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Abstract

Grammatical Error Correction (GEC) systems
play a vital role in assisting people with their
daily writing tasks. However, users may some-
times come across a GEC system that initially
performs well but fails to correct errors when
the inputs are slightly modified. To ensure an
ideal user experience, a reliable GEC system
should have the ability to provide consistent
and accurate suggestions when encountering
irrelevant context perturbations, which we refer
to as context robustness. In this paper, we in-
troduce RobustGEC, a benchmark designed to
evaluate the context robustness of GEC systems.
RobustGEC comprises 5,000 GEC cases, each
with one original error-correct sentence pair
and five variants carefully devised by human
annotators. Utilizing RobustGEC, we reveal
that state-of-the-art GEC systems still lack suf-
ficient robustness against context perturbations.
In addition, we propose a simple yet effective
method for remitting this issue.

1 Introduction

Grammatical Error Correction (GEC) is the task
of automatically fixing various textual errors in a
given sentence. This task has many real-life appli-
cations, such as writing assistance and language
teaching, thus receiving considerable interest from
both academia and industry (Grundkiewicz et al.,
2020; Wang et al., 2021; Bryant et al., 2022; Zhang
et al., 2023a).

Nowadays, cutting-edge GEC systems perform
decently in academic benchmarks (Ng et al., 2013,
2014; Napoles et al., 2017; Bryant et al., 2019).
However, in practical applications, the GEC sys-
tem may offer different error correction suggestions
when users perform irrelevant modifications. Fig-
ure 1 presents a real example of this phenomenon,
where a user interacts with a GEC system based on
T5 (Rothe et al., 2021). Given the original input “I

∗Work was done during the internship at Tencent AI Lab.
†Corresponding author.
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I like play basketball.

I like playing basketball.
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He loves play basketball.

He loves play basketball.
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I like      play      hockey.

I like playing ice hockey.

Figure 1: A real example of how minor changes in user
input misleads a T5-based GEC system to wrong pre-
dictions. We use Red and Green to highlight errors and
corrections, and underline to mark user modifications.

like play basketball”, the GEC system effectively
corrects the error (play ⇒ playing), because "like"
should be followed by a gerund. However, when
the user introduces minor modifications unrelated
to the error correction, the GEC system starts mak-
ing mistakes, including under-correction (play ⇒
play) and over-correction (hockey ⇒ ice hockey).
This observation may lead to confusion and frus-
tration, as users would expect the GEC system to
have a more stable and reliable performance.

A key desirable property of strong GEC systems
is context robustness, which refers to the ability
to maintain consistent and accurate results with-
out being disrupted by irrelevant context perturba-
tions. To test this, we contribute the RobustGEC
benchmark based on traditional GEC datasets (§3).
We choose 5,000 error-correct sentence pairs from
three sources for annotation, i.e., CoNLL-14 (Ng

16780



et al., 2014), BEA-19 (Bryant et al., 2019), and
our newly released TEM-8. The first two are col-
lected from essays and corrected by native English-
speaking teachers. The last is derived from the
ungrammatical sentence modification question in
TEM-8, a high-level exam in China for evaluating
English major students’ English ability, where er-
rors are designed by experts. We ask annotators
proficient in English to carefully craft five variants
for each original sample by perturbing the context
unrelated to the correction. The annotators are al-
lowed to freely replace, insert, or delete content
without introducing new errors or altering the orig-
inal errors. In this way, RobustGEC can examine
whether GEC systems consistently and accurately
rectify errors disregarding natural and realistic ir-
relevant context perturbations.

Utilizing RobustGEC, we evaluate the context
robustness of five state-of-the-art (SOTA) GEC
systems (§4), i.e., seq2seq-based BART (Kat-
sumata and Komachi, 2020), seq2seq-based Syn-
GEC with linguistic knowledge (Zhang et al.,
2022b), seq2edit-based GECToR (Omelianchuk
et al., 2020), LLM-based LLaMA with GEC fine-
tuning (Touvron et al., 2023), and LLM-based Chat-
GPT with zero-shot prompting (OpenAI, 2023).
Despite their notable performance on conventional
GEC benchmarks, all evaluated systems show dra-
matic performance fluctuations when facing con-
text perturbations, revealing their lack of context ro-
bustness. Taking BART as an example, only 43.5%
of GEC instances exhibit consistent corrections
during perturbation. One potential explanation is
that current GEC systems do not truly comprehend
grammar, but rather depend on some spurious cor-
relations (Tu et al., 2020; Yang et al., 2022) to
make corrections. In order to gain more in-depth
insights, we also conduct detailed analyses to in-
vestigate how context perturbations affect GEC
systems, in terms of perturbing action, distance,
word frequency, etc.

To improve the context robustness, we further
propose a Context Perturbation Robust (CPR) post-
training approach (§5). The proposed CPR method
optimizes the GEC system to output the same pre-
diction distribution at the non-perturb positions
by minimizing the bi-directional Kullback-Leibler
(KL) divergence, which is lightweight and easy
to train. Experiments demonstrate that the CPR
method can improve context robustness by a large
margin and maintain the original GEC performance.

For example, after post-training with CPR, the
GECToR model performs consistent corrections
for 15.1% more GEC cases in RobustGEC.

We hope this research could spur future inves-
tigations into the robustness of GEC systems. To
facilitate further studies, we have made all data and
code publicly accessible at https://github
.com/hillzhang1999/RobustGEC. In the
context of the LLM era, we believe that there is still
much more to explore for GEC, extending beyond
the mere pursuit of superior leaderboard scores.

