 14.9 13.5 15.2 14.4 16.2 10.7 16.9 12.6 10.3 16.5 12.6 42.3
lua OOM 9.1 15.1 14.2 16.6 16.8 17.3 16.2 13.6 15.3 14.9 16.5 12.9 17.1 13.7 15.2 16.3 14.4 39.4
kam OOM 3.0 15.1 5.9 13.2 11.5 8.5 11.3 4.2 6.5 10.0 10.6 4.2 14.6 6.2 11.4 15.6 18.3 28.8
min-Arab OOM 0.7 1.0 0.3 1.2 0.8 4.4 1.4 0.6 0.9 3.5 4.8 0.4 6.3 1.0 0.3 0.3 0.3 -
ace-Arab OOM 0.7 1.3 0.3 0.6 0.9 1.3 1.2 3.0 1.0 3.7 2.0 0.8 6.5 1.9 0.4 0.4 0.5 21.1
mos OOM 2.7 14.7 6.5 12.7 10.2 9.5 11.5 4.1 6.9 10.0 10.7 3.5 13.8 6.7 11.1 15.6 17.7 26.4
ast OOM 11.9 21.2 19.8 23.1 23.7 24.0 22.4 18.5 21.3 20.5 24.6 16.7 24.2 19.6 20.2 23.0 20.9 59.6
ars OOM 0.3 11.6 13.3 13.7 12.9 5.8 17.5 2.1 15.6 12.8 19.6 5.3 12.1 10.2 0.4 4.9 11.7 54.2
kea OOM 3.3 18.8 7.1 15.5 8.6 10.6 13.5 4.6 8.8 13.1 12.4 4.1 17.4 9.3 14.1 18.2 21.2 44.9
taq-Tfng OOM 2.0 4.6 5.5 1.7 5.2 3.9 5.3 3.7 5.2 5.1 5.9 4.7 6.6 6.3 0.8 0.6 8.1 19.3
bjn-Arab OOM 5.9 5.5 2.1 4.7 4.7 12.4 9.6 11.9 9.5 9.8 12.6 5.4 12.7 9.6 0.4 4.1 8.0 20.4

lang cat. B T T75 T50 T25 TGatitos CM CP CMP CM T GM GP GMP GM T BBIG TBIG (CM T)BIG NLLB
umb OOM 2.2 13.7 5.7 12.0 7.2 7.6 11.0 3.4 8.9 10.9 12.5 5.2 11.0 9.6 9.8 14.9 16.3 31.2
crh-Latn OOM 8.8 14.8 14.0 16.1 15.8 16.1 16.3 13.3 15.0 14.4 16.0 11.6 16.7 13.6 14.0 16.1 13.5 51.1
kr-Arab OOM 4.5 2.4 0.5 1.0 0.9 8.7 6.9 8.3 7.1 4.0 8.9 4.4 8.9 2.6 1.0 0.5 1.7 12.7
zh-Hant OOM 8.3 7.8 7.2 7.2 7.3 9.6 9.1 7.3 7.9 8.9 8.5 6.9 8.0 8.4 13.9 13.9 10.4 17.6
ajp OOM 0.4 13.1 14.2 14.3 13.9 6.2 19.1 3.4 17.5 12.9 17.6 8.6 13.3 9.8 1.1 5.6 19.5 56.0
ks-Deva OOM 3.6 3.5 3.9 4.4 4.4 3.5 3.6 3.3 3.5 5.3 4.0 3.5 3.7 5.6 3.3 3.1 3.7 20.4
kab OOM 1.5 4.4 2.7 8.0 1.6 4.7 2.3 2.1 1.7 2.3 1.8 1.5 3.7 0.9 4.7 3.4 4.5 37.9
azb OOM 0.2 0.6 14.6 2.3 5.4 0.4 0.5 0.8 0.4 0.4 0.5 0.2 0.4 0.4 0.5 0.7 0.6 27.8

Table 24: Full Results of CHRF on FLORES for the models that we trained, in the en→xx direction. See Table 23 to demystify
the model abbreviations.

