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Abstract

Handwritten mathematical expression recogni-
tion (HMER) is a multidisciplinary task that
generates LaTeX sequences from images. Ex-
isting approaches, employing tree decoders
within attention-based encoder-decoder archi-
tectures, aim to capture the hierarchical tree
structure, but are limited by CFGs and pre-
generated triplet data, hindering expandabil-
ity and neglecting visual ambiguity challenges.
This article investigates the distinctive lan-
guage characteristics of LaTeX mathematical
expressions, revealing two key observations:
1) the presence of explicit structural symbols,
and 2) the treatment of symbols as minimal
units, each directly assigned specific seman-
tics. Rooted in these properties, we propose
that language models have the potential to syn-
chronously and complementarily provide both
structural and semantic information, making
them suitable for correction of HMER. To val-
idate our proposition, we propose an architec-
ture called Recognition and Language Fusion
Network (RLFN), which integrates recognition
and language features to output corrected se-
quences while jointly optimizing with a string
decoder recognition model. Experiments show
that RLFN outperforms existing state-of-the-
art methods on the CROHME 2014/2016/2019
datasets.!

1 Introduction

Handwritten Mathematical Expression Recognition
(HMER), a demanding subsection of optical char-
acter recognition (OCR), constitutes an interdisci-
plinary crossroad of computer vision, pattern recog-
nition, and natural language processing (NLP). The
unfolding of deep learning advancements has no-
tably enhanced the effectiveness of HMER, ush-
ering its adoption in diverse arenas, including in-
telligent education. Nonetheless, the precision of
these technologies is continuously challenged by

"ttps://github.com/Zui-C/RLFN

inherent ambiguities in handwritten characters and
the complexity of mathematical formulas. These
hurdles underscore the pivotal role that NLP could
play in enhancing the robustness of current visual
models grappling with these issues.

The encoder-decoder architecture is the preva-
lent method for HMER, which recasts the prob-
lem as an image-to-sequence translation task, con-
verting a handwritten formula image into a LaTeX
markup sequence. In contrast to traditional OCR
tasks, the two-dimensional structure of handwritten
formulas necessitates an approach that doesn’t rely
on direct segmentation. Since Zhang et al. (2017)
introduces a decoder using RNN with attention,
subsequent work has concentrated on enhancing
the accuracy of the visual attention (Zhao et al.,
2021; Bian et al., 2022; Li et al., 2022). Currently,
various tree decoders and methods of syntactic anal-
ysis, such as Zhang et al. (2020) and Yuan et al.
(2022), are employed to focus on analyzing the
expression structure and the relations of symbols.

While structure-focused methods have undeni-
ably enriched recognition model capabilities, they
have also precipitated two notable challenges: 1)
They rely on complex Context-Free Grammars
(CFGs), necessitating the pre-transformation of the
LaTeX markup sequence into specific tuple rep-
resentations, which limits their extensibility. 2)
The issue of visual ambiguity is left behind. Tree
decoders pay less attention to context when predict-
ing triples, often unable to distinguish differences
such as ‘2" and ‘z’. Ung et al. (2021) try to em-
ploy a language model (LM) for post-correction,
but Gupta et al. (2021) underline the inherent risk
of wholly depending on a LM for the correction
of low-redundancy information, such as numbers,
which is particularly susceptible to biases intro-
duced by probabilistic skewing.

However, as a formal language designed for
mathematical structures, LaTeX mathematical ex-
pressions possess unique language characteristics.
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We believe that advance structural analysis sepa-
rately following normal NLP methods may not be
a prerequisite to catch complicated structures of
LaTeX mathematical expressions.

Two key characteristics of LaTeX mathematical
expressions are: 1) They have explicit structural
symbols. 2) Minimal units are symbols, and they
are directly assigned specific semantics. Based on
this, we propose that LMs can proffer both struc-
tural and semantic information, making them suit-
able for correction of HMER. An in-depth theoreti-
cal and statistical exploration of this perspective is
articulated in Section 3.

Specifically, regarding the current limitations of
structure-focused methods, we believe that: 1) The
structural information can be represented by struc-
tural symbols’ semantic with the context provided
by mathematical notations. This circumvents the
necessity for complex CFGs to generate triplet data.
2) Character ambiguity between different types can
be rectified with contexts provided by structural
symbols and mathematical notations.