2 Related Work

GEC Benchmarks. To better study GEC, re-
searchers have dedicated a significant effort to
build solid evaluation benchmarks (Ng et al., 2014;
Napoles et al., 2017; Bryant et al., 2019; Napoles
et al., 2019; Flachs et al., 2020; Zhang et al., 2022a,
2023d). These benchmarks typically evaluate GEC
performance using reference-based metrics like
edit-level F0.5 (Dahlmeier and Ng, 2012; Bryant
et al., 2017). Despite their contributions, these
benchmarks are limited in their ability to assess
the robustness of GEC systems to context perturba-
tions, as each error in them is associated with only
one specific context. Therefore, we decide to build
RobustGEC to fill this gap.

GEC Approaches. For building advanced GEC
systems, there are three mainstream paradigms to-
day. The first is sequence-to-sequence (seq2seq),
which treats GEC as a monolingual machine trans-
lation task and employs encoder-decoder models
such as Transformer (Vaswani et al., 2017) to gen-
erate corrections (Junczys-Dowmunt et al., 2018;
Stahlberg and Kumar, 2021; Rothe et al., 2021;
Zhang et al., 2022b). The second is sequence-to-
edit (seq2edit), which predicts a sequence of edits
and applies them to source tokens to perform cor-
rections (Awasthi et al., 2019; Omelianchuk et al.,
2020; Stahlberg and Kumar, 2020). The last is
based on the burgeoning large language models
(LLMs), such as ChatGPT and LLaMA (Touvron
et al., 2023), which can achieve promising GEC
performance via prompting (Coyne and Sakaguchi,
2023; Fang et al., 2023) or fine-tuning (Zhang et al.,
2023b). In this work, we select five representative
systems that cover all three paradigms for evaluat-
ing context robustness on RobustGEC.

Robustness in Other NLP fields. Robustness in
NLP has long been an active research topic (Wang
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Source CoNLL-14 BEA-19 TEM-8

Number of Sentences 1,312 2,503 1,185
Number of Wrong Sentences 1,176 1,687 1,184
Average Length (Word) 22.98 20.97 30.65
Average Number of Errors 2.60 3.12 1.47

Table 1: Statistics of our three data sources.

et al., 2022). Using adversarial text generation
(Ebrahimi et al., 2018; Ren et al., 2019; Li et al.,
2020), existing work automatically builds synthetic
robustness benchmarks for various tasks, such as
question answering (Jia and Liang, 2017), name
entity recognition (Lin et al., 2021), and sentiment
analysis (Xing et al., 2020). Meanwhile, there are
also a lot of studies on improving NLP models’
robustness from both continuous (Chen et al., 2020;
Zhu et al., 2020) and discrete (Kaushik et al., 2019;
Liu et al., 2021) spaces, which may offer useful
insights for building robust GEC systems.

Robustness in GEC. Compared with other NLP
areas, research on robustness in GEC is relatively
scarce. Wang and Zheng (2020) study the robust-
ness of GEC models under the scenario of varying
numbers of errors. Raina et al. (2022) instead fo-
cus on security and reveal that GEC systems can be
easily fooled by appending an adversarial phrase.
Unlike them, our work explores the robustness of
GEC systems when nuanced modifications irrel-
evant to errors are introduced by users, which is
most like the recent work from Feng et al. (2023).
Addressing this issue is crucial, as the robustness
against irrelevant variations could significantly af-
fect users’ trust in the GEC system’s reliability.

3 RobustGEC Benchmark

3.1 Data Collection

To ensure a systematic and comprehensive evalu-
ation for context robustness, we collect realistic
GEC samples from three sources for annotation,
i.e., CoNLL-14, BEA-19 and TEM-8.

CoNLL-14 (Ng et al., 2014) and BEA-19
(Bryant et al., 2017) are two widely-used GEC
evaluation datasets. Sentences in CoNLL-14 are
collected from student essays written by English-
as-Secondary-Language learners, while BEA-19
comprises essays written by both learners and na-
tives. Sentences in them are corrected by native
teachers. We utilize the whole CoNLL-14 test set
and a part of the BEA-19 dev set for annotation.

TEM-8 is a newly released dataset in this work.

ID Case Wrong Reason

1 I have a [lot→lots] of friend. Correctness
2 He will give a talk yesterday. Faithfulness

Table 2: Examples of bad cases generated by automatic
rules. Blue highlights the automatic perturbation and
Red marks the grammatical error.

We collect it from the “LANGUAGE USAGE” sec-
tion in TEM-8 1, the highest-level test for senior
students majoring in English Language and Litera-
ture in China. TEM-8 contains multifarious chal-
lenging grammatical errors designed by linguistic
experts, which aim at examining whether students
meet the English language proficiency specified in
the “National College English Teaching Syllabus”
for English Majors. We gather about 1,000 GEC
samples from this source for annotation.

The data statistics of each source are presented in
Table 1. The total number of original GEC samples
for annotation is 5,000. We can see that there exist
some discrepancies between the three data sources
regarding the average sentence length and the aver-
age number of errors, which may help RobustGEC
support a more comprehensive evaluation.