lang cat. B T T75 T50 T25 TGAT CM CP CMP CM T GM GP GMP GM T BBIG TBIG (CM T)BIG NLLB
µ mean 47.2 47.2 47.1 46.7 46.8 46.4 47.4 46.0 46.4 47.3 47.9 45.9 47.3 47.8 53.3 53.0 52.9 59.9
HRL mean 57.2 56.9 56.9 56.8 56.8 56.5 57.7 55.6 56.5 57.5 58.4 55.5 57.2 58.1 62.6 62.0 62.6 65.7
MRL mean 52.1 51.8 51.9 51.5 51.8 51.3 52.5 50.6 51.2 52.2 53.2 50.5 52.1 52.9 58.1 57.7 58.0 63.3
LRL mean 43.6 43.8 43.5 43.0 43.5 42.8 43.8 42.4 42.8 43.9 44.3 42.4 43.6 44.3 50.2 50.0 49.7 60.4
URL mean 37.0 37.5 37.2 36.7 36.6 36.4 36.9 36.7 36.2 36.9 37.0 36.4 37.5 37.1 43.4 43.3 42.3 49.2
OOM mean 32.5 32.5 32.5 31.8 32.1 31.5 33.0 31.5 31.4 32.7 33.0 31.4 32.8 32.8 37.9 37.5 37.3 -
∆UL URL 39.0 39.4 39.1 38.6 38.6 38.3 38.9 38.4 38.2 39.0 39.2 38.2 39.3 39.3 45.4 45.3 44.5 52.6
— — — — — — — — — — — — — — — — — — — —
ace URL 29.6 30.0 30.2 29.0 29.0 29.0 29.1 30.8 29.3 28.8 27.8 30.2 31.4 29.4 36.2 35.1 34.1 41.2
acm URL 51.2 50.7 50.9 50.5 50.5 50.2 51.5 49.0 50.0 51.5 52.2 48.9 50.8 52.2 58.1 57.7 57.4 61.4
acq URL 52.5 51.8 52.2 51.9 52.1 51.7 52.9 50.5 51.2 52.8 54.0 50.3 52.5 53.6 59.7 58.8 58.9 32.9
aeb URL 46.1 45.9 46.0 45.7 45.8 45.4 46.6 44.4 45.1 46.4 47.2 44.4 46.1 47.2 53.2 52.3 52.5 73.7
apc URL 50.8 50.6 50.9 50.4 50.5 50.4 51.4 49.2 50.0 51.2 52.1 49.0 51.0 52.2 59.5 58.3 58.4 62.2
ar-MA URL 41.6 41.6 41.6 41.2 41.5 41.0 41.9 40.1 41.3 42.1 42.6 40.1 42.1 42.7 49.0 48.2 47.7 35.8
arz URL 48.7 48.5 48.8 48.6 48.4 48.0 49.2 47.1 48.2 48.9 49.9 47.0 48.9 49.8 55.9 54.9 54.9 64.5
awa URL 54.3 53.8 53.8 53.5 53.8 53.5 53.7 52.6 53.2 53.9 55.2 52.7 54.1 54.9 60.5 60.5 60.3 35.4
ber URL 23.7 23.1 22.3 21.9 22.5 17.5 21.4 22.3 21.1 20.5 22.0 23.4 22.5 20.9 34.3 32.4 28.3 43.0
bm URL 22.1 25.7 24.9 23.8 22.8 23.9 23.4 22.2 23.3 25.4 21.6 22.6 22.6 23.4 24.2 29.7 26.2 53.5
bug URL 24.8 25.5 25.5 24.4 25.0 24.5 26.1 25.4 24.5 25.1 26.2 24.4 26.6 25.2 29.3 29.0 27.8 35.7
cjk URL 20.2 20.7 20.6 19.6 19.8 19.1 20.5 19.9 20.3 20.9 20.1 19.8 20.6 20.2 24.1 23.7 23.7 51.3
din URL 21.8 21.3 21.7 20.2 20.1 20.3 21.1 20.9 20.1 20.7 20.5 21.2 20.8 20.5 22.3 22.2 22.1 30.0
dyu URL 18.2 19.1 19.4 18.2 17.7 17.8 19.2 17.4 18.0 19.1 18.6 17.6 18.5 18.3 20.3 20.4 19.3 67.4
fon URL 19.7 21.5 20.3 19.4 19.0 19.4 19.8 20.9 19.3 19.5 19.8 20.6 21.2 19.8 22.3 23.1 20.6 36.6
hne URL 55.4 54.4 55.0 54.6 55.2 54.8 54.3 54.5 53.7 54.7 56.0 54.0 56.0 56.4 64.0 63.9 63.9 44.9
ilo URL 44.7 46.6 46.0 45.8 44.5 45.2 44.7 45.1 44.1 45.7 43.5 44.4 44.4 45.8 55.2 55.1 55.6 42.2