We substantiate our propositions through exper-
iments on HMER correction. Specifically, we de-
ploy a math LM to rectify an HMER model reliant
on unstructured-based methods, demonstrating the
suitability of LM in addressing current limitations.
Additionally, we argue against the sole reliance on
LMs in a post-correction method. By leveraging
information from the recognition model, we can
constrict the correction space.

Finally, we propose our architecture called
Recognition and Language Fusion Network
(RLFN), which integrates recognition and language
feature to output correct sequences and optimizes
jointly with the recognition model. Experiments
show that RLFN outperforms existing state-of-the-
art methods and achieves expression recognition
rates (ExpRate)s of 57.00/54.23/54.13% on the
CROHME 2014/2016/2019 datasets.

2 Related works
2.1 HMER

Many traditional methods utilize specially designed
grammars, including Chan and Yeung (2001) that
employ definite clause grammar, MacLean and
Labahn (2013) that propose a fuzzy relational gram-
mar for handling ambiguous and non-linear inputs,
Alvaro et al. (2014) that apply hidden Markov mod-
els to CFG, and Noya et al. (2021) that integrate
hypergraph into CFG prediction. While the above

methods treat symbol recognition and structure
analysis separately, several global methods aim to
tackle them simultaneously. Awal et al. (2014) con-
sider HMER as a simultaneous optimization prob-
lem encompassing expression recognition, symbol
recognition, and structure analysis. Then Alvaro
et al. (2016) further extend the methodology by
incorporating a 2D-PCFG to integrate stochastic
information from multiple sources.

Encoder-Decoder based methods are led by
Deng et al. (2017) and Zhang et al. (2017). Based
on CNN encoder and RNN decoder, Deng et al.
(2017) design a coarse-to-fine process, while Zhang
et al. (2017) design coverage attention to avoid
over-parsing and under-parsing. Zhang et al. (2018)
use DenseNet (Huang et al., 2017) as encoder and
introduce a decoder with multi-scale attention. Wu
et al. (2020) integrate left-to-right attention to sim-
ulate the progressive nature of human perception.
Wang et al. (2019) use multi-modal attention aim
to fully utilize both online and offline information.
Zhao et al. (2021) replace RNN-based decoder with
a bidirectionally trained transformer, leading to en-
hance global coverage and parallelization capabil-
ities. Bian et al. (2022) apply mutual learning to
enhance bidirectional learning and design a multi-
scale coverage attention for longer expressions.

Several works focus on the tree structure of math
expressions. Zhang et al. (2020) regarded the ex-
pression as a tree represented by triples that include
parent, children, and relation; then designed a tree
decoder to predict each triple. Based on this work,
Zhong et al. (2022) expanded prediction of sym-
bols into attribute prediction and position predic-
tion, then purposed a transformer-based decoder to
predict triples. Yuan et al. (2022) utilized grammar
constrained attention to transform the whole image
into a parse tree. Wu et al. (2022a) added thinking
attention to tree decoder, assisted by pixel-level
auxiliary loss to improve recognition of complex
expressions. Wu et al. (2022b) designed a structural
string representation, attempting to utilize both lan-
guage model and tree structure. These structured
representations are specifically designed, limiting
their extensibility.

2.2 HMER & OCR Correction

Limited research are done on HMER correction.
Chan and Yeung (2001) detect and correct errors
based on grammar and heuristics rules. Ung et al.
(2021) train and apply a language model for post-
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correction tasks.

More correction works are done on OCR. Litman
et al. (2020) repetitively correct recurrent block out-
puts by fusing it with visual features each step in
training. Other works use LM to assist correction.
Nguyen et al. (2020) use BERT for error detection,
and then use neural machine translator to correct er-
rors. Qiao et al. (2020) use the pre-trained FastText
(Joulin et al., 2017) to supervise the generation of
semantic features, fusing it with encoder visual fea-
tures to capture global semantic information. Gupta
et al. (2021) utilize perplexity of language model
to choose output among multiple aligned models,
and stress that correction of numbers requires extra
reliable information source. Yasunaga et al. (2021)
adopt unsupervised correction by comparing log-
its of LM output with local perturbations of the
text. Fang et al. (2021, 2023) explicitly use built-in
bidirectional LM to iteratively correct the output.