3.2 Annotation Procedure

As mentioned in §2, one common practice in
many NLP fields, e.g., text classification (Zhang
et al., 2019) and named entity recognition (Lin
et al., 2021), is automatically constructing synthetic
benchmarks to probe model robustness. Compared
with these tasks, GEC is more sensitive to addi-
tional grammatical errors introduced by synthetic
context perturbations. We present two illustrative
cases in Table 2 to explain why this method is not
well-suited for GEC. We perturb Case#1 with auto-
matic synonym substitution (Zhou et al., 2021) and
find this introduces a new error (a lots of ). This
occurs because “lot” and “lots” are considered syn-
onymous, but “lots” is inappropriate in this context.
We perturb Case#2 by randomly deleting a word.
However, this changes the original error since the
deleted “yesterday” is the evidence of the error
(will give⇒gave).

From these examples, it becomes evident that
synthetic context perturbation often introduces new
grammatical errors or alters existing ones, leading
to an unreliable evaluation of robustness in GEC.
To make our benchmark convincing, we ultimately

1http://tem.fltonline.cn/
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Target

Source Now, all he has to do is turn the radio or TV.

Explanation
We need the transitive "turn on" 
instead of the intransitive "turn" to 
take an object.

Annotator
Perturb

Replace

Insert

Delete

Target

Source

Target

SourceNow, all he has to do is turn on the radio or TV.

Now, all he has we have to do is turn the radio or TV.

Now, all he has we have to do is turn on the radio or TV.

Now, all he has to do is turn the radio or TV and play music.

Now, all he has to do is turn on the radio or TV and play music.

Target

Source Now, all he has to do is turn the radio or TV.

Now, all he has to do is turn on the radio or TV.

Figure 2: An illustrative example of the annotation procedure of RobustGEC.

opt for manual annotation in the creation of Robust-
GEC. We engaged 10 annotators, all of whom hold
either bachelor’s or master’s degrees in English and
have successfully passed the TEM-8. The demo-
graphic features (e.g., gender, age, and homeplace)
are uniformly distributed among our annotators.

Our annotation workflow is illustrated in Fig-
ure 2. During the annotation process, we em-
ploy the ERRANT toolkit (Bryant et al., 2017)2

to align the source and target sentences of the orig-
inal GEC sample, extracting errors and their cor-
responding corrections. We then highlight these
errors using prominent colors and assign the sam-
ple to annotators for perturbation. The annotator is
allowed to perturb the non-error context by replac-
ing/deleting/inserting content freely. The perturba-
tion should be subtle, ensuring that it neither alters
the intended meaning of the sentence nor involves
excessive content changes. More importantly, the
perturbation must adhere to two principles:

• Correctness: the perturbation must NOT in-
troduce any new errors.

• Faithfulness: the perturbation must NOT
change the original errors.

The underlying motivation for these two princi-
ples is to emulate a situation where users make mi-
nor, error-irrelevant modifications while expecting
the GEC system to maintain accurate, consistent
corrections. We instruct annotators to carefully re-
view their annotations to guarantee adherence to
these principles. Each sample undergoes annota-
tion with one perturbation by five distinct anno-
tators. Finally, we obtain six variations of a GEC
case by combining the original sample with the five
perturbed versions.

2https://github.com/chrisjbryant/errant

Annotation Analysis. After annotation, there is
an average of 1.29 perturbing edits per sample.
This indicates that the perturbations in RobustGEC
are quite unobtrusive. Nevertheless, in the later
§4.2, we demonstrate that all evaluated GEC sys-
tems, despite performing well on traditional bench-
marks, still remain susceptible to such subtle pertur-
bations. In addition, we observe that annotators ex-
hibit a preference for substitutions over insertions
and deletions, and they tend to perturb nouns and
verbs more frequently than other part-of-speech
types, as nouns and verbs typically serve as the
core components of sentences.

Quality Assurance. To ensure the quality of Ro-
bustGEC, we have adopted a strict quality control
protocol. In the beginning, we assign a few tasks
to the annotators for trial annotation. Only partic-
ipants who have reached an accuracy of 90% can
join the next stage. During annotation, each sub-
mission will be assigned to an experienced reviewer
for double-checking. We also organize discussions
regularly to address questions raised by annotators.

To further validate the annotation quality, we
also conduct a human evaluation. Concretely, we
ask two experienced judges to evaluate the qual-
ity of each annotation sample from Correctness
and Faithfulness. We randomly select 300 annota-
tion samples for inspection. We calculate the inter-
annotator agreement (IAA) ratio of two judges and
then resolve their disagreement after discussion.
As shown in Table 3, most samples are acceptable
considering correctness (97.3%) and faithfulness
(99.3%) with high IAA ratios, demonstrating the
satisfactory quality of RobustGEC.

3.3 Evaluation Metrics

An ideal GEC system should have both strong GEC
ability and context robustness, so we conduct eval-
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Accept (%) Reject (%) IAA (%)

Correctness 97.3 2.7 95.6
Faithfulness 99.3 0.7 96.3

Table 3: Results of data quality inspection.

uations from these two aspects.

3.3.1 Metrics for GEC Ability
GEC ability refers to the performance of GEC sys-
tems in correcting errors. Following Bryant et al.
(2019), we calculate precision (P), recall (R), and
F0.5 value by extracting and comparing the hypoth-
esis and reference edits with the ERRANT toolkit
(Bryant et al., 2017) to measure this ability.

Unlike previous work that calculates the similar-
ity between a hypothesis output and one or multiple
golden references, thanks to RobustGEC compris-
ing one original sample with five corresponding
perturbed variants, we can evaluate the GEC ability
from multiple perspectives to gain more insights.