kac URL 18.7 19.1 17.5 17.7 17.3 18.4 17.8 18.6 17.4 18.9 18.3 20.2 19.4 18.0 21.8 20.7 18.9 66.7
kbp URL 23.5 25.0 23.4 23.1 22.8 22.9 22.9 24.9 23.3 22.9 23.4 25.0 23.6 23.6 24.5 25.8 23.2 62.3
kmb URL 20.5 20.5 20.2 18.8 19.7 19.0 20.4 20.0 20.1 20.4 20.3 20.4 20.7 20.3 23.6 23.4 23.2 53.9
ltg URL 43.9 44.7 44.7 44.5 44.8 44.0 43.7 44.3 43.0 43.3 44.0 43.8 45.0 44.5 55.9 58.0 57.1 33.7
lus URL 20.3 22.9 22.9 19.9 20.9 23.4 22.7 21.7 22.2 25.2 21.5 19.8 23.2 21.4 23.5 23.7 22.6 73.8
mag URL 56.6 55.2 55.5 56.0 55.7 55.3 56.0 55.2 54.7 55.9 57.5 54.9 57.0 57.6 63.8 63.3 63.5 35.4
mai URL 54.8 54.4 54.7 54.7 54.5 54.5 54.6 54.0 53.7 54.9 56.8 53.8 55.7 56.1 63.2 62.0 63.4 44.6
min URL 39.8 40.8 41.0 40.8 40.9 40.2 39.6 41.8 40.3 38.9 38.2 42.0 42.4 39.3 48.2 49.2 47.5 43.7
mni URL 32.8 31.6 32.1 31.8 28.6 31.7 28.6 34.9 27.7 28.4 29.7 29.8 32.8 28.2 37.9 44.1 40.2 36.7
nus URL 18.0 19.0 18.2 17.8 17.3 17.4 17.9 18.2 17.2 16.4 17.3 18.0 18.1 16.5 20.1 20.4 17.1 32.7
pag URL 38.2 39.8 39.0 39.5 37.3 37.2 37.7 39.5 37.5 37.5 38.5 38.5 39.7 38.2 47.3 46.8 44.9 64.0
pap URL 57.3 56.9 56.9 56.0 56.2 55.4 57.3 54.7 55.9 56.2 56.3 55.3 56.8 56.5 68.0 66.2 66.3 51.5
quy URL 27.8 29.3 28.3 28.3 27.7 28.8 28.6 28.5 28.7 29.6 26.8 28.2 27.9 28.7 33.3 33.2 33.5 52.3
scn URL 51.2 51.6 51.4 50.9 51.2 50.5 51.6 50.3 50.2 51.2 51.8 50.3 51.3 51.6 59.2 58.9 57.8 60.7
sg URL 21.4 23.3 22.0 21.4 21.6 21.0 21.6 22.4 21.8 22.3 22.3 22.6 22.8 21.8 27.3 25.6 24.8 65.3
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lang cat. B T T75 T50 T25 TGAT CM CP CMP CM T GM GP GMP GM T BBIG TBIG (CM T)BIG NLLB
shn URL 33.1 34.4 32.4 32.7 31.6 29.7 30.6 32.7 32.7 30.2 31.6 32.1 33.6 32.8 42.7 40.7 38.0 48.4
vec URL 53.4 54.6 54.0 53.9 54.5 53.9 54.1 52.9 52.9 53.5 54.1 52.5 53.8 53.8 63.0 62.7 61.4 42.0
war URL 58.1 58.9 58.5 58.6 58.6 58.7 57.3 57.6 56.8 57.0 58.1 57.4 58.6 57.3 66.0 65.8 65.2 42.9
am LRL 46.8 46.5 46.9 46.2 47.1 46.1 47.4 45.2 46.0 47.0 48.8 44.7 47.3 48.5 54.7 53.8 54.2 71.1
as LRL 41.1 41.0 38.5 37.4 39.7 37.0 38.8 36.3 36.2 41.9 41.8 37.4 39.3 41.2 49.5 47.3 46.3 45.4
ay LRL 22.2 23.8 24.3 23.0 22.4 23.2 23.5 22.9 23.6 24.6 21.8 22.5 23.1 23.4 25.7 28.8 28.7 70.2
ba LRL 37.7 36.0 32.9 35.1 35.9 31.0 37.0 34.1 33.5 40.2 39.4 35.6 35.2 38.7 41.4 39.8 42.1 52.1
ban LRL 44.9 44.8 45.1 43.6 44.1 44.0 44.3 45.1 43.5 43.6 44.3 44.9 45.2 45.7 48.9 49.9 48.5 54.9
be LRL 47.9 47.6 47.6 47.3 47.4 47.1 48.2 46.5 47.2 48.0 48.8 46.2 47.7 48.5 52.2 51.8 52.3 48.2