Several math LMs are pretrained jointly with
text and LaTeX expressions, potentially beneficial
for HMER. Novotny and Stefanik (2022) design
MathBERTa based on RoBERTa (Liu et al., 2019),
with a soft vector space model to capture the seman-
tic similarity between tokens. Peng et al. (2021)
is designed to improve the prediction of masked
formula substructures extracted from the Operator
Tree (OPT). Scarlatos and Lan (2023) conduct mul-
tiple modifications on the GPT-2 (Radford et al.,
2019) model, resulting in MathGPT, which exhibits
strong performance in generating mathematical ex-
pressions. Our method utilizes MathBERTa to pro-
vide auxiliary information for correction.

3 Why LM is Suitable for HMER
Correction?

3.1 Theoretical Analysis

As a formal language designed specifically for the
representation of complex mathematical symbols
and formulas, symbols in LaTeX mathematical ex-
pressions can be broadly divided into four distinct
categories: 1) Structural symbols _, *, {, }, \{, \}
2) Mathematical notations (e.g., \frac, \sqgrt, +,
-), 3) Latin and Greek alphabets (e.g., A, a, &), and
4) Numbers. The key differences from English can
be summarized in the following two points:

1) The structural symbols in LaTeX mathemat-
ical expressions explicitly convey their structure,
and certain mathematical notions serve to assist in
this structural representation. This mechanism of
structural representation shares fundamental simi-

analyze its component parts the start of molecule

Parse a sentence \frac {1} {2}

give a description of word i the start of radicand

Parse words \sqrt {2}

Figure 1: Cases of structural symbols explicitly convey
their structure in the context of mathematical notations.
Like in English, the same word has different semantics
in different contexts.

{wheeled vehicle} ) A2}
root-index
is-a has-part {Sqf""}\/d .

is-a has-part radican ~{x}

has-part

wagon p brake

weg }{vehicle} ! {wheel}{ ) \sqrt [2]{x}  xyz

{splasher}
\sqrt [31{x}  xyx

Wheeled vehicle has a brake, wheel, splasher.

Wheeled vehicle has a vehicle, wagon. \sqrt [z]{x} xy2

Figure 2: Cases of the semantic problems within dif-
ferent types of symbols can be found with the structure
and mathematical notation. Like in English, given the
semantic relationship in WordNet, whether these types
of words are correct or incorrect.

larities with the mechanism of how words within
phrases in English explicitly communicate their se-
mantics. And this characteristic enables math LMs
to synchronously provide structural information
just as they provide semantic information.

As figure 1 shows, ‘\frac’ and ‘\sqrt’ repre-
sent the fraction line and radical symbol itself while
providing context. Then the following ‘{’ respec-
tively represent the beginning of the numerator and
radicand. In the English case, ‘parse’ relies on
different context to express different semantics in
sentence ‘parse a sentence’ and ‘parse words’.

2) LaTeX mathematical expressions treat sym-
bols as minimal semantic units. And based on
contextual semantics, visual ambiguities between
categories can be corrected. Though using ‘x’ or ‘y’
as unknown variables has no difference, the seman-
tic distinction between an unknown variable and
a number is significant. For instance, &/ is rea-
sonable, but {/z is not in line with convention. We
will represent it as z'/# instead. Similarly, when
we trust z, we tend to believe that the expression is
not a radical expression.

From the perspective of analogy with English,
Figure 2 illustrates why different category sym-
bols in LaTeX mathematical expressions have
semantic differences when given structural rela-
tionships. In English, sentence semantic errors
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caused by certain types of words can be detected
through semantic relationships. According to
WordNet (Fellbaum, 2005) of ‘wheeled vehicle’,
‘wagon’ and ‘vehicle’ have an ‘is-a’ relation
with it. While given ‘has-part’ relationship,
semantic errors in sentence ‘wheeled vehicle
has a vehicle’ can be discovered. Similarly,
the symbol ‘[ ]’ represents the ‘root-index’ in
the case of ‘\sqrt[21{x}’ and ‘\sqrt[3]1{x}’.
‘\sqrt[z]{x}  uses an unknown variable as the
‘root-index’ which is generally unconventional.
Moreover, words that represent semantic relation-
ships, such as ‘multiply’ and ‘multiplied’, are
not explicitly stated in the case of ‘xyz’ and ‘xyx’.
In general, given the multiplicand (the left term of
multiplication), it’s expected to use an unknown
number as the multiplier, or semantic errors may
occur in the case of ‘xy2’.