We report original GEC performance to eval-
uate GEC performance on the original samples,
facilitating comparison with existing work evalu-
ated on CoNLL-14 and BEA-19. Perturbations
may result in either an improvement or a decline in
GEC performance. Therefore, we measure upper-
bound GEC performance and lower-bound GEC
performance by selecting the variant that produces
the highest and lowest F0.5 values for each GEC
case, respectively. The difference between upper
and lower-bound performance (∆ F0.5) can also be
considered as an indicator of context robustness.

3.3.2 Metrics for Context Robustness
We further devise two new metrics to measure the
context robustness of GEC systems, namely Con-
text Robustness Score (CRS) and Pair-wise Con-
text Robustness Score (P-CRS).

CRS measures the GEC system’s stability across
all variants of a GEC case, indicating its ability to
maintain strictly consistent corrections. CRS is for-
mally defined as #CaseC

#CaseT
, where the denominator

is the total number of GEC cases, and the numer-
ator is the number of GEC cases with consistent
corrections for all variants.

P-CRS is more lenient and evaluates the stability
between each original⇔perturb sample pair, assess-
ing whether the GEC system can retain consistency
before and after each perturbation. It can be calcu-
lated as #P-sampleC

#P-sampleT
, where the denominator is the

total number of perturbed samples, and the numer-

ator is the number of perturbed samples that are
corrected consistently with the original samples.

For instance, consider a GEC case in Robust-
GEC with one original sample and five perturbed
samples, where four perturbed samples share the
same corrections as the original sample. In such a
case, CRS is 0 while P-CRS amounts to 4/5 = 0.8.

4 Evaluating Robustness of GEC Systems

In this section, we employ the RobustGEC bench-
mark to conduct a comprehensive test and analysis
on the context robustness of existing GEC systems.

4.1 Selected GEC Systems
For a comprehensive evaluation, we choose five
representative GEC systems that cover three main-
stream paradigms as introduced in §2, including
the seq2seq method—BART (Katsumata and Ko-
machi, 2020), the seq2seq method with syntactic
knowledge—SynGEC (Zhang et al., 2022b), the
seq2edit method—GECToR (Omelianchuk et al.,
2020), the LLM-based method with GEC fine-
tuning—LLaMA (Touvron et al., 2023; Zhang
et al., 2023b), and the LLM-based method in the
zero-shot setting—ChatGPT (OpenAI, 2023; Wu
et al., 2023; Fang et al., 2023).

For all systems except ChatGPT, we fine-tune
them on CLang8 (Rothe et al., 2021), which is a
commonly-used GEC training set with about 2.4M
sentence pairs. For implementation, we adopt the
authors’ official code. We present more details
such as hyper-parameters in Appendix A.1.

For the prompt-based method using ChatGPT,
we query gpt-3.5-turbo (on Apr. 15, 2023)
with the following prompt: “I want you to act as a
grammar checker to correct explicit mistakes in the
following sentence. Please directly return the cor-
rected sentence without explanation.” This prompt
is chosen according to our preliminary experimen-
tal results. When calling OpenAI’s API, we adopt
greedy search to eliminate randomness.

4.2 Main Evaluation Results
We present the main evaluation results for all se-
lected systems on RobustGEC in Table 4.

Overall Performance. We observe that all evalu-
ated systems, despite performing well on conven-
tional GEC benchmarks, lack sufficient robustness
against context perturbations. This is evident from
their substantial performance fluctuations, as in-
dicated by the high (>20) ∆F0.5 values. On the
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Model Original Upper-Bound Lower-Bound
∆ F0.5 CRS ↑ P-CRS ↑P R F0.5 P R F0.5 P R F0.5

RobustGEC-Total

BART 55.06 37.92 50.49 65.38 42.30 58.95 35.78 31.44 34.82 24.13 43.5 85.4
SynGEC 56.21 38.81 51.59 66.30 43.17 59.89 36.14 31.87 35.20 24.69 43.2 85.3
GECToR 54.99 34.96 49.34 65.26 39.11 57.56 35.54 28.49 33.87 23.69 46.8 86.9
LLaMA 51.83 37.83 48.26 62.79 42.94 57.47 31.99 29.90 31.55 25.92 38.9 83.3
ChatGPT 36.94 49.50 38.91 47.29 56.07 48.82 23.03 40.49 25.20 23.62 20.5 75.2

CoNLL-14-Subset

BART 47.32 29.66 42.29 57.63 33.15 50.21 31.89 25.23 30.29 19.98 43.4 86.8
SynGEC 48.04 30.27 43.00 59.08 33.85 51.42 31.89 25.25 30.30 21.12 41.4 86.5
GECToR 43.83 30.55 40.33 52.77 33.98 47.51 31.39 26.06 30.16 17.35 45.4 87.6
LLaMA 43.72 30.38 40.19 55.29 34.74 49.44 27.62 24.16 26.85 22.59 35.1 82.9
ChatGPT 31.62 38.32 32.77 42.55 45.22 43.06 19.51 30.45 21.02 22.04 17.0 74.3

BEA-19-Subset

BART 62.95 43.68 57.84 72.78 48.24 66.06 40.14 36.60 39.38 26.68 41.5 83.4
SynGEC 63.87 44.52 58.76 72.90 49.00 66.42 40.30 36.97 39.59 26.83 41.8 83.3
GECToR 63.26 39.86 56.61 73.28 44.05 64.69 40.49 32.72 38.65 26.04 46.1 85.1
LLaMA 61.44 42.90 56.55 71.78 47.95 65.29 38.13 34.46 37.33 27.96 40.4 82.3
ChatGPT 40.50 53.94 42.62 50.90 60.11 52.51 25.75 45.35 28.18 24.33 21.3 75.2