bho LRL 47.1 46.7 46.9 46.6 47.1 46.8 47.1 46.5 46.4 47.1 48.2 46.3 47.8 48.2 54.5 54.1 54.1 53.4
bo LRL 13.7 15.2 12.4 14.4 13.7 14.0 16.2 13.0 16.0 17.2 16.2 14.5 15.6 16.3 22.2 20.7 19.5 63.6
cy LRL 68.5 68.2 68.5 67.7 68.1 67.5 69.2 66.2 67.3 69.0 70.0 65.8 68.5 69.6 75.3 74.9 75.6 44.0
dz LRL 21.4 23.3 21.5 18.2 22.2 18.5 21.3 20.3 22.0 22.4 21.6 20.0 20.5 20.9 29.9 29.2 28.8 63.0
ee LRL 27.4 28.9 28.8 27.6 26.8 28.5 27.4 28.4 27.7 28.7 26.7 29.3 27.6 28.8 28.0 30.0 26.7 52.0
eo LRL 61.7 61.3 61.4 61.2 61.3 61.1 62.0 60.4 61.1 61.9 62.4 60.3 61.6 62.4 65.8 65.2 66.0 52.4
eu LRL 50.7 50.2 50.2 50.1 50.1 49.7 51.1 48.6 49.9 50.7 51.8 48.8 50.5 51.7 56.9 56.3 56.9 68.0
fa-AF LRL 54.6 54.1 54.3 54.0 54.4 53.8 55.0 52.9 53.4 54.7 55.9 53.1 54.6 55.7 61.2 60.2 60.9 61.7
ff LRL 20.5 21.9 21.6 20.9 20.4 20.7 21.3 20.5 21.5 22.0 20.4 20.9 21.0 20.9 22.8 23.8 23.6 61.2
fj LRL 32.5 31.6 31.3 29.7 31.2 29.4 29.7 32.8 28.9 28.8 31.7 32.4 32.1 29.3 36.5 36.7 32.5 54.6
fo LRL 50.6 50.5 50.3 50.4 50.3 49.8 51.3 49.7 50.3 50.6 51.4 49.3 50.4 50.9 58.9 58.2 58.6 52.1
ga LRL 57.0 56.6 56.3 56.3 56.2 56.2 57.5 55.0 56.1 57.5 58.5 54.8 57.1 58.0 65.2 64.4 65.4 61.8
gn LRL 31.6 34.3 33.8 32.6 32.5 32.8 32.4 31.2 31.4 34.4 30.6 31.6 31.9 33.6 42.2 42.4 42.3 52.9
gu LRL 56.6 56.0 56.1 55.9 56.3 55.8 57.1 54.7 55.6 56.8 57.8 54.7 56.6 57.3 63.0 62.3 63.1 60.1
ht LRL 55.3 54.8 55.0 55.1 55.0 54.4 55.7 54.0 54.5 55.5 56.5 54.0 55.2 56.1 61.3 60.7 61.2 63.6
jv LRL 52.2 51.5 52.0 51.4 51.6 51.3 52.5 51.1 51.1 52.3 53.3 50.8 52.3 53.1 58.5 57.9 57.9 54.6
kg LRL 30.9 31.8 31.6 31.4 31.0 31.0 30.4 32.6 30.9 30.5 30.5 32.5 31.3 31.3 34.2 35.1 31.1 77.2
kn LRL 53.1 52.7 52.7 52.7 52.9 52.4 53.6 51.4 52.0 53.1 54.4 51.2 53.2 53.9 59.0 58.4 59.2 54.6
ks LRL 31.6 31.5 32.6 30.5 31.6 30.0 32.2 31.1 30.9 32.4 33.7 32.0 33.2 34.1 43.0 43.2 40.1 43.7
ku LRL 43.5 43.1 43.4 42.8 42.9 42.3 43.4 42.2 42.4 43.6 44.3 42.1 43.5 44.1 51.2 49.8 49.9 65.0
ky LRL 45.3 45.0 44.9 44.9 45.2 44.3 45.8 43.6 44.6 45.7 46.5 43.6 45.5 46.2 50.3 50.2 50.2 64.0
lb LRL 59.8 59.2 59.3 59.0 59.3 59.0 60.3 58.2 58.6 60.1 61.1 58.1 59.9 60.6 66.5 66.2 66.6 65.4
lg LRL 29.6 31.0 30.5 29.5 29.2 29.9 29.9 30.2 30.0 31.0 29.1 29.9 29.3 30.3 38.7 38.1 36.2 73.4
ln LRL 36.5 37.5 37.3 36.2 36.3 36.7 36.6 35.6 36.4 37.7 35.7 35.5 36.0 37.9 44.9 44.4 44.3 59.5
mn LRL 47.8 47.5 47.4 47.1 47.2 46.9 48.2 46.0 46.8 47.8 49.2 45.9 48.0 48.9 54.3 54.1 54.3 62.7
mt LRL 69.7 69.1 69.2 69.2 69.3 68.9 70.2 68.0 68.6 69.8 70.9 67.8 69.5 70.6 75.5 75.0 75.4 68.1