In addition to language characteristic that make
LM suitable for HMER correction, the task itself
is also suitable. While OCR employs letters as
the smallest unit for correcting words, HMER uti-
lizes symbols as the minimum unit for amending
expressions. The former represents morphological
correction, while the latter is semantic correction.

3.2 Statistical Analysis

We conducted statistical analysis as collateral evi-
dence on the CROHME dataset (Mouchere et al.,
2014). The CROHME dataset, a byproduct of the
Competition on Recognition of Online Handwrit-
ten Mathematical Expressions (CROHME), is uni-
versally recognized as the principal public dataset
within HMER field. A comprehensive collection,
the CROHME training set comprises 8835 hand-
written mathematical expressions. In addition,
it includes three distinct testing subsets, namely
CROHME 2014, 2016, and 2019, containing 986,
1147, and 1199 handwritten mathematical expres-
sions respectively. Noteworthy is the inclusion of
a total of 111 symbol classes, which encompasses
the "sos" and "eos" symbols.

The explicit structural symbols do express
their semantics. This is affirmed via an application
of the Math-aware BERT model (Reusch et al.,
2022), where the calculated perplexity acts as an
index for semantic strength, applied to those four
categories of symbols in CROHME training set.

In detail, we engage an individualized masking
operation, followed by a model prediction of the
obfuscated symbol. The outcome is a probability

Type SS MN LGA  Num Total
Perplexity 2905 3396 3.723 3.282  3.262
Counts 51030 35112 28275 22267 136684
Categories 6 39 54 10 109

Table 1: Perplexity, counts and categories of structural
symbols (SS), mathematical notations (MN), latin and
greek alphabets (LGA), and numbers (Num).

Type z+2 94q 00 94g S54s  TopSs

s1—s2 1.926% 2.627% 1.226% 1.576% 0.876% 8.231%
s2—sl 1.226% 0  1.226% 0.350% 0O 2.803%
Total 3.152% 2.627% 2.452% 1.927% 0.876% 11.034%

Table 2: Percentage of top 5 alphabet-number mis-
recognition pairs among all SUB1 cases. sl — s2
indicates that symbol s1 is mis-recognized as s2.

distribution, the reciprocal of which, corresponding
to the actual word, signifies its perplexity. Subse-
quently, the mean perplexity, according to category,
is designated as the perplexity of this particular
category of symbols.

Results in Table 1 reveal that among the four
types of symbols, the structural symbols exhibit the
lowest perplexity. This finding aligns with our the-
oretical analysis that the explicit structural symbols
suggest a comparatively robust semantic signal.

The visual ambiguity between numbers and
alphabets do exist. We conducted an analysis
of the results from the string decoder recogni-
tion model, DWAP (Zhang et al., 2018), using
the CROHME 2014/2016/2019 datasets. During
this analysis, we employed a reliable metric called
Substitute-by-One (SUB1), which identifies cases
where the model’s predictions deviate from the
ground truth by only one substitution. Within the
SUBI1 cases, the mis-recognition of one character
as another is verified, avoiding character substitu-
tion indeterminacy in evaluation.

The outcomes are shown in Table 2. Among all
SUBI instances, the top 5 pairs of mis-recognition
between numbers and alphabets contribute to 11%
of the total mis-recognition, while the overall mis-
recognition between numbers and alphabets con-
tribute to 26%. These statistical findings highlight
that mis-recognition between numbers and letters
not only exists considerably but also tends to con-
centrate on visual ambiguity. Thus overcoming the
visual ambiguity issues as mentioned in theoretical
analysis is significant.
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4 Method

In an endeavor to empirically corroborate our
hypotheses, we propose a novel architecture,
the Recognition and Language Fusion Network
(RLFN), engineered specifically to address the
dual challenge of visual ambiguity and the com-
plex structural issues that are inherent to string de-
coder recognition models. The RLFN is built with
a string decoder recognition module, a language
module that extracts language information, and a
fusion module to refine the recognition output by
utilizing the language information.