TEM-8-Subset

BART 47.19 36.79 44.67 58.34 41.40 53.93 30.29 28.62 29.94 23.99 48.6 88.2
SynGEC 49.41 38.28 46.69 60.36 42.68 55.74 31.60 29.93 31.25 24.49 48.7 88.1
GECToR 47.96 32.53 43.81 59.56 36.96 53.07 29.76 25.61 28.82 24.25 50.5 89.9
LLaMA 42.63 37.13 41.40 53.48 42.75 50.92 24.89 27.62 25.39 25.53 40.4 85.8
ChatGPT 35.98 56.71 38.81 45.79 62.40 48.36 21.46 44.78 23.95 24.41 22.9 76.2

Table 4: Main evaluation results on the RobustGEC benchmark. The P/R/F0.5 metrics are all calculated using
ERRANT. ∆ F0.5 is the absolute difference between the upper and lower bound of the system’s F0.5 score.

entire RobustGEC benchmark, all systems achieve
a CRS below 50, suggesting that they would pro-
vide inconsistent corrections for more than half of
our cases. Regarding the P-CRS metric, the highest
value is only 86.9. These observations confirm that
there is still considerable room for existing GEC
systems to improve their context robustness.

Performance on Different Systems. As re-
flected by the higher CRS and P-CRS scores, GEC-
ToR consistently exhibits better context robustness
compared to other systems. One possible explana-
tion for this could be that GECToR has an encoder-
only sequence labeling architecture and predicts
target edits independently, whereas the seq2seq
models will be affected by the context perturba-
tions twice at both the encoder and decoder sides.
Incorporating linguistic knowledge (SynGEC) does
not further enhance the context robustness of BART.
We speculate that this may be because the syntactic
parser in SynGEC for providing linguistic informa-
tion will also be affected by context perturbations.

Another noticeable phenomenon is that the LLM-

based methods, including fine-tuned LLaMA and
zero-shot ChatGPT, exhibit inferior context robust-
ness compared with conventional methods. Al-
though LLMs possess more knowledge than small-
size models like BART, they also suffer from hal-
lucinations and other issues more severely (Bang
et al., 2023; Zhang et al., 2023c), which may result
in instability. Given that more and more individuals
rely on LLMs as their personal grammar checkers
today3, improving the context robustness of LLM-
based GEC systems is an important and meaningful
future challenge for GEC study.

Performance on Different Subsets. We also list
in detail the evaluation results of all systems on
different subsets. The systems collectively achieve
their best context robustness on TEM-8. As men-
tioned before, TEM-8 is sourced from an official
exam, so errors in this subset are challenging and
have deterministic correction methods. We find
GEC systems tend to exhibit more stable perfor-

3https://becomeawritertoday.com/chatg
pt-vs-grammarly
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Figure 3: Fine-grained analysis of how context perturbations affect GEC systems, as reflected by the P-CRS score.

mance for such errors compared to the expression-
related errors in the other two subsets. In addition,
on BEA-19, although most systems achieve their
best GEC performance, their context robustness
is actually the worst. This suggests that the GEC
performance and context robustness may not nec-
essarily be positively correlated.

4.3 Fine-grained Analysis

To gain deeper insights, we categorize context per-
turbations from different perspectives and employ
the P-CRS score to probe whether they alter the
original predictions of GEC systems.

Influence of perturbing action. We begin by ex-
ploring the impact of the perturbing action type.
The effects of the perturbation action type are
shown in Figure 3a. In comparison to substitution
actions, insertion and deletion actions yield signif-
icantly lower P-CRS scores, implying that GEC
systems are more likely to produce inconsistent
corrections when users insert or delete irrelevant
content. The insertion and deletion actions often
alter the sentence structure. Such changes in sen-
tence structure may easily mislead GEC systems
into unstable predictions.

Influence of perturbing position. We proceed
to analyze the impact of the position of the pertur-
bation. Specifically, we only consider the perturbed
sample with only one error and one perturbation.
We then calculate the absolute word distance be-
tween the perturbation and the target error. Figure
3b shows the results. We observe that GEC systems
are more prone to perform inconsistent corrections
when the perturbation is closer to the error. Words
that are close together often belong to the same sen-
tence constituent and are closely related in terms of
grammar and semantics, which could explain why
perturbing them has a greater impact.

Effect of perturbing word frequency. We con-
duct an experiment to study the effect of the word
frequency of the perturbations. For simplification,
we only consider the substitution perturbation (e.g.,
replace A with B) and count the number of occur-
rences of the target word (i.e., B) in the training
data. We categorize perturbations into three levels:
low (less than 10 occurrences), medium (10 to 50
occurrences), and high (more than 50 occurrences).
As shown in Figure 3c, all supervised systems (ex-
cept the zero-shot ChatGPT) exhibit significantly
low context robustness when the target word rarely
appears in the training data. This phenomenon dis-
closes that existing GEC systems may highly rely
on spurious correlation patterns learned from train-
ing data rather than real grammar knowledge to
fix errors. As a result, they perform inconsistently
when generalizing to unseen contexts.

5 Improving Robustness of GEC Systems

After witnessing the unsatisfactory context robust-
ness of existing GEC systems, we further explore
the approach to improving it. In this section, we try
to propose a simple yet effective method to enhance
the context robustness of GEC systems.