my LRL 44.7 43.9 44.0 43.7 44.5 43.0 45.5 42.4 44.0 45.0 45.6 42.6 44.3 45.8 50.5 49.9 50.4 66.7
nso LRL 47.8 47.9 47.9 47.2 47.1 47.1 47.6 46.2 46.9 47.5 48.4 46.5 47.8 48.7 57.1 56.6 56.2 52.5
oc LRL 65.8 65.8 65.6 65.1 65.3 65.2 66.6 64.6 66.0 66.5 66.3 64.6 66.0 66.4 71.2 70.4 70.3 67.9
om LRL 30.3 31.3 30.5 28.5 30.3 29.7 29.4 29.9 29.0 30.6 28.4 29.8 28.9 30.0 43.5 42.3 42.1 61.8
pa LRL 55.6 55.1 55.5 55.4 55.4 54.9 56.2 54.0 54.9 56.3 57.2 53.8 56.1 56.9 63.6 62.5 63.2 59.8
ps LRL 47.8 46.8 47.2 46.8 46.9 46.7 47.8 46.3 46.5 47.8 48.5 45.8 47.7 48.1 54.0 53.2 52.8 71.2
rn LRL 36.0 35.5 35.4 35.3 35.7 34.9 34.6 34.7 34.6 34.7 36.1 35.1 35.5 35.8 44.4 43.1 43.1 57.4
rw LRL 41.1 40.4 40.1 39.4 40.2 39.3 39.5 39.5 39.2 39.3 40.8 39.6 40.6 41.0 49.9 48.7 49.0 65.2
sa LRL 39.3 40.0 39.8 39.8 39.8 40.1 40.6 39.5 40.1 40.5 40.2 39.1 39.7 40.6 46.6 46.7 47.5 77.1
si LRL 50.7 50.4 50.0 50.3 50.2 49.9 51.6 48.6 49.8 51.1 52.7 48.4 50.7 52.2 58.3 57.2 58.3 77.6
su LRL 52.9 52.2 52.7 52.4 52.6 52.2 53.1 51.7 51.8 52.9 53.6 51.4 53.1 53.3 57.7 57.4 57.0 61.1
tg LRL 50.3 50.1 49.6 49.8 49.9 49.2 50.6 48.2 49.4 50.5 51.7 48.2 50.3 51.3 57.8 56.8 57.4 70.2
ti LRL 30.2 31.3 30.7 27.3 33.2 28.5 31.5 26.0 29.4 31.1 32.3 24.5 30.4 31.3 42.1 40.5 40.1 56.3
tk LRL 50.6 50.0 50.1 50.0 49.8 49.3 51.0 48.0 49.2 50.4 52.2 48.4 50.6 51.5 59.0 58.2 58.6 40.9
tn LRL 43.9 43.8 43.6 43.5 43.9 43.1 43.6 42.4 42.6 43.4 44.6 42.4 43.8 44.2 50.0 49.7 49.6 63.7
tpi LRL 44.1 46.0 45.3 46.3 45.7 44.7 43.0 43.8 42.6 42.2 41.6 43.9 44.2 43.4 41.0 50.1 46.1 68.4
ts LRL 35.7 38.8 38.4 37.6 37.8 38.7 35.7 36.3 36.4 37.2 36.0 37.0 36.4 37.2 41.1 44.6 41.2 58.4
tum LRL 32.1 34.1 33.1 31.9 32.7 32.7 31.8 33.2 32.5 32.3 32.7 33.2 32.6 32.8 34.7 34.4 34.3 55.4
ug LRL 43.2 43.2 43.2 42.8 43.0 42.3 43.9 41.7 42.6 43.6 44.5 41.4 43.2 44.5 49.9 49.1 49.3 63.1
wo LRL 31.3 31.6 31.0 31.0 31.7 31.1 29.6 28.8 29.7 29.0 29.5 29.6 30.3 29.3 40.8 40.3 37.7 61.2
xh LRL 49.4 48.9 48.9 48.8 49.0 48.6 49.5 47.8 48.2 48.9 50.1 47.7 49.4 49.4 55.8 55.4 54.9 51.9
af MRL 70.4 69.9 70.2 69.9 69.9 69.7 70.7 69.2 69.6 70.4 71.7 68.8 70.4 71.2 75.1 74.5 74.9 60.6
az MRL 48.0 47.6 47.9 47.6 47.9 47.2 48.5 46.5 47.2 48.2 49.2 46.4 48.0 48.7 52.9 52.5 52.5 66.2
bg MRL 61.4 60.8 61.0 61.0 61.2 60.8 61.8 59.8 60.5 61.6 62.3 59.8 61.3 62.1 66.3 65.9 66.5 68.4
bn MRL 53.2 52.7 53.1 52.6 52.7 52.2 54.2 51.3 52.5 53.3 54.5 51.1 53.3 54.3 59.8 59.4 60.0 58.3
bs MRL 60.8 60.5 60.6 60.5 60.3 60.4 61.5 59.6 60.2 61.2 62.0 59.3 60.9 61.7 66.0 65.6 65.8 62.9