4.1 Recognition Module

Our recognition module basically follows DWAP
(Zhang et al., 2018), using DenseNet (Huang et al.,
2017) to extract visual feature F' € RH'*xW'xD
from the single-channel input image.

As shown in Figure 3, each step ¢ in the decoder,
we iteratively update two state weights: the GRU
(Cho et al., 2014) hidden state h; and the coverage
attention (cumulative attention map) A;.

hi = GRU(E7yt—1, hi—1) (D

et = We tanh(Fp 4+ WpAi_1 + Whht—l) )

o = XDl — maxij(eie))

=

M Y expleq g — maxi(eq i)
/L?J

Ap = A1+ oy 4)

3)

Here, e; represents the attention score which pro-
duces the attention map «;, where ¢, j denote the
coordinate on the feature map. Ey;_; represents
the embedding of the last symbol, F}, corresponds
to the position encoded feature (Parmar et al.,
2018). W,, W4, and W}, represent the trainable
weights. After that, we generate the content vector
c; with element-wise multiplication of o with vi-
sual features F'. Then ¢; is combined with h; and
embedding of ~;_; to obtain the symbol state s;
and the recognition prediction symbol ;.

st = Weer + Wy Evyi1 + Wihy (5)

Tsi +b) (6)

¢ = softmax(w

We, Wy, W}, w, b are trainable weights. Lastly,
recognition module outputs the total symbol states
s as recognition feature F'p, along with the recog-
nition prediction sequence 7.

Linear &
Softmax

Linear &
| Softmax

|V‘-||V:U | R

| v

Figure 3: Recognition module

4.2 Language Module

We utilize MathBERTa (Novotny and Stefanik,
2022) to extract language information, which is
a RoBERTa (Liu et al., 2019) model specifically
fine-tuned on LaTeX expressions.

As a variant of BERT (Devlin et al., 2019),
RoBERTa solely focuses on masked language mod-
eling (MLM) task, uses larger mini-batches and
employs dynamic masking, which all contribute to
improve bidirectional semantic language modeling.

Building upon RoBERTa, MathBERTa further
focuses on language processing of LaTeX expres-
sions. It undergoes fine-tuning on an extensive
dataset containing both text and LaTeX expressions.
This specialized training enhances MathBERTa’s
comprehension of semantic and syntactical proper-
ties of LaTeX mathematical expressions.

Considering that our recognition output does not
need tokenization, and LaTeX mathematical nota-
tions are prone to problems, we manually associate
the vocabulary with the one-hot encoding in Math-
BERTa instead of using the tokenizer. Then given
the recognition prediction sequence v, MathBERTa
outputs the language feature FT.

4.3 RLFN

As shown in Figure 4, in RLFN, the input image is
sent to recognition module to extract recognition
feature and the prediction sequence. The latter
is passed to language module to form language
feature. Both features are fused in fusion module
to output the corrected prediction sequence.

The main objective of the fusion module is to
integrate the information from the recognition mod-
ule with the semantic information obtained through
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v \frac{8 x5}{5+3}=
\frac {35 \times1}{6+1}
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I Recognition Language I
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| ||
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Figure 4: Architecture of Recognition and Language
Fusion Network (RLFN)

the language module, so as to generate the cor-
rected prediction sequence.

In the fusion module, the recognition feature F'p
and language feature F7, are first dimensionally
aligned through linear operation. Then we follow
Yao et al. (2017) to incorporate a gating neuron, de-
noted as o. This neuron allows us to assign weights
based on contributions of two features during the
calculation of output. Within the gating neuron, the
two aligned features are horizontally concatenated.
The resulting concatenated vector is then adjusted
to match the size of the aligned features. Subse-
quently, the resized vector is fed into a sigmoid
function to generate weights. These weights are
then utilized to modulate the output of the aligned
features, which are first processed through tanh
activation function.

The process of generating the corrected sequence

1 in the fusion module is as follows:

xr =WgrFRr, xp=WLF] @)

2 = o(Welzg, 21)) )
hg = tanh(zg), hr =tanh(zz) (9)
h=z hg+(1-2) hy (10)
(11)

where o refers to sigmoid activation function,
Wg, W, Wg,w', b/ are weights to be learned.

y = softmax(w'" h + b')

4.4 Parameter Learning

We jointly optimize our RCEN with the recognition
module through a linear classification layer, and
the loss function is as follows:

L=Lr+LFp (12)
where Lz and L are the cross-entropy loss of the
recognition prediction sequence probability and
the corrected prediction sequence probability with
respect to the ground-truth.