5.1 Context Perturbation Robust Training

We propose a Context Perturbation Robust (CPR)
training method. The basic idea is to constrain the
GEC system to output the same results disregard-
ing the perturbations in contexts. To this end, our
method compares an original sample (x, y) with
a perturbed sample (x′, y′), and forces the GEC
model to output the same prediction distribution
at the non-perturb positions by minimizing the bi-
directional Kullback-Leibler (KL) divergence.

For instance, we feed the original sample
(x, y) = (x1x2x3, y1y2y3) and the perturbed sam-
ple (x′, y′) = (x1

′
x2x3x4

′
, y1

′
y2y3y4

′
) into the

16786



Model O-P O-R O-F0.5 U-P U-R U-F0.5 L-P L-R L-F0.5 CRS ↑ P-CRS ↑
GECToR (Baseline) 54.5 33.4 48.4 65.8 37.7 57.3 35.7 27.8 33.8 46.6 87.5
GECToR + CPR (ours) 60.9 27.1 48.6 70.4 34.1 58.0 38.8 22.1 33.7 61.7 (+15.1) 90.3 (+2.8)

w/o KL loss 57.5 29.8 48.3 72.3 32.3 58.0 37.4 22.6 33.4 50.9 (+4.3) 87.9 (+0.4)
Real→Synthetic 60.7 26.4 48.2 70.5 31.9 56.8 38.0 22.3 33.3 55.9 (+9.3) 88.8 (+1.3)

GECToR + Inf. Tweak 61.1 27.9 49.4 71.2 33.9 58.4 38.1 23.9 34.1 51.3 (+4.7) 89.0 (+1.5)

Table 5: Main results of our Context Perturbation Robust (CPR) training method for improving the robustness of the
GECToR model. O/U/L-P/R/F0.5 denote the original/upper-bound/lower-bound P/R/F0.5 values, respectively.

GEC model, where x1
′
x4

′
and y1

′
y4

′
are the per-

turbed tokens at the source/target sides. Subse-
quently, we can get two prediction distributions
of two samples, denoted as P(y|x) = p1p2p3 and
Q(y′|x′) = q1q2q3q4. Finally, our method calcu-
lates the bi-directional KL-divergence loss at the
non-perturb positions 2 and 3 as follows:

LKL = LKL(p
2||q2) + LKL(p

3||q3)

=
1

2
(DKL(p

2||q2) +DKL(q
2||p2))

+
1

2
(DKL(p

3||q3) +DKL(q
3||p3))

(1)

The original learning objective is the negative
log-likelihood loss function, formally defined as:

LNLL = −logP(y|x)− logQ(y′|x′) (2)

The final training object of our CPR method is
to minimize L, which can be calculated as:

L = LNLL + α · LKL (3)

where α is the coefficient weight to control LKL.

5.2 Experimental Setup

For calculating the KL-divergence loss, we concate-
nate the original samples and the corresponding per-
turbed samples to form a training batch. We align
them using the edit distance algorithm to achieve
the perturb positions. We utilize real perturbed sam-
ples in our method for better results. Consequently,
we divide RobustGEC into train/dev/test splits with
3,000/500/2,500 GEC cases, respectively. We test
our method on top of GECToR. As mentioned in
§4.2, GECToR has better context robustness than
other systems, so further enhancing it is more chal-
lenging. We set the weight α of LKL as 1.0. More
details can be found in Appendix A.2.

5.3 Results and Analysis
Our method improves context robustness by
large margins. We present the primary results in
Table 5. As observed, post-training GECToR with
our CPR method on real original⇔perturbed sam-
ples significantly enhances its context robustness.
The CRS and P-CRS scores improve by +15.1 and
+2.8 points, respectively. Notably, the post-training
does not affect the GEC ability of GECToR, as the
changes in O/U/L-F0.5 values are minimal. These
results demonstrate the effectiveness of our pro-
posed CPR method as a lightweight plug-and-play
technique for improving context robustness. We
also perform a case study in Appendix C.

Post-training without explicit constraints is in-
sufficient. We also report the results of removing
the KL-divergence loss (w/o KL loss), which en-
tails post-training on original⇔perturbed samples
without an explicit constraint. After removing the
KL-divergence loss, the boosts in CRS and P-CRS
metrics become considerably smaller than before.
This finding highlights the importance of explicitly
enforcing the GEC system to produce consistent
results using the KL-divergence loss. Furthermore,
we examine the impact of the weight factor α of
the KL-divergence loss in Appendix D.

Synthetic perturbation data is also useful but
not as effective as real data. In previous experi-
ments, we utilized human-annotated perturbed sam-
ples from RobustGEC. We can also generate per-
turbed samples using heuristic rules, which are eas-
ier to obtain. For comparison, we generate the same
amount of synthetic samples by randomly substi-
tuting/inserting/deleting contents. More details
can be found in Appendix B. As shown in Table
5 (Real→Synthetic), the improvement of context
robustness diminishes after using synthetic data
(+15.1→+9.3 for CRS, +2.8→+1.3 for P-CRS), re-
vealing a non-negligible gap between real and syn-
thetic perturbations. Nonetheless, the improvement
remains significant, indicating that our method has
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the potential to be extended to scenarios where
human-annotated perturbation data is unavailable.