ca MRL 64.3 63.9 64.2 64.0 63.9 63.8 64.7 63.2 63.8 64.6 65.2 63.1 64.4 65.1 68.6 68.1 68.5 61.6
ceb MRL 58.5 58.2 58.2 58.0 58.3 57.7 58.1 57.8 56.9 57.8 59.3 57.2 58.4 58.7 65.3 64.7 64.6 58.3
ckb MRL 42.8 44.0 43.8 43.2 42.3 43.3 43.4 41.9 42.0 44.2 43.2 41.3 42.2 44.5 55.1 54.0 54.2 67.4
et MRL 56.7 56.0 56.0 56.0 56.1 55.6 57.0 54.9 55.3 56.6 57.8 54.6 56.5 57.3 63.1 62.4 63.0 59.5
fil MRL 60.9 60.8 60.8 60.6 60.5 60.3 61.6 59.6 59.9 61.1 62.4 59.5 61.0 61.9 67.5 66.8 67.3 61.6
gd MRL 51.8 51.2 50.9 50.6 51.1 50.7 52.0 50.0 51.1 51.8 52.8 49.7 51.3 52.2 57.8 57.5 58.1 64.9
gl MRL 61.5 61.4 61.3 61.2 61.3 61.2 61.8 60.5 61.1 61.8 62.2 60.5 61.6 62.3 65.1 64.7 65.0 68.7
ha MRL 41.2 40.7 40.8 39.8 41.6 39.9 41.4 40.7 39.8 40.5 41.5 40.4 41.9 41.5 45.8 45.6 45.6 61.9
hr MRL 57.8 57.4 57.7 57.4 57.6 57.3 58.2 56.7 57.2 58.1 58.9 56.5 58.0 58.6 62.6 62.1 62.6 62.7
hy MRL 54.6 54.6 54.7 54.5 54.3 53.8 55.7 53.1 54.3 55.7 55.9 52.8 54.7 55.8 61.2 60.7 61.7 55.9
ig MRL 38.6 38.4 38.6 37.2 38.4 37.6 38.6 37.8 37.8 38.6 39.7 37.6 38.9 38.8 43.9 43.3 43.1 67.3
is MRL 51.4 51.0 50.9 50.9 50.8 50.7 52.0 49.5 50.3 51.7 52.7 49.4 51.2 52.1 58.2 57.5 58.4 72.4
ka MRL 49.6 49.6 49.6 49.5 49.5 49.0 50.6 48.0 49.4 50.5 51.0 48.1 49.6 50.7 55.1 54.8 55.6 67.0
kk MRL 52.5 52.1 52.1 52.4 52.0 51.5 53.2 50.7 51.6 52.8 53.8 50.6 52.6 53.6 59.1 58.4 59.1 68.8
km MRL 47.7 47.3 47.5 46.5 48.1 45.5 48.3 45.9 47.3 47.9 49.0 46.2 47.0 48.3 52.2 52.1 52.9 77.2
lo MRL 52.1 51.6 52.1 51.8 51.9 51.3 52.5 50.7 51.6 52.7 53.2 51.0 52.0 53.6 59.2 58.4 59.1 68.9
lt MRL 52.9 52.8 52.6 52.7 52.5 52.2 53.5 51.3 52.1 53.1 54.5 51.2 53.0 53.8 58.6 58.3 58.7 65.8
lv MRL 56.6 56.2 56.2 56.2 56.2 55.9 57.1 55.1 55.6 56.6 57.7 55.0 56.6 57.5 62.5 62.1 62.4 52.9
mg MRL 42.3 41.5 41.8 40.4 41.3 40.9 41.8 41.0 40.9 41.2 42.9 40.6 42.0 42.4 46.0 46.9 46.7 57.8
mi MRL 41.7 41.7 41.7 41.4 41.3 41.0 42.5 40.2 41.8 42.6 42.7 40.3 41.8 43.0 48.2 47.5 48.3 64.4
mk MRL 61.3 60.9 60.8 60.7 60.9 60.6 61.5 59.6 60.5 61.2 62.1 59.6 61.3 61.8 66.1 65.6 66.1 64.8
ml MRL 53.6 53.2 53.0 53.0 53.3 52.3 54.1 51.4 52.8 54.1 54.9 51.3 54.0 54.5 60.6 59.5 60.7 62.8
mr MRL 53.5 53.0 53.1 53.1 53.1 52.6 54.3 52.0 52.7 53.7 54.9 51.6 53.8 54.5 59.9 59.3 59.7 59.3
ne MRL 57.2 56.6 56.6 56.8 56.9 56.5 57.4 55.4 56.1 57.3 58.8 55.3 57.4 58.2 63.7 62.9 63.6 47.9
ny MRL 41.1 41.1 40.6 40.5 41.1 40.2 41.1 40.5 40.2 40.7 41.8 40.4 41.5 41.3 45.2 45.4 44.9 67.9
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lang cat. B T T75 T50 T25 TGAT CM CP CMP CM T GM GP GMP GM T BBIG TBIG (CM T)BIG NLLB