L R aims to guide the the recognition module and
the additional linear classification layer, while L
focus on guiding the fusion of the two features. To
mitigate the influence of the training set’s proba-
bility bias and the large number of parameters, we
have frozen the language model’s parameters. Fur-
thermore, gradient separation has been employed
to enhance the focus of the loss functions on their
respective optimization goals within the recogni-
tion model. Nevertheless, joint optimization still
affects each other’s updates of problematic parts
through the optimizers and other means.

S Experiments

5.1 Implement Details

Our RCFN is implemented in PyTorch with a sin-
gle NVIDIA GeForce RTX 3090. We use Adadelta
optimizer (Zeiler, 2012) with the learning rate in-
creases from O to 1 at the first epoch and decays
to 0 following the cosine schedules (Zhang et al.,
2019b). No data augmentation for fair compari-
son. The batch size is set to 8. All images within a
batch are filled in the upper left corner of the canvas
of the same size. Due to memory limitations, the
canvas size does not exceed 1280 * 280, and any
excess images will be discarded. The total training
epoch is set to 200 epochs taking around 16 hours.
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CROHME 2014 CROHME 2016 CROHME 2019
Method ExpRateT <11 <21 | ExpRatef <11 <21 |ExpRatel <171 <27
UPV (Mouchere et al., 2014) 37.22 4422  47.26 - - - - - -
WAP (Zhang et al., 2017) 46.55 61.16 65.21 44.55 57.10 61.55 - - -
PAL (Wu et al., 2019) 39.66 56.80 65.11 - - - - - -
TAP (Zhang et al., 2019a) 48.47 63.28 67.34 44.81 59.72  62.77 - - -
DWAP (Zhang et al., 2018) 50.10 - - 47.50 - - - - -
MAN (Wang et al., 2019) 54.05 68.76  72.21 50.56 64.78 67.13 - - -
PAL-V2 (Wu et al., 2020) 48.88 64.50 69.78 49.61 64.08 70.27 - - -
RBR (Truong et al., 2020) 53.40 65.20 70.30 52.10 63.20 69.40 53.10 63.90 68.50
DLA (Le, 2020) 49.85 - - 47.34 - - - - -
DWAP-TD (Zhang et al., 2020) 49.10 64.20 67.80 48.50 62.30 65.30 51.40 66.10 69.10
WS-WAP (Truong et al., 2020) 53.65 - - 51.96 64.34 70.10 - - -
BTTR (Zhao et al., 2021) 53.96 66.02 70.28 52.31 63.90 68.61 52.96 6597 69.14
ABM (Bian et al., 2022) 56.85 73.73 81.24 52.92 69.66 78.73 53.96 71.06 78.65
SAN (Yuan et al., 2022) 56.20 72.60 79.20 53.60 69.60 76.80 53.50 69.30 70.10
GPT-4V (Yang et al., 2023) 31.85 49.09 60.45 - - - - - -
DWAP (Baseline)" 51.72 69.47  77.99 48.82 67.13 7541 50.79 69.64 76.81
RLFN-DWAP (Ours) 57.00 72.01 80.73 54.23 70.10 78.47 54.13 72.56 80.07

Table 3: Results on the CROHME dataset without any data augmentation. findicates that we reproduce DWAP as
shown in figure 3. RLFN-DWAP represents we take the reproduced DWAP as our recognition module.

5.2 Evaluation

The metric of expression recognition rate (Ex-
pRate) is utilized, defined as the proportion of accu-
rately recognized expressions. Additional measure-
ments, denoted as < 1 and < 2, are also employed,
where the ExpRate accommodates at most one or
two symbol-level errors, respectively.

We experiment on CROHME datasets mentioned
in Section 3.1. Consistent with previous methods,
we use CROHME 2014 as the validation set and
test on CROHME 2016 and 2019 to compare with
previous state-of-the-art (SOTA) methods.