The effectiveness of our method does not come
from minimal modification. As observed, our
method improves the GEC model’s precision but
reduces recall. It is also possible that our boost in
context robustness could stem from a more con-
servative correction trend because there exists a
shortcut—if a GEC system does not correct at all,
it will achieve full robustness scores as its results
are very “consistent”. To discuss this, we compare
our method with directly tweaking the inference
of GECToR, which involves adding a bias to the
probability of the KEEP tag to avoid changing the
source token. From the results (GECToR + Inf.
Tweak), we observe that tweaking the inference
leads GECToR to achieve a similar precision/recall
trade-off as us. However, the improvement in con-
text robustness is less pronounced under this setting.
This indicates that the gains in context robustness
we achieved are not solely due to making the GEC
system correct more conservatively, but also come
from teaching it to tolerate irrelevant perturbations.

6 Conclusion

This paper investigated the context robustness of
GEC systems. This is the ability to provide con-
sistent correction suggestions when modifications
unrelated to errors are introduced into the inputs.
To quantitatively analyze this, we developed a di-
agnostic benchmark named RobustGEC. Using Ro-
bustGEC, we disclosed that popular GEC systems
have significant room for improvement in context
robustness. Furthermore, we proposed a simple yet
effective method for enhancing context robustness.
We hope our work can offer insights for future re-
search aimed at developing robust GEC systems.
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Limitations

Benchmark Limitation. The scope of the data
source of RobustGEC may be somewhat limited.
We only consider English GEC, while there have
been many studies in other languages like Chinese.
Additionally, the three data sources we selected
pertain only to formal writing, whereas informal
writing also has a great demand for GEC. Given
the aforementioned flaws, we plan to continuously
update and improve RobustGEC in the future.

Method Limitation. Regarding our approach to
enhancing context robustness, the primary limita-
tion is that we only test it on a single type of GEC
system, specifically, GECToR. In reality, our CPR
method is model-agnostic, and we intend to eval-
uate its effectiveness on a broader range of model
structures in the future. Furthermore, our method is
just a simple and preliminary attempt. We hope fu-
ture research will explore more effective techniques
for improving robustness by using RobustGEC.

Ethics Statement

Data License. When building RobGEC, we col-
lect data from three sources, namely CoNLL-14,
BEA-19, and TEM-8. The first two are publicly
available GEC datasets, and the application of them
in our study is consistent with their intended use
and license. As for the TEM-8 data, we have
consulted with professional legal advisors before
collecting them. The advisors have confirmed
that gathering exam questions from official institu-
tional organizations on external educational web-
sites does not infringe upon copyright laws, pro-
vided that no additional analytical content from
these external sites is used. Besides, we do not
use the outputs from test-takers, only gold answers
are used. So there is no privacy problem for test-
takers. We commit that all data will be used only
for research purposes.

Annotation Payment. All annotators involved
in our annotation were paid properly according
to their annotated task numbers and quality. The
average salary is about 60 RMB per hour, which is
much higher than the legal standard in our country.
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A More Implementation Details

A.1 Implementation of GEC Systems
The implementation details of the five GEC sys-
tems evaluated on RobustGEC are listed below. All
experiments are conducted using 8 Nvidia Tesla-
V100 32 GB GPUs. Most experiments could be
complemented within several hours.

BART. BART (Lewis et al., 2020) is a pre-trained
encoder-decoder model which is widely used for
sequence-to-sequence (Seq2Seq) modeling. The
pre-training task of BART is re-constructing the
corrupted texts. Katsumata and Komachi (2020)
has proven that BART can achieve competitive per-
formance on conventional GEC benchmarks. We
employ the Fairseq4 toolkit (Ott et al., 2019) to
fine-tune a BART-large5 model (Lewis et al., 2020)
on the CLang86 GEC training data (Rothe et al.,

4https://github.com/facebookresearch/fa
irseq

5https://huggingface.co/facebook/bart-
large

6https://github.com/google-research-da
tasets/clang8

2021). This model has about 406M parameters.
The training hyperparameters we used are on par
with Katsumata and Komachi (2020). For decod-
ing, we use the beam search algorithm with a beam
size of 12.

SynGEC. SynGEC (Zhang et al., 2022b) is a
GEC system built on the top of BART. It addition-
ally incorporates tailored dependency syntax infor-
mation into BART by using a GEC-oriented parser,
and demonstrates such linguistic knowledge can
further lead to substantial performance improve-
ments. We reproduce the SynGEC system using
their official code7. We also train this model on
CLang8 using the default hyper-parameters as in
their paper (Zhang et al., 2022b).

GECToR. GECToR (Omelianchuk et al., 2020)
is a sequence-to-edit (Seq2Edit) GEC system that
corrects ungrammatical sentences via predicting
edits such as keeping and deleting. Unlike previous
Seq2Seq methods, it features only a BERT-based
encoder followed by a softmax layer for predic-
tion, which makes its prediction speed very fast.
We train GECToR with their official implementa-
tion8. We choose the Roberta-Large model (Liu
et al., 2019) as the encoder of GECToR, which
has about 354M parameters. Before training, we
convert the error-correct sentence pairs in CLang8
to labels using the tool provided by the official
GitHub repository. The hyper-parameters for train-
ing and predicting directly refer to the original pa-
per (Omelianchuk et al., 2020).

LLaMA. LLaMA (Touvron et al., 2023) is an
open-sourced large language model (LLM) that
exhibits remarkable performance across various
tasks. It is a decoder-only model with a vast num-
ber of parameters from 7B to 65B. Zhang et al.
(2023b) found that LLaMA could achieve decent
GEC ability after fine-tuning with GEC training
data. Following Zhang et al. (2023b), we fine-tune
LLaMA-7B (Touvron et al., 2023) on the CLang8
training data. Considering the time and resource
costs, we conduct parameter-efficient fine-tuning
by utilizing the low-rank adaptation technique (Hu
et al., 2021). The hyper-parameters are directly
taken from Zhang et al. (2023b).