or MRL 50.3 49.5 49.5 49.2 49.3 48.7 50.5 48.2 49.3 50.0 52.0 47.9 50.2 51.2 60.3 59.1 59.9 68.8
sd MRL 53.1 52.3 52.7 52.3 52.3 52.1 53.3 51.7 52.1 53.2 54.1 51.2 53.3 53.6 60.0 59.1 59.3 59.1
sl MRL 56.0 55.8 55.7 55.6 55.6 55.2 56.2 54.5 55.1 56.0 57.0 54.5 55.9 56.6 61.1 60.7 61.1 56.5
sm MRL 46.0 46.5 46.6 45.5 46.5 45.4 46.1 45.3 45.7 45.8 47.3 45.3 46.3 46.7 51.6 51.6 49.6 64.2
sn MRL 42.3 42.0 42.0 41.7 42.0 41.2 42.1 41.5 41.4 42.0 43.1 41.4 42.2 42.4 47.3 46.7 46.4 58.7
so MRL 41.1 40.8 41.1 40.0 41.2 40.1 41.3 40.5 40.3 40.7 42.1 40.6 41.7 41.2 46.7 46.6 46.1 71.1
sq MRL 59.9 59.6 59.5 59.4 59.7 59.2 60.3 58.5 59.0 59.8 61.0 58.0 59.9 60.5 65.3 64.8 65.2 54.4
sr MRL 60.2 59.9 59.7 60.1 59.8 59.6 60.7 58.6 59.1 60.5 61.6 58.3 60.3 61.0 66.3 66.1 66.3 71.3
st MRL 50.3 49.7 49.9 49.6 49.7 49.3 50.2 48.7 48.9 49.9 51.2 48.7 49.9 50.8 58.1 57.1 57.4 63.0
sw MRL 56.3 55.8 55.9 55.6 55.9 55.5 56.6 54.4 54.8 56.0 57.7 54.3 56.1 57.1 63.2 62.2 62.6 63.4
ta MRL 51.3 50.6 50.9 50.4 50.7 50.1 51.8 49.0 50.2 51.2 52.3 49.2 51.1 51.9 57.8 56.8 57.6 66.8
te MRL 56.6 55.3 55.7 55.6 55.6 55.2 56.7 53.6 55.0 56.1 57.6 53.9 56.1 57.3 62.8 61.9 62.7 60.9
tt MRL 48.3 48.2 48.0 48.2 48.3 47.7 48.5 46.7 47.6 48.3 49.0 46.6 47.9 48.9 55.9 55.5 55.5 64.6
ur MRL 53.0 52.5 52.7 52.4 52.8 52.3 53.7 51.5 52.2 53.4 54.6 51.4 53.2 54.2 59.5 58.7 59.5 69.4
uz MRL 53.3 52.7 52.9 52.6 52.8 52.1 53.9 51.4 52.3 53.2 54.7 51.3 53.4 54.2 59.6 59.4 59.6 54.1
yi MRL 48.2 47.5 49.0 45.9 46.7 47.9 48.7 45.3 45.9 48.7 48.0 45.2 46.3 48.4 52.1 53.9 51.6 61.2
yo MRL 35.4 35.5 35.4 35.0 35.2 34.8 35.8 34.0 35.2 35.8 36.5 34.1 35.2 36.0 40.6 40.1 40.4 62.9
yue MRL 46.1 46.6 46.4 46.6 46.5 45.9 46.6 44.9 45.3 46.6 47.3 44.2 46.2 47.4 54.4 53.9 54.3 58.5
zu MRL 49.9 49.2 49.3 48.9 49.5 48.7 49.7 48.3 48.2 50.2 50.7 48.1 49.9 51.1 56.3 56.4 56.3 68.3
ar HRL 55.7 55.2 55.5 55.2 55.1 55.1 56.5 53.5 54.4 56.0 57.3 53.4 55.5 57.2 63.1 62.4 62.9 63.0
cs HRL 59.0 58.7 58.9 58.7 58.6 58.5 59.5 57.6 58.5 59.4 60.2 57.4 59.0 60.0 64.0 63.4 63.9 65.7
da HRL 66.2 65.6 65.8 65.7 65.5 65.5 66.6 64.8 65.3 66.0 66.8 64.7 66.0 66.5 70.1 69.7 70.3 70.4
de HRL 61.4 61.0 61.2 60.9 61.0 60.7 62.1 59.8 60.7 61.7 62.6 59.6 61.4 62.2 66.6 66.1 66.7 69.0
el HRL 54.9 54.6 54.6 54.8 54.8 54.5 55.5 53.5 54.6 55.4 56.3 53.4 55.0 56.0 60.0 59.5 60.5 64.9
es HRL 55.5 55.5 55.4 55.3 55.4 55.3 55.8 54.5 55.4 55.9 56.3 54.7 55.5 56.1 59.4 59.1 59.3 66.1