As shown in Table 3, we take the reconstructed
DWAP as our baseline. And our RLFN-DWAP
using it as the recognition module achieves SOTA
on the ExpRate indicator. In addition, it can be ob-
served that the improvement of model on ExpRate
is higher than on < 1 or < 2, which is consistent
with the intuition that sentences with fewer errors
have more complete semantics information.

Inspired by the LaTeX code generation capa-
bility reported in (Yang et al., 2023), we conduct
an experiment using GPT-4V on CROHME 2014
dataset with the the prompt ‘generate latex code
and output without compile.” The outputs are post-
processed to align CROHME vocabulary, and the
ExpRate of GPT-4V is 31.85. Given that it is not
finetuned on the CROHME dataset, its performance
is acceptable.

5.3 Ablation Study

In this subsection, we perform a ablation study to
analyze the impact of the language module and the

Method ExpRatet <11 <21
DWAP (Baseline) 51.72 69.47  77.99
+ Language Module 53.96 70.18  78.80
+ Fusion Module 57.00 72.01  80.73

Table 4: Ablation study on CROHME 2014

fusion module. To separate the impact of the lan-
guage module, we did not use the fusion module in
RLEFEN. Instead, in order to generate the corrected
prediction sequence, we treat it as a translation task
and add a decoder with two transformer layers in
the language module. Other settings are all identi-
cal to RLFN. Results on CROHME 2014 are shown
in table 4, we can only tell that the language module
and the fusion module both have their impact.

5.4 Improvement Study

In this section, we explore whether the improve-
ment comes from the correction of complex struc-
ture and visual ambiguity to validate our propo-
sition that LM do obtain semantic and structural
information synchronously and complementarily.
We conduct an incremental comparison on struc-
tural complexity to assess the improvement of our
model on complex expressions across all datasets.
We define the structural complexity of an expres-
sion as the count of six structural symbols men-
tioned in Section 3.1. The results are presented in
Table 5. Models perform worse when facing more
complex expressions, suggesting they are more
challenging to recognize. Interestingly, the rela-
tive improvement becomes progressively higher
for more complex expressions. The improvement
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DWAP RLFN _ RI

ExpRate | 0.2965 0.3460 17.00%

Complex <1 | 04454 04766 7.01%
25% <2 | 05378 05954 10.71%
<3 | 06074 0.6543 7.71%

ExpRate | 0.3908 04322 10.60%

Complex <1 | 05672 06014 6.03%
50% <2 | 06507 0.6963 7.01%
<3 | 07209 07539 4.58%

ExpRate | 05039 05501 9.17%

Total <1 | 06873 07155 4.10%
<2 |07668 0.7971 3.95%

<3 | 08235 08457 2.70%

Table 5: Incremental examination of the Top 25%, 50%,
and total expressions based on structural complexity
in the unified CROHME 2014/2016/2019 dataset. RI
denotes the relative improvement from DWAP to RLFN.

00
-24%

z4>2
-44%

g9 q&9
-19% 0%

b6 Top-5
10%  -21%

Table 6: Relative change of top 5 mis-recognition.

for the top 25% most complex expressions is nearly
twice that of the improvement among all expres-
sions. These observations indicate that RLFN out-
performs our baseline especially in recognizing
complex structures which might be because our
RLFN can extract explicit structural information
through LM, serving the similar role to tree de-
coders.

Regarding RLFN’s performance in handling vi-
sual ambiguity, we conduct a replicated analysis
same to the one described in Section 3.1. Specifi-
cally, we compare the frequency of top 5 number-
alphabet pairs of mis-recognition with our baseline
and study the difference, which is shown in Table
6. We observe that RLFN effectively reduces the
occurrence of the top-5 mis-recognition by 21%
compared to our baseline. This shows the capabil-
ity of RLFN to reduce visual ambiguity between
alphabets and numbers using contextual informa-
tion provided by language modeling.

5.5 Case Study

As shown in Figure 5, we present two complex
structure cases in group A, along with another two
visual ambiguity cases in group B.