7https://github.com/HillZhang1999/
SynGEC

8https://github.com/grammarly/gector
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ChatGPT. Recently, many works have shown
that ChatGPT9 can achieve promising GEC perfor-
mance by using only zero/few-shot prompts (Wu
et al., 2023; Fang et al., 2023; Loem et al., 2023).
In this work, we also take the prompt-based GEC
approach with ChatGPT into consideration. The
prompt we used is described in §4.2. We set the
temperature parameter as 0.0, which means we
perform the greedy decoding. The reasons are two-
fold. First, this will make the results fixed and
reproducible. Second, we find this will lead to
better GEC performance.

A.2 Implementation of CPR Training

During the CPR post-training, we combine the
original sample with each of the corresponding
perturbed samples to form a contrastive pair. We
implement GECToR and our CPR method with the
ALLENNLP toolkit (Gardner et al., 2018)10. We
train GECToR on CLang8 until convergence as our
baseline and post-train it using our CPR method
on the train split of RobustGEC. During training,
we set the learning rate as 1e-6, the batch size as
128, the dropout rate as 0.3, and the weight α of
LKL as 1.0. The experiments are conducted on 8
Nvidia Tesla-V100 32 GB GPUs, and the results
in Table 5 are averaged over 3 runs with different
random seeds. The training cost is relatively inex-
pensive and only takes approximately 20 minutes,
thereby our method is lightweight and easy to train.

B Synthetic Perturbation Details

As described in § 5.3, we generate synthetic per-
turbed samples using predefined rules for compari-
son with real human-annotated perturbed samples.
We take 3,000 original GEC samples from the train
split of RobustGEC as the seed corpus and create
five synthetic perturbed samples for each, ensuring
a fair comparison. Each sample is perturbed only
once, with substitution, insertion, or deletion ap-
plied randomly with equal probability. For substi-
tution, we randomly select a word in the non-error
context, mask it, and then use a masked language
model, such as Roberta, to fill in the masked slot.
For insertion, we pick a random token from the
vocabulary and insert it at a random non-error po-
sition. For deletion, we randomly remove a word
from the non-error context.

9https://chat.openai.com
10https://github.com/allenai/allennlp

GECToR Baseline
O-S Such people never bump up other people.

✓O-T Such people never bump into other people.
O-H Such people never bump into other people.

P-S Such people never bump up other people

:::::::
because

::::
they

:::
are

:::::
very

:::::::
careful.

✗

P-T Such people never bump into other people

:::::::
because

::::
they

:::
are

:::::
very

:::::::
careful.

P-H Such people never bump up other people

:::::::
because

::::
they

:::
are

:::::
very

:::::::
careful.

GECToR after CPR post-training
O-S Such people never bump up other people.

✓O-T Such people never bump into other people.
O-H Such people never bump into other people.

P-S Such people never bump up other people

:::::::
because

::::
they

:::
are

:::::
very

:::::::
careful.

✓

P-T Such people never bump into other people

:::::::
because

::::
they

:::
are

:::::
very

:::::::
careful.

P-H Such people never bump into other people

:::::::
because

::::
they

:::
are

:::::
very

:::::::
careful.

Table 6: A real case shows that post-training GEC-
ToR with our proposed CPR method makes it output
consistent and accurate correction. O/P-S/T/H denotes
Original/Perturbed-Source/Target/Hypothesis. We use
Red and Green to highlight the grammatical error and
the correct modification, respectively. We also use the

:::::::::
underwave line to mark the perturbation.
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Figure 4: Original F0.5 and CRS curves with different
α.

C Case Study

We present a case study in Table 6. As can be
seen, the GECToR baseline successfully corrects
the grammatical error (up ⇒ into) in the original
sample, but it fails to correct this error when an
insertion perturbation is introduced. However, af-
ter post-training GECToR with our method, it can
consistently and accurately correct errors in both
original and perturbed samples, thereby demon-
strating the effectiveness of our method.

D Analysis of the Weight of KL Loss

We conduct an experiment to investigate the impact
of the weight factor α of the KL-divergence loss
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LKL in Eq. 3. The results are illustrated in Figure
4. As the value of α increases, we observe that the
context robustness of the GEC system improves,
while the GEC ability deteriorates. It is also evident
that setting α to 1.0 achieves the best trade-off.
Consequently, we set α to 1.0 in our experiments.

E Comparison between Native and
Non-native Annotators

It is important to highlight that the annotators in-
volved in constructing RobustGEC are not native
English speakers. To examine the potential impact
of the annotators’ native language on the data di-
versity, we launched an experiment that engaged
native English speakers to perform annotations. In
our preliminary annotation, which includes 100
cases, we compared the perturbations annotated
by both native and non-native speakers. Interest-
ingly, we found no significant linguistic differences,
such as in edit actions and POS-tags, between the
two groups of annotators. The CRS and P-CRS
for BART are 41.7/83.5 on data annotated by non-
native speakers and 40.8/82.8 on data annotated by
native speakers, indicating only a minor difference.
These findings suggest that, despite our annotators
being non-native English speakers, their English
proficiency is sufficiently high, enabling them to
produce annotations comparable to those of native
speakers.
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