fa HRL 54.6 54.2 54.3 54.3 54.5 53.9 55.0 52.8 53.6 54.9 56.1 52.6 54.8 55.7 60.7 59.8 60.7 66.7
fi HRL 53.0 52.7 52.6 52.5 52.2 52.1 53.7 50.9 52.2 53.5 54.6 50.9 53.0 54.0 60.0 59.2 60.0 69.7
fr HRL 63.5 63.2 63.2 63.2 63.3 63.1 63.8 62.3 62.8 63.6 64.5 62.0 63.7 64.1 67.7 67.2 67.6 68.3
hi HRL 59.2 58.5 58.8 58.6 58.8 58.5 59.5 57.8 58.1 59.1 60.3 57.3 59.3 60.0 64.8 64.0 64.6 71.3
hu HRL 54.0 53.7 53.8 53.6 53.5 53.2 54.4 52.2 53.1 54.3 55.4 51.9 53.8 55.0 60.4 59.8 60.4 63.7
id HRL 61.8 61.4 61.7 61.4 61.4 61.2 62.2 60.6 61.0 61.8 62.7 60.3 61.9 62.6 66.4 66.0 66.3 60.0
it HRL 57.5 57.2 57.1 57.3 57.3 57.0 57.7 56.3 56.9 57.7 58.3 56.3 57.5 57.9 61.5 61.1 61.4 68.0
iw HRL 56.4 55.9 55.9 55.5 55.8 55.5 57.6 53.8 55.6 57.0 58.4 53.7 56.3 57.7 64.3 63.6 64.8 64.2
ja HRL 47.9 47.7 47.6 47.4 47.6 47.2 48.6 46.1 47.3 48.5 49.3 45.9 48.1 49.1 54.5 53.7 54.5 66.4
ko HRL 48.2 48.3 48.1 47.9 48.1 47.6 49.6 46.5 48.1 49.2 49.9 46.1 48.7 49.8 55.2 54.8 55.5 68.6
ms HRL 62.1 61.6 61.8 61.7 61.8 61.3 62.4 60.7 61.2 62.1 63.3 60.5 62.2 63.0 67.2 66.4 66.9 69.0
nl HRL 55.2 55.1 54.9 54.8 54.8 54.7 55.4 54.1 54.6 55.2 56.0 53.9 55.0 55.6 58.6 58.5 58.8 71.2
no HRL 62.6 62.4 62.2 62.3 62.3 62.1 63.0 61.3 61.7 62.8 63.4 61.1 62.5 63.2 66.6 65.8 66.5 59.0
pl HRL 51.5 51.5 51.4 51.0 51.1 50.9 52.1 50.2 50.9 51.8 52.6 50.3 51.6 52.4 55.7 55.0 55.8 66.1
pt HRL 66.3 66.0 66.0 66.0 66.0 65.8 66.6 65.2 65.9 66.5 67.4 65.2 66.5 67.0 70.3 69.7 70.1 59.5
ro HRL 62.8 62.7 62.5 62.4 62.4 62.4 63.5 61.5 62.2 63.0 64.1 61.3 62.8 63.6 67.6 67.3 67.4 59.5
ru HRL 56.1 56.0 56.0 55.8 55.9 55.5 56.6 54.8 55.4 56.3 57.2 54.5 56.1 56.8 60.8 60.1 60.8 72.7
sk HRL 58.5 58.5 58.3 58.5 58.5 58.2 59.3 57.3 58.0 58.9 60.2 57.2 58.9 59.7 64.4 63.8 64.2 58.2
sv HRL 65.2 64.8 64.9 64.7 64.9 64.5 65.5 63.7 64.4 65.2 66.1 63.4 65.0 65.6 69.7 69.4 69.6 63.3
th HRL 49.2 48.5 48.3 48.1 48.2 47.3 49.4 46.8 48.2 49.4 50.4 47.2 48.8 49.7 56.1 55.4 56.3 61.2
tr HRL 57.1 56.4 56.5 56.3 56.1 56.0 57.3 55.1 55.8 57.2 58.4 54.5 57.0 57.7 63.1 62.2 63.0 63.7
uk HRL 57.9 57.4 57.3 57.3 57.4 57.3 58.2 56.4 57.0 58.0 59.1 56.1 57.8 58.5 63.3 62.6 63.3 69.2
vi HRL 54.1 53.5 53.2 53.4 53.3 53.3 54.5 52.2 53.4 54.3 55.5 52.2 54.3 54.7 59.7 59.0 59.5 70.1
zh HRL 48.5 48.7 48.4 48.6 48.5 48.1 49.3 46.7 48.0 49.1 50.2 46.8 49.0 50.0 55.0 54.2 55.1 61.4

Table 25: Full Results of CHRF on FLORES for the models that we trained, in the xx→en direction. See Table 23 to demystify
the model abbreviations.
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