In group A, the baseline model recognizes an
additional structure symbol ‘\}’in one case and
misplaces \}’ to the wrong position in the other.
In contrast, RLFN gets both expressions correctly.
This is not a symbol recognition problem, which
indicates that RLFN has learned the semantics of
structure symbols and gained the ability of struc-

424 +4 -1

DWAP: 4 x 4+ 4 - 4
RLFN: 4 \fimes 4 + 4 - 4

= f

O

Q’Li’ \}_1:/]?;

DWAP: b = \pm\sqrﬁf\"razlu \sqrt { 1 4¢c}ih)
RLFN: b = \pm \sqrt { \frac {1} {\sqrt {1-4c}}}

2t

‘f»j”

DWAP: \frac {\sqrt {27}}{\sqrt [3]}(9} DWAP:F _ {0}~ (I}
RLFN: \frac {\sqrt {27}}{\sqrt [3]{9}} RLFN: F_{0}" (1}

(A) ®)

Figure 5: Cases with complex structure (A) and visual
ambiguity (B) that RLFN outperforms our baseline.

4 \times 4 + 4 - 4

Figure 6: Visualization of top-5 probability

ture modeling.

In group B, cases possess visual ambiguity be-
tween variables and numbers. The baseline model
relies solely on visual appearance and cannot distin-
guish visually resemble symbols. This is likely due
to its lack of architecture to effectively utilize and
comprehend contextual and structural information.
RLEN, on the contrary, can correctly recognize
‘\times’ with surrounding numbers and recognize
‘1’ and ‘@’ based on their superscript and subscript
structural relations. This indicates that RLFN can
complement each other’s semantic and structural
information when recognizing visually ambiguous
symbols.

As depicted in Figure 6, we delve into a particu-
lar case about its top-5 probability. The probability
derived from the baseline demonstrates visual ambi-
guity concerning the symbols ‘x’, ‘X’, and ‘\times’
without understanding their semantics. After deter-
mining that this may be a multiplication structure,
RLFEN reduces the probability associated with ‘x’
and ‘X’, while recognizing the correct \times sym-
bol with high confidence.

6 Conclusion

In this research, we have examined the unique lan-
guage characteristics intrinsic to LaTeX mathemat-
ical expressions, with a keen focus on the minimal
semantic unit and explicit structural symbols. Our
investigation underscores that these characteristics
give HMER systems the potential to obtain both se-
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mantic and structural information through language
models. We subsequently propose an innovative ar-
chitecture that harmoniously integrates recognition
and language features to yield corrected sequences.
This framework eliminates the requirement to con-
struct complex CFGs for resolving structural issues,
and serves to ameliorate the challenge of visual am-
biguities. This integrative approach offers fresh
insights and promising theoretical groundwork for
the development of HMER and related mathemati-
cal endeavors.

Limitations

The limitations of our theoretical assessment war-
rant acknowledgment. In our analysis, we scruti-
nized the language characteristics of LaTeX math-
ematical expressions, drawing parallels between
their expression mechanisms and those of the En-
glish language. This led us to posit that a LM adept
at handling English semantics should, in theory,
be equally proficient with LaTeX mathematical
expressions. However, our methodology, rooted
in inferential analogy, is weaker than directly an-
alyzing how LMs handles LaTeX mathematical
expressions and cannot be further extended, such
as customizing a LM suitable for LaTeX mathemat-
ical expressions.

Our proposed model architecture is not devoid
of certain limitations. The architectural design
broadly follows a late fusion strategy, which, when
contrasted with the early fusion approach seen in
semantic modeling and modal fusion during the
decoding phase of the recognition module, exhibits
a lack of thorough information interaction. This
shortfall is exemplified by our model’s disregard
for the prediction probability of the recognition se-
quence input to the language module, resulting in
some information loss.

Besides, given the current state of the field,
where most existing recognition models rely heav-
ily on tree decoders and bidirectional training ar-
chitectures, triplet data and reverse sequences are
not suitable for language modeling. This limitation
confines the range of selectable baseline models.
Notwithstanding, one of our overarching goals in
this endeavor is to maneuver around this intrinsic
constraint that inherently stifles expansion.

Furthermore, as the formidable capabilities of
LLM and LMM/MLLM are widely researched,
some methods can even achieve an OCR-free un-
derstanding of text images. This casts doubt on

the significance of excavating model architectures
for specific tasks. However, is there a real need
for the involvement of a general large model in a
specific task? When the accuracy requirements are
stringent, how do the upper limits of a general large
model compare with that of a small model tailored
for a specific task? Or is it the case that data is
truly everything? These questions still require deep
consideration.